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Abstract

We present a method for 3D face acquisition using a set or
sequence of 2D binary silhouettes. Since silhouette images
depend only on the shape and pose of an object, they are
immune to lighting and/or texture variations (unlike feature
or texture-based shape-from-correspondence). Our prior
3D face model is a linear combination of ”eigenheads” ob-
tained by applying PCA to a training set of laser-scanned
3D faces. These shape coefficients are the parameters for a
near-automatic system for capturing the 3D shape as well
as the 2D texture-map of a novel input face. Specifically, we
use back-projection and a boundary-weighted XOR-based
cost function for binary silhouette matching, coupled with a
probabilistic ”downhill-simplex” optimization for shape es-
timation and refinement. Experiments with a multi-camera
rig as well as monocular video sequences demonstrate the
advantages of our 3D modeling framework and ultimately,
its utility for robust face recognition with built-in invariance
to pose and illumination.

1. Introduction
Recently it has become clear that the two most critical fac-
tors limiting the performance of automatic face recognition
systems are pose and illumination. Therefore, it follows
logically that the best and most complete solution to this
problem is to acquire/analyze/match a full 3D model of
the face as represented, for example, by a 3D shape-mesh
plus a 2D texture-map. While 2D view-based [11] and
other appearance-based approaches definitely have merit,
they suffer from a fundamentally limited representation (a
collection of 2D appearance subspaces). We believe that an
intrinsic 3D model is the only way to properly tackle the
complications that arise due to pose and illumination (and
perhaps expression as well) and that they will pave the way
for the next generation of robust face-recognition systems.

Traditionally, an image or span of images in time and/or
space has been the most common means to convey the in-
formation about shape and/or motion of objects in the real
world. A single image has natural limitations in revealing

3D information of the objects given the reduction of one
dimension. However, this limitation can be overcome by
a span of images in time (a video sequence of objects in
motion) or a span of images in space (images captured from
different viewpoints) or a combination of the two. The tra-
ditional approach is of course that of Structure-from-Motion
(SFM) [5, 20, 17]. It deals with the problem of recover-
ing 3D points on a rigid object from 2D correspondences of
points across images. SFM is a direct method to obtain the
3D points which are often not so dense or accurate, thus a
post-processing phase is required.

One of the strongest clues for the 3D information con-
tained in a 2D image is the outline of an object in the image.
Shape-from-Silhouette (SFS) techniques have been used to
reconstruct 3D shapes from multiple silhouette images of
an object without previous knowledge of the object to be
reconstructed [9, 16]. The reconstructed 3D shape is called
a visual hull, which is a maximal approximation of the ob-
ject consistent with the object’s silhouettes. The accuracy
of this approximate visual hull depends on the number and
location of the cameras used to generate the input silhou-
ettes. In general, a complex object such as the human face
does not yield a good shape when approximated by a visual
hull using a small number of cameras. Moreover, human
faces possess concavities (e.g. eye sockets and philtrum)
which are impossible to reconstruct even in an exact visual
hull due to its inherent limitation. An example of this, taken
from our dataset is shown in Figure 1 which shows a 3D
shape of a subject alongside the approximated visual hull
obtained (synthetically) via 50 viewpoints. However, using
knowledge of the object to be reconstructed, silhouette in-
formation can still be exploited as an important constraint
for the exact shape of the object.

In this paper, we present two systems that recover 3D
shape of a human face (and consequently its 2D texture-map
as well) from a sequence of silhouette images using an un-
derlying model-based 3D face shape statistical prior. A sin-
gle monocular video stream as well as a multiple-camera rig
are used as input sources (in both synthetic and real experi-
ments) to demonstrate the effectiveness of our model-based



Figure 1: Original laser-scanned face vs. its own Visual Hull,
obtained using 50 viewpoints (synthetically rendered).

shape-from-silhouette matching approach. In Section 3, we
first describe the “eigenhead” face shape model. Section 4
formulates the inverse problem of reconstructing a 3D face
from its silhouettes, using a novel “correspondence-free”
boundary-weighted XOR-based cost function for direct 2D
matching and the subsequent 2D face “texture-lifting”. Sec-
tion 5 presents two (roughly equivalent) operational sce-
narios: using a single monocular video sequence vs. a
multiple-camera rig “snapshots”. Experimental results with
both synthetic and real data (in both scenarios) are presented
in Section 6. Finally, Section 7 has a brief summary and
discussion of our results and future plans.

