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Abstract— Recent advances in high-resolution microscopy allow neuroscientists to acquire volume data of neural tissue of extreme
size. However, the tremendous resolution and the high complexity of neural structures present big challenges to storage, processing,
and visualization at interactive rates. We present a system for interactive exploration of petascale (petavoxel) volumes resulting from
high-throughput electron microscopy data streams. Our system can concurrently handle multiple volumes, and also supports the
simultaneous visualization of high-resolution voxel segmentation data. We employ a visualization-driven system design that allows
us to restrict most computations to a small sub-set of the data. We employ a multi-resolution virtual memory architecture for better
scalability than previous approaches and handling of incomplete data. We illustrate the real-world use of our system for a mouse
cortex volume of one teravoxel in size, where several hundred neurites as well as synapses have been segmented and labeled.

Index Terms—petascale volume exploration, segmented volume data, high-resolution microscopy, high-throughput imaging, neuro-
science.

1 INTRODUCTION

Reconstructing the human connectome is one of the major scientific
endeavors of the 21st century. Connectomics aims to completely re-
construct and map the human brain’s neural circuits, comprising bil-
lions of neurons and their interconnections, i.e., synapses. By de-
ciphering this network and its properties, scientists hope to gain an
understanding of how the brain functions, and how pathologies like
Alzheimer’s disease or autism develop or can be treated.

However, the immense complexity of the mammalian connectome
and the huge amount of imaging data that need to be acquired, stored
and—most importantly—processed, present a big challenge for neuro-
scientists. Finding the connectome of the C. elegans worm, consisting
of a mere 300 neurons and their 7000 connections, took over a dozen
years to complete [11]. Only recent advances in high-throughput
and high-resolution microscopic imaging have made it possible to
start tackling the mammalian connectome (e.g., the connectome of a
mouse) by acquiring petabytes of volume data with great speed, en-
abling the accurate reconstruction of detailed neural connections.

Modern microtomes and electron microscopes (EM) can produce
volumes of scanned brain tissue with a slice thickness of 25-50 nm
and a pixel resolution of 3-5 nm [2], as compared to 200 nm per pixel
in optical microscopes. This resolution is necessary in order to be able
to trace detailed neural connections at the resolution level of individual
synapses. However, with these new acquisition techniques, processing
and analyzing the scanned data has become a major bottleneck for
connectomics.

For example, an EM volume of 1 mm3 of brain tissue would already
result in a volume of one petabyte in size, and scanning the data with
a throughput of roughly 10 Mpixels/s [2] would require an acquisition
time of several years. Currently, a high-throughput acquisition pro-
cess has to continuously stream data over months or even years, which
has a huge impact on the way the produced data have to be stored,
processed, and visualized. This implies that algorithms for processing
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and visualization need to be able to handle incomplete data—data that
have not been completely scanned yet.

Reconstructing the synaptic connections between neurons is still of-
ten achieved by laborious manual segmentation, combined with semi-
or fully automatic segmentation approaches [8]. However, interactive
3D visualization of the scanned volume, visual proof-reading of the
segmentation, and 3D navigation inside the volume are vital for un-
derstanding the data, and must be able to handle large-scale EM data
volumes. For example, pre-processing the data into a hierarchical rep-
resentation as it is usually done for interactive visualization of large
volumes incurs an unacceptably large gap between acquisition and vi-
sualization. Therefore, it is necessary to develop novel visualization
paradigms and systems in order to facilitate the interactive exploration
and analysis of large-scale microscopy data streams.

We have developed a flexible volume processing and visualization
framework whose design scales to petascale (i.e., petavoxel) volume
data, and which is able to deal with incomplete data [6]. In this paper,
we motivate the design criteria of our system and describe its integra-
tion into the neuroscience workflow for connectomics research, result-
ing in a large-scale end-to-end system that supports the simultaneous
visualization of raw EM data, volumetric segmentation data, and an-
notations. Furthermore, we will describe the individual components of
our system, focusing on how each component is designed to be scal-
able to petavoxel volumes, including: 1) compact and efficient data
storage and retrieval; 2) on-the-fly 3D data construction; 3) interactive
3D visualization of microscopy data streams; 4) integration of volu-
metric (voxel) segmentation information; and 5) interactive labeling
of synapses—the actual connections between individual neurons.

2 PREVIOUS WORK (SIDEBAR)
Our system is related to a large collection of prior work, and we only
highlight the most important connections here. Seung [11] gives a
very good introduction to connectomics and its recent developments,
including advances in high-resolution and high-throughput electron
microscopy imaging. The work of Bock et al. [2] is an example of
how EM circuit reconstruction and the resulting network graph of con-
nected neurons can help in finding a relationship between structure and
function of a brain area.