2. Background
Atick et al. [1] proposed a method to use eigenheads
to solve a shape from shading problem by leveraging the
knowledge of object class, which was used to recover the
shape of a 3D human face from single photograph. This
line of research (including that of many others) ultimately
culminated in the seminal work of Blanz & Vetter [2], who
formulated an optimization problem to reconstruct a tex-
tured 3D face from one or more photographs in the con-
text of inverse rendering. Though originally targeted to the
computer graphics community, it did not take long for face
recognition researchers to take note of the many advantages
of this type of approach, especially its 3D representation
framework – ie. shape surface-mesh + 2D texture-map.
Our formulation is similar in essence. However, our im-
plementation of various stages is more robust and amenable
to efficient realization (eg. in hardware), depending on the
particular application scenario.

Specifically, Vetter & Blanz [21] used a 3D variant of
a gradient-based optical flow algorithm to derive the nec-
essary point-to-point correspondence. Their method also
employs color and/or texture information acquired during
the scanning process. This approach will not work well for
faces of different races or in different illumination given the
inherent problems of using static textures. We present a

simpler method of determining correspondences that does
not depend on the color or texture information.

3. Face Model
Any parameterized 3D face model can be used together with
the proposed shape recovery algorithm described in Sec-
tion 4. However, the model parameters should describe well
the silhouette contours of a real person’s face for accurate
matching. Thus, rough 3D mesh models in a relatively low
resolution will not be adequate for this purpose. Our under-
lying face model is not synthetic but is based on real human
faces measured by laser-based cylindrical scanners. This
data-driven face model is limited in its expressive power by
the number and variety of the faces in the training database.
However, it can be easily expanded by incorporating new
faces into the existing database.

3.1. Face Database Preprocessing
Our face database comes from USF dataset [18] and con-
sists of Cyberware scans of 97 male adult and 41 female
adult faces with various races and ages. The number of
points in each face varies approximately from 50,000 to
100,000. All faces in the database were resampled to obtain
point-to-point correspondence and then aligned to a refer-
ence face to remove any contamination of the PCA caused
by pose variation and/or misalignment. The method we
used to obtain the point-to-point correspondence is com-
posed of the following steps:

1. Select a reference face ��� , which is the closest face to the mean face
in the database and choose � feature points on it manually (in our
case, we used �����	� ). Let the position of the feature points be
��� ����� ���	��� ��� .

2. For a face ��� in the database, select � feature points corresponding
to the feature points on ��� . Let the position of the feature points be
��� � .

3. Deform ��� so that it fits the target face ��� . This requires the inter-
polation of all points in � � under the constraint 
��� � � 
��� � . Let
the deformed face be �! � . Now �" � has a shape similar to ��� since
both have same locations for the all � feature points. Note that �  �
has exactly the same number of points as ��� .

4. For each point in �  � , sample a point on the surface of ��� in the di-
rection of underlying cylindrical projection (as defined by the scan-
ner configuration). Now each resampled point on �#� has a corre-
sponding point on � � .

5. Repeat step 2 through step 4 for all ��� ’s �%$'&�)(	� in database to get
the correspondences among all the faces in the database.

For step 3, a standard model for scattered data interpola-
tion can be exploited [10, 12]. Note that, at step 4, we can-
not get corresponding samples on the surface of *!+ for some
points on the boundary of *-,+ . It is likely that the two faces
under consideration do not match exactly on the boundary.
We keep track of the indices of those void sample points



Figure 2: Getting correspondence between two faces. From left
to right, reference face, target face, warped reference face, resam-
pled target face. Note the void samples in the ears of the resampled
target face.

and use only sample points whose indices are not void in
any resampling of * + in the database. Figure 2 depicts the
process to establish the correspondence between reference
and target faces.