The system described in this paper is in part based on previous
work on petascale volume rendering [6] and visualization of neuro-
science data sets [7]. Hadwiger et al. [6] introduce a volume rendering
scheme for extremely large EM data, focusing on a multi-resolution
virtual memory architecture and on-the-fly construction of volume
blocks with a thorough performance and scalability analysis, which
serves as a basis for the system described in this paper. Jeong et al. [7]
describe two systems for interactive exploration and analysis of elec-



Fig. 1: System overview. Petascale volumes are acquired as a stream of image tiles from the microscope. Each raw image tile is processed
individually in the input stream. Everything else is visualization-driven: Ray-casting operates in virtual volume space, detecting missing blocks
(missing block detection) for visible volume blocks that are not in GPU memory. Only these blocks are then constructed in 3D by stitching and
resampling the corresponding tiles from the 2D input stream.

tron microscopy images. Their focus is on manual and semi-automatic
tracing of neurons and on-the-fly edge-detection for improved render-
ing of neural processes. Beyer et al. [1] described a general system
for rendering multiple volumes in addition to segmentation data in the
context of neurosurgical applications. Although their system also em-
ploys out-of-core strategies, it can only handle much smaller data sizes
than our system.

Our visualization stage uses GPU volume ray-casting, which has
become the most common approach for GPU volume rendering. A
main constraint for GPU-based approaches is the limited GPU mem-
ory size. In order to accommodate large volumes, out-of-core and
multi-resolution volume rendering approaches have been developed,
often based on hierarchical octree bricking schemes [10]. These ap-
proaches work by partitioning the data into smaller sub-bricks and
computing a multi-resolution hierarchy (e.g., octree) of the data in a
preprocess. During rendering, only the active working set of these
bricks (e.g., all bricks inside the view frustum) have to be downloaded
to the GPU, thereby alleviating GPU memory restrictions. How-
ever, all previous multi-resolution volume renderers require the multi-
resolution hierarchy to be built in a pre-process, which is not feasi-
ble for our scenario of dynamically streaming image data. A pre-
processing step is also required by all previous systems that support
streaming of volume data for progressive rendering, such as the Vi-
SUS system [12]. The Gigavoxels [4] and CERA-TVR [5] systems
perform explicit octree traversal on the GPU by using the kd-restart
algorithm. However, this requires holding the entire path from every
leaf to the root in GPU memory, and can result in large numbers of
updates per frame. Our system avoids many drawbacks of explicit
octree traversal by using a virtual memory approach that allows to ac-
cess any requested resolution directly, without having to traverse the
entire hierarchy of coarser resolution levels [6]. Much research has
been devoted to volume rendering on large supercomputers [3]. This
is especially useful in the context of in-situ visualization of large-scale
simulations, where the visualization is computed on the same machine
as the data, avoiding the need to move large data. However, this is not
a feasible approach for microscopy data. Our data streams do not orig-
inate from large-scale simulations, but from acquisition setups that are
not directly connected to a supercomputer. Our system streams data
to the GPU-based visualization, but only as required by the actual vis-
ibility. Such a display-aware approach has also been used before for
on-the-fly image alignment and stitching at a resolution that matches
the desired output resolution [9].

3 PETASCALE EM VISUALIZATION FRAMEWORK

Our volume processing and visualization framework consists of two
main parts (see Figure 1). The data-driven pipeline, which starts with

the actual image acquisition, data storage and 2D mipmap generation,
and the visualization-driven part, for visualization and 3D block con-
struction. In the following, we will explain the function of each indi-
vidual module and their interconnection.

Data generation starts on the left side of Figure 1 and propagates
from left to right. In a wider sense, this also includes more complex
pre-processing tasks like registration or segmentation. The majority
of our system is visualization-driven by the actual visibility of small
3D blocks on screen during ray-casting, as displayed on the right side
of Figure 1. We operate in virtual volume space. This virtual vol-
ume space is the reference space of our volume and corresponds to
the extents of the 3D tissue block that is being imaged by the elec-
tron microscope. If, during ray-casting, the renderer detects that some
data block is missing, it issues a request for that data block. This re-
quest is handled by the volume construction stage and subsequently
the newly constructed block is downloaded into GPU memory. We
have paid special attention to a modular design in order to be able to
integrate possible future changes such as new data modalities or novel
pre-processing algorithms.

3.1 Acquisition Pipeline
Figure 2 depicts our image acquisition pipeline. It starts with taking a
tiny sample of a mouse or rat brain and solidifying it using an epoxy
resin. The solidified sample is then cut into very thin slices of 25-
50 nm using an advanced microtome, Harvard’s ATLUM (Automatic
Tape-Collecting Lathe Ultramicrotome). To enhance the contrast in
the tissue, it is stained with heavy metals. Next, the collected micro-
scope tapes of tissue slices are imaged in a scanning electron micro-
scope with a resolution of 3-5 nm. The microscope acquires image
tiles of a fixed resolution (e.g. 12,000×12,000 pixels) and stores the
raw data together with additional meta data in a central acquisition
archive. The meta data include magnification, position, and orienta-
tion of each tile (which we store in an alignment matrix) and current
microscope settings.

3.2 Raw Tile Processing
This module is responsible for processing new EM tiles as soon as
they arrive from the microscope. This stage works completely auto-
matically. It constantly polls if new tiles have arrived in the acquisi-
tion archive, processes them, and stores the data in a compressed form
in the visualization archive. Figure 2 depicts the raw tile processing
stage and the visualization archive in the context of the entire acqui-
sition pipeline. Raw tile processing comprises construction of a 2D
mipmap for each tile emitted by the EM followed by a subdivision of
each mipmap level into smaller sub-tiles. We chose a sub-tile size of
128× 128 for optimized disk access and disk storage. Additionally,



Fig. 2: Acquisition pipeline. Tissue samples are cut into ultra-thin
slices and imaged using an electron microscope. Acquired image tiles
are then stored in a data archive. After 2D mipmap generation, the
data can be used for different applications (e.g., visualization, seg-
mentation, fine-grained registration).

smaller sub-tiles can be handled more efficiently in the resampling
phase of the volume construction stage (see Section 3.4). Sub-tiles are
optionally compressed using JPEG at 2 bpp and stored in the visual-
ization archive.

We store each computed mipmap level of a data set in a separate
file. To improve disk access time, we store the sub-tiles in each file
in Morton order. This approach preserves data locality and increases
cache coherency. The visualization archive also allows external seg-
mentation processes to access the image data and to store segmentation
results and any manual labeling of the data.

In principle, the same data archive can be used for the raw and the
pre-processed data. However, for organizational reasons it is often
better to separate the two archives. The acquisition archive storing the
raw microscope data is closely connected to the actual acquisition and
can therefore be managed directly by the microscope operators in co-
operation with the biologists. All further processing of the data for vi-
sualization (or segmentation) is performed in the visualization archive,
which is managed by the visualization experts and the biologists and
stores the compressed 2D mipmaps.

Since the raw tile processing stage needs to be performed for every
new microscope tile, this module must be able to handle the sustained
data rate of the microscope, e.g., process more than 10 Mpixels/s at 8
bpp. Currently, our raw tile processing stage achieves a performance
of 85 Mpixels/s.

The main motivation for this 2D mipmapping approach (as opposed
to 3D mipmap generation) is that it allows us to construct the 2D
mipmap of each incoming microscope tile right away, and immedi-
ately use it for visualization if it is visible on screen. In contrast, con-
structing a 3D mipmap would require waiting for all required slices
from the microscope in order to compute a 3D multi-resolution hierar-
chy, or recomputing the 3D hierarchy every time a new slice arrives.

3.3 Registration
Each EM image tile has an affine transformation matrix (i.e., align-
ment matrix) attached to it which corresponds to the movement of the
microscope stage. This matrix is stored only once for each EM tile
and inherited by all sub-tiles. The alignment matrix can be iteratively
refined by an external registration process to reflect image tile align-
ment both in 2D and 3D. However, no image data are changed by the
registration process, and our raw tile processing stage is completely
independent of any registration. Only the alignment matrix is updated
by the registration process. Actual stitching of tiles is performed only
on-demand in the volume construction stage of our pipeline (see Sec-

Fig. 3: On-the-fly registration of three EM image tiles at different
scales.

tion 3.4).
We can employ an on-the-fly registration technique for dynamic EM

acquisition. In many cases, the region of interest is much smaller than
the entire slice of the original tissue sample. In such a case, with-
out scanning the entire slice at the highest resolution, we can pro-
gressively scan the slice at different magnification levels by narrowing
down the field of view of the microscope—like zooming into a specific
region. Figure 3 shows an example of three EM image tiles at different
scales—a low magnification image for the entire view, and two higher
magnification images for the region of interest—aligned into a single
coordinate system. In this scenario, each EM image tile is acquired at
a different image scale and spatial location. To align such images, we
use a fixed-size reference grid, e.g., a grid at the screen resolution, and
perform the registration of two images on the reference grid. Since the
resolution of the images is not the same as that of the reference grid,
each image is sub/super-sampled accordingly, based on the magnifica-
tion level. In our implementation, we use the lower-level image as the
background (i.e., reference) image IL, and the higher-level image IH is
rigidly transformed (i.e., rotation, translation, scaling) to minimize the
image difference energy defined as follows:

E =
n

∑
i=1
||IL(xi)− (T · IH)(xi)||2, (1)

where T is the rigid transformation, xi is the i-th pixel index on the
reference grid, and I(xi) is the pixel value of the image I at xi. To
minimize E, we use a gradient descent method that iteratively updates
the transformation parameters, such as a translation vector, a rotation
angle, and a zoom factor, along the negative gradient direction.