We next applied PCA to the newly registered and aligned
database of 3D faces faces to obtain our prior statistical
shape model. As a consequence of this analysis, we can de-
fine all possible face geometries with eigenheads [1]. This
decomposition can be used to reconstruct a new or exist-
ing face through the linear combination of eigenhead basis
functions. Therefore, our face model is given by

���������
	������������� � 	�� (1)

and the model parameter is
����� � ��� ��� �! " ! #� � �%$ , where	��

is the &('*) eigenhead and
	+�

is the mean or average
head.1

4. Shape-from-Silhouettes
In this section, we describe fitting our model parameters to
a set of input silhouettes (taken from either a single video
or a multi-camera rig setup). In Section 4.1 we describe
the rationale behind our non-linear optimization technique,
specifically for direct binary silhouette matching with a cost
function, described in Section 4.2, which has no gradient
information. This silhouette matching metric, by virtue of
its simple yet effective design (boundary-weighting) is ideal
for matching partial occluding contour segments and is rel-
atively immune to noise/clutter and incomplete silhouettes
(with “holes”) obtained by background-subtraction. In Sec-
tion 4.3, we describe how (easily) the texture can be ex-
tracted (lifted) from the source images (and blended or aver-
aged) once the 3D shape is recovered. Note the contrast here
to other work in this area where “eigenfaces” of the facial
texture-maps are also used as model priors. We believe that
given sufficiently high-quality inputs (and/or many frames),
there is often no real need to estimate the texture-map.

1Note that while PCA is typically applied to the 2D facial texture as
well (as in [2] for example) an “eigenface” model is neither required nor
in fact necessarily desired in our framework (see Sections 4.3 and 7).

4.1. Nonlinear Optimization
Let , �����

be any arbitrary face model which pro-
duces a polygon mesh given a vector parameter

� �� � ��� �-� �".".!.#� ��/ $ . Let 021+ /43"5 ' �76 �98  : ; be 6 '*) input sil-
houette image. Also, let < be a similarity transformation
that aligns a reference model face to the real 3D face. Then,0�1�>= ,@?BA �*�C� is a silhouette image rendered by projecting< � , �����D�

onto an image plane using the pose information
appeared in the 6 '*) silhouette image.

Provided we define a cost function E that measures the
difference of two silhouette images, our goal is to find

�
that minimizes the total penalty

FG�*�H���JI�
1 �-� E

� 0 1+ /43"5 ' � 0 1�>= ,@?BA �*�H�K� (2)

for a suitable cost function E .
We use downhill simplex method to minimize Eq.(2).

This optimization process depends on the characteristics of
the model parameter. Here, we discuss the optimization
process based on our model parameter described on Section
3. Among the 137 eigenheads, we chose the first 60 eigen-
heads to reconstruct a 3D face. Furthermore, we found this
number to be sufficient to capture most of the salient fea-
tures in a human face. Thus, the corresponding coefficients
serve as our multi-dimensional optimization parameter of
dimensionality 60.

The simplex method can be easily adapted to our multi-
dimensional face model. The initial simplex of 60 dimen-
sions consists of 61 vertices. Let the coefficients

�L��4M �".".!.@� M $ (corresponding to the mean face) be one of the
initial points N�O of the simplex. We can choose the other
remaining 60 points to be

N"+ � N�O �P +*Q + �SR �T8  U V M �
where Q�+ ’s are 60 unit vectors and

P + can be defined by the
characteristic length scale of each component of

�
. We setP + �XWZY [ + , where

[ + is the R '*) eigenvalue corresponding
to R '*) eigenhead in our face model. With this initial con-
figuration, the movement of this 60 dimensional simplex is
confined to be within our face space and there is no need
to perform exhaustive searches in the exterior of the face
space.

4.2. Silhouette Matching Metric
Now, we discuss how we design the cost function E in
Eq.(2). The easiest way to measure difference of two binary
images is the number of ‘on’ pixels when pixel-wise XOR
operation is applied to the two images [7]. In this case,

E � 0 1+ /�3#5 ' � 0 1�>= ,@?\A ���H�K���J]�
+

^�`_�a � R7�\b � (3)



a � R �\b ��� � M
if 0�1+ /43"5 ' � R � b ��� 021� = ,@?\A ���C�"� R � b �8
otherwise.

If our goal requires that E � M
, that is, if two silhouettes

overlap exactly, the optimal solution will be unique in terms
of 021� = ,@?\A ���C� . However, if our objective function E can-
not be reduced to zero given inherent characteristics of the
problem, it is likely that there are multiple optimal solu-
tions. Any preference among those multiple optimal solu-
tions should be incorporated in the cost function.

In our case, the input silhouette area covers the full head
including hair and the back, while our face model includes
the front of the face delineated by the ears on the sides and
lower part of the forehead from the top. Thus, our objective
function, E , is often non-zero (or E�� M

) since the silhou-
ette generated by our model ( 0 1�>= ,@?\A �*�H� ) considers only a
partial area of the input silhouette ( 0 1+ /43"5 ' ) (see Figure 5).
If we use the objective function E in Eq.(3), we could have
multiple set of 021� = ,@?\A ����� that minimize E and we cannot
guarantee that these solutions match the real boundary con-
tours in the input silhouettes. Our goal is to match the real
boundary contours between input and model silhouettes andE is required to be the global minimum. Accordingly, we
impose higher penalty for the mismatch near the boundary
pixels of input silhouettes.

Though a mismatch in the pseudo contour area con-
tributes a higher cost to E , this contribution can be consid-
ered as a constant factor. Our new cost function replacesa � R � b � in Eq.(3) witha � R �\b ��� � M

if 0�1 � R � b ��� 021� �����"� R � b ��
,�� +��
_	��


otherwise (4)

� � R �\b ���� � 0 1 �#� R � b � � ���0 1 �"� R � b � �
where

 � 0 � is the Euclidean distance transform of binary
image 0 and

�0 is the inverse image of 0 . Note that
�

rep-
resents a distance map from silhouette contour and can be
computed once in a preprocessing step. We call this cost
function boundary-weighted XOR , which provides a sim-
ple and effective alternative to precise contour matching
schemes. As a result, there is no need for expensive op-
erations of correspondence, edge-linking, curve-fitting, dis-
tance computations between boundary curves; all needed
when precise contour matching schemes are used. Thus,
our optimization algorithms are fast and robust.

4.3. Texture Lifting
Our optimized 3D model matches all input silhouette im-
ages as close as possible. Since the input silhouette images
are obtained from the corresponding texture images, we do
not need any further registration process for texture extrac-
tion. We extract texture colors in object space rather than
image space and do not create a single texture-map image.

That is, for each 3D vertex in the reconstructed 3D face,
we assign a color value which is determined from multiple
texture images. To do so, we proceed as follows.

Our approach is a view-independent texture extraction
approach [12, 15, 19]. Each vertex is projected to all im-
age planes and tested if the projected location is within the
silhouette area and if the vertex is visible (not occluded) at
each projection. For all valid projections, we compute the
dot product between the vertex normal and the viewing di-
rection, and use the dot product as a weight of the texture
color sampled at the projected image location. The final
color value at a vertex is computed by dividing the weighted
sum of texture values of all valid projections by the sum of
weights.

5. Sensing Geometry
As already noted, we have experimented with two nearly
equivalent operational scenarios in the face acquisition sys-
tem’s sensor geometry. Firstly, a multi-camera rig which
takes static but multiple “snapshots” of the subject in a rel-
atively controlled and instrumented sensing environment,
best suited for initial model-building, training and algorithm
development. Secondly, lower-cost and less-constrained
single stream monocular video wherein either the subject
is static and the camera is moving or where the camera is
stationary and the subject is moving. This latter scenario is
more in line with real-life applications where often equip-
ment costs and the need for covert operation exclude highly
“visible” multi-camera rigs. Our own view is to use the
multi-camera rig in the laboratory for testing and model
building (ie. eigenhead PCAs) and then to apply these in
operational settings with single/fewer cameras.

5.1 Multi-Camera Rig

We now describe how the proposed silhouette matching
scheme is applied to the silhouette images taken by multi-
ple static cameras simultaneously from different viewpoints
(here we are assuming that all cameras are calibrated). As
with the visual hull, it is important to choose the viewpoints
carefully to get maximally informative 3D shape informa-
tion from a set of silhouette images. After some preliminary
experimentation with various geometries one candidate ar-
rangement was selected for the majority of the experiments.
We should note that the optimal arrangement of � cam-
eras is currently an ongoing part of our research project. In
particular, the eleven camera positions that we used were
sampled on the front hemisphere around the face/head as
shown in Figure 3. These were found to be adequate given
our physical constraints with the rig as well as shape capture
accuracy. A more detailed exploration of different camera
placements and the subsequent impact on our system’s over-
all reconstruction accuracy is published elsewhere.



Figure 3: The layout of 11 cameras corresponding to the actual
multi-camera rig (used in both synthetic and real experiments).

Though we assume all cameras are calibrated, we still
need to align our model to the estimated pose (rigid trans-
formation, < ) of a real person’s head defined in the same
coordinate system with the multiple cameras. Finding the
alignment transformation < is not trivial using only the sil-
houette information. The form of < depends on the pose
and size of the face of a person to be captured. < can be
defined as < ��� �2���Z����� ���� �
where

�
is a scale factor,

�
is a rotation matrix,

�
is a trans-

lation vector. The alignment problem is then one of mini-
mization of the functional:

��_ ��� 	 �
_

 < ��� _ � 	 � � (5)

in terms of
�
,
�

and
�
. It should be noted that

�
_

is the b '*)
3D feature point in real face,

�
_

is the b '*) 3D feature point
in a reference model face and  is the number of feature
points to be used.

We already know
�
_
. However,

�
_

is determined from
a standard non-linear least square minimization technique
[13, 17]. A Levenberg-Marquardt algorithm is applied to
obtain the 3D point locations that correspond to  feature
points selected manually in a small number of (3-4) texture
images. We used  ���

in our experiments. Once we
determine

�
_
, then, we compute the values of

�
,
�

and
�

such that Eq.(5) is minimized. The needed parameters are
obtained from an application of the full ordinary Procrustes
analysis [4].

5.2 Monocular Sequence

We consider a video sequence captured in front of a fixed
video camera (eg. a

W�� M 
���
 ���ZM webcam). The user is re-
quired to start from a frontal view and then allowed to rotate
his or her head arbitrarily to capture face shapes from vari-
ous viewing angles. For the first frame, the user is required
to select two outer eye corners and two mouth corners to
locate a 3D mask (template) to the face area.2 The mask
is used to track the facial area in the subsequent frames by
its rigid transform. After finding six-dimensional motion
parameters for each frame, we extract , ��� � � mostly
significant poses and generate corresponding silhouette im-
ages by background subtraction. For those , silhouette
images, the shape parameters are adjusted so that the face
model with the fitted shape parameters provides the closest
silhouette shapes to the given input silhouettes.

In this section, we describe how we can estimate poses
for a video sequence with arbitrary head rotation. We start
from the well-known optic flow constraint. Let � � ��� ��� �
be a pixel location in a frame and ��� �L��� � ��� � � be the
corresponding pixel location in the next frame. Then, we
assume the pixel intensities at � and � � do not change,
that is, ! � � ��" � � ! � �#� ��"  84�

. If a specific region in
a image (e.g. human head) is governed by a rigid trans-
form, we can define a mapping function from a 3D pointN � ��$ ��% ��& � to a 2D pixel location � such that � �
' � E ��( � N �D�G�)' �*� N +���

, where
'

represents a projec-
tion model,

( � ��,.- � ,./ � ,.0 ��" - ��" / ��" 04� is a 6-dimensional
motion parameter,

�
is a rotation matrix and

�
is a transla-

tion vector. Let
(

is a motion parameter of a head at time "
and

( � be a motion parameter to be recovered at time "  8 .
Then, our goal is to find

( � that minimizes

1 �*( � ( � ��� �
24365

	 ! ��' � E ��( � N �K� 
 ! ��' � E ��( � � N �D� 	 � (6)

where 7 is a set of visible points on the 3D face template
in both frames. We use the mean face of a 3D face database
as our template face and call it a mask in the following
sentences. Since the first-order Taylor expansion of 1 is
non-linear with respect to

( � , it is not trivial to apply the
well-known Lucas-Kanade method [8] based on Newton-
Raphson style iteration using spatial and temporal image
gradients. We exploit a perspective projection, which is
more proper model to deal with the sequences taken at rel-
atively short distance between head and camera. Instead
of using gradient information, we apply downhill simplex
method, to minimize Eq. (6) using cost function evaluations
only [13].

The optimization tracking process can be easily misled
due to noise if we only use information from the previous

2Based on extensive past experience, we are confident that automatic
face/eye-detectors can be put to good use here to initialize the mask (clearly
the preferred mode of operation) or at least correct for any drift in tracking.



frame to estimate the motion of the current frame. Instead
of using the single reference frame, we use a weighted com-
bination of Eq. (6) with multiple reference frames that are
already registered. A proposed objective function isa �*( � ����� � 1 �*( � ( � � �� � 1 ��( / � ( � � ���� 1 ��( + � ( � � (7)

where
( + is the initial pose and

( / is the pose that is already
registered and the closest to

(
in terms of  � norm. The

weights
� � , and

� �
are determined by the pose distance	 ( 
 ( / 	 and

	 ( 
 ( + 	 respectively and
� � � 8 
 � � 
 � �

. In
this way, we also prevent the estimation error from being ac-
cumulated through the frame-by-frame basis optimization
approach.

6 Experiments

We first touch on some implementation issues which also
high-light some of the advantages of our particular scheme.
One concern is the speed of the optimization process. The
most time-consuming part in a function evaluation is the
silhouette generation part. Since our face model is of very
high resolution (approximately 48000 vertices and 96000
triangles), even rendering with flat shading takes consid-
erable time when it should be repeated in an optimization
process. A simple remedy for this problem is to reduce the
mesh resolution by vertex decimation. Also, if we reduce
the mesh resolution, it is natural to reduce the resolution of
silhouette images accordingly (originally

8!M�� � � � V�� ). The
reduction in model and image resolution will accelerate the
XOR computation process. In our experiments, we deter-
mined that 95% decimation in the mesh and 50% reduction
in image resolution resulted in a similar convergence rate
and a lower (1/10) cost required for original resolution data.

Another way to expedite the optimization process is to
employ a hierarchical approach [7]. For example, 99%
decimation in mesh resolution and a 75% reduction in im-
age resolution resulted in only 30-40 seconds until conver-
gence. As a result, it is likely better results can be obtained
than those obtained using only high resolution data. All
the results presented here were obtained from this hierar-
chical optimization technique. Note that the shape param-
eters (

�
) are not directly dependent on the input silhouette

image resolution and do not dictate the 3D output mesh res-
olution. The manner of resolution-independence built into
our scheme is a very desirable feature. Our statistical shape
model already includes fine details which allows us to use
lower-resolution sensing in the input images and XOR com-
putations for faster shape recovery.

Fortunately a wealth of synthetic data can be generated
from our face model directly by sampling the implicit Gaus-
sian distribution inherent in the PCA “eigenhead” model.
For example, to illustrate the robustness of our shape re-
construction method, we chose 50 individual faces from

Figure 4: Reconstruction of synthetic faces: (top) minimum �
	
error, (middle) average � 	 error, (bottom) maximum � 	 error.

the database and 50 synthetic faces generated by randomly
sampled parameters, �
���������� ��� ��������� ��� ��� �!�#"$&%'�(�)� *'� ,
according to the prior Gaussian distribution. Eleven syn-
thetic cameras were then positioned in the front hemisphere
around the subject (as in Figure 3). The input silhouette im-
ages were acquired by rendering each of the sample faces in
the image planes of the 11 virtual cameras. Figure 4 shows
resulting reconstructions from our optimization and shape
refinement process. The selected faces in the figure corre-
spond to the minimum, average, and the maximum +-, error
among all the 100 samples. We observe that our silhouette
matching algorithm captures the most important features of
a face within our constructed face space.

The challenges in using images taken by real cameras
are in silhouette acquisition, accuracy of camera parame-
ters, misalignment, and ‘clutter’ (excess head area beyond
the face model). We assume that silhouette images can be
easily acquired by a simple background subtraction tech-
nique. We calibrated the eleven static cameras (Figure 3)
by a standard technique using a calibration object [17]. One
could enhance this initial camera calibration by a technique
that uses silhouette images [6, 14]. Figure 5 shows how our
model face fits to real silhouette images of a Caucasian face.
Note the similarity of alignment to the synthetic cases in
Figure 4, demonstrating that our boundary-weighted XOR
cost function allows the model-generated silhouette contour
to closely fit the boundary of input silhouette images. Note
that this alignment cannot be achieved with a simple XOR
cost function due to the lack of preference for contours.



Figure 5: Real silhouette images of a Caucasian head before
(above) and after (below) optimization with our face/head model.
NOTE: the input silhouette is shown in white, its overlap with the
model is shown in blue and areas where the model has no overlap
with the input are shown in yellow.

Figure 6 demonstrates the effectiveness of 3D recon-
struction and subsequent texture-mapping of the Caucasian
in Figure 5. In addition, Figure 7 shows the results of the
final 3D model captured from an Asian subject using the
same technique. Note that the location of eyes and the shape
of noses and lips in the texture-mapped images agree well
with the reconstructed 3D geometry. It is remarkable that
the race information, which is expected to be coupled with
silhouette contour, was successfully captured by our silhou-
ette matching scheme.

Initial experiments with 3D face tracking in monocular
sequences using our formulation have yielded very promis-
ing results (especially in light of the many differences in
our approach). Figure 8 shows some frames from a se-
quence with a stationary camera (moving subject) wherein
an average-face 3D “mask” was used to track the 3D move-
ment of the head. In the figure, this canonical mask is su-
perimposed onto the selected frames, with holes “drilled”
in at the eyes/mouth to help with visualizing the align-
ment. This sequence required only hand initialization of the
eyes/mouth in the first frame. All subsequent mask/pose
tracking was performed using the simplex optimization de-
scribed in Section 5.2.

From this sequence, we automatically selected 11 frames

Figure 6: A rendering of the captured 3D model of the Caucasian
in Figure 5. Left panel is a (real) image taken from our rig. Note:
subject was not laser-scanned or included in the training set.

Figure 7: A rendering of the captured 3D model of an Asian
subject. Left panel is a (real) image taken from our rig. Note:
subject was not laser-scanned or included in the training set.

(deemed sufficiently distinct by means of silhouette “clus-
tering” using their foreground shape moments) and used
these frames as the equivalent virtual multi-camera views
for reconstruction. A subset of these “calibrated” views is
shown in Figure 9, where the background-subtracted input
or foreground “silhouettes” (in white) are shown along with
the back-projected model silhouettes. The model mask’s
intersection with the input is shown in blue, whereas yel-
low indicates the model silhouette regions with no over-
laps (missing inputs). Note that despite the noise and par-
tial silhouette data, the boundary-weighted XOR cost func-
tion nicely fits the model to the salient portions of the data
(mostly contour) while ignoring spurious detail and clutter.
This feature makes our silhouette cost function particularly
desirable in real applications.

7. Discussion
We presented a robust and efficient method to capture (or
reconstruct) 3D human faces from silhouettes. Few user-
specified parameters are required making our method close
to an automatic method. We proposed a novel algorithm for
establishing correspondence between two faces using an ef-
ficient boundary-weighted XOR cost function for the opti-
mization. This method is robust with partial heads or binary
silhouettes with noise and clutter. Moreover, our method
is relatively resolution-independent allowing for expedient
reconstructions tailored for a given sensor and the use of
coarse-to-fine optimization for computational speedup.



Figure 8: Pose estimation and tracking for a monocular sequence.
The default (average) 3D “mask” is overlaid on the input video.

Figure 9: Shape fitting for a monocular sequence (white is input,
yellow is the model, and blue is model-input intersection).

We believe that 3D face capture will figure promi-
nently in the future of face recognition and to that end
systems capable of decoupling the shape/texture from
pose/illumination artifacts have a great advantage. For ex-
ample, armed with the canonical texture-map alone, one can
exploit the variety of 2D face-recognition systems already
in existence (simply feed the “unwrapped” texture-map as
input). Capturing the 3D shape model automatically ob-
viates the problem of pose as typically encountered with
2D view-based methods. The areas of future research we
are currently focusing on are the determination of the opti-
mal number and placement of cameras (in the multi-camera
setup), robust pose tracking in monocular sequences, im-
proved texture “lifting” and blending for higher-quality tex-
tures, estimation and decoupling of the scene illumination

from the texture-map and hence the removal of any such ad-
verse impact on subsequent face recognition performance.
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