The registration process can be done in a semi-automatic fashion
if desired: As a new EM image tile comes in from the microscope,
the user can interactively navigate a 2D slice view in order to refine
the registration if misalignment is visible. The image registration is
implemented on the GPU, and its running time is independent of the
image tile size because the computation is done on the reference grid.
We have observed about 3 ms per single run of registration on a 256×
256 reference grid on an NVIDIA Fermi GPU (GTX 580).

3.4 Visualization-Driven Volume Data Construction
The volume construction in our system is entirely driven by the visu-
alization stage (Section 4.1). This means that no data are constructed
and loaded into GPU memory if they have not been requested by the
ray-caster. This effectively makes the volume construction stage in-
dependent of the actual data size. The ray-caster issues a 3D block
construction request (at a certain position and resolution level) only if
the block is visible on screen and the data request cannot be fulfilled
from one of the caches in the visualization stage. Another important
feature of our multi-resolution ray-casting scheme is that only the data
for the requested resolution level have to be constructed, and that no
other resolution levels need to be touched (as opposed to octree ap-
proaches).

Figure 4 depicts the volume construction stage. Once a block has
been requested by the visualization stage (bottom left in Figure 4), it is



Fig. 4: Visualization-driven volume block construction. Only vis-
ible 3D blocks in the virtual multi-resolution volume are stitched and
resampled, computing the result at the requested resolution.

constructed in the requested resolution and transmitted to the visual-
ization stage. Block construction consists of two main parts: First, the
2D image sub-tiles that intersect the 3D target block are determined
and fetched in the requested resolution from the visualization archive.
For efficiently retrieving the correct sub-tiles we have implemented a
compact index structure that easily fits into main memory and can still
be searched efficiently, based on Morton order traversal of the sub-
tiles. The second step consists of stitching and resampling these 2D
sub-tiles directly into the 3D target grid. Stitching is determined by
the alignment matrix associated with each image tile. We have imple-
mented fast stitching and resampling to any target resolution on the
GPU, using texture mapping and fragment shaders. Due to the large
slice distance and resulting anisotropy of our EM data (e.g., an aspect
ratio of 1:10), we can simplify the 3D block construction process by
allowing a 3D target block to be resampled by simply stitching the im-
age sub-tiles in 2D without performing actual 3D filtering, and storing
the result into the correct 3D location. As reconstruction filter we can
either use GPU bi-linear filtering or higher-order filters implemented
in the fragment shader. If the requested data have not yet been scanned
by the microscope, we report the block as empty and skip the block
construction step.

The modular design of our volume construction stage also allows
us to use it as a basis for additional computations, e.g., for automatic
segmentation or data analysis, as long as these computations can be
performed using 2D or 3D blocks at a certain location with a certain
resolution.

3.5 Multi-Threading and System Environment
In order to be able to handle missing data, all our modules are multi-
threaded to avoid blocking other computations or delaying the render-
ing because of uncompleted data requests. The visualization module
runs with a separate rendering thread, a GUI or user input thread, and
a separate thread for data requests to the volume construction module.
Once the renderer has issued a data request, it immediately continues
rendering without waiting for the request to complete. The ray-caster
is able to deal with incomplete data by either substituting a data block

Fig. 5: System environment. A configurable client/server setup
allows using separate machines for the different stages of our system.

Fig. 6: Virtual Volume Ray-Casting. Ray-casting is performed in a
virtual multi-resolution volume, where each resolution is represented
by a hierarchy of page tables. Ray-casting accesses actual volume data
by performing on-the-fly address translation to access blocks in virtual
memory. If a data block is missing, a missing block request is gener-
ated and propagated to the visualization-driven volume construction
stage.

with its lower resolution version, should one be available, or by skip-
ping the block until it has been loaded.

The system environment is based on a client/server network ar-
chitecture (see Figure 5). Generally, we allow for a flexible setup,
where each stage can run on a separate machine, connected via a high-
bandwidth LAN. Optionally, the system can be configured to run all
modules on the same machine, omitting any network communication.
The visualization archive is stored on a shared file system, to allow
multiple users to access the data. Rendering is either performed on a
separate render server that sends the final images to a thin client, or
directly on the PC that displays the final image. All network com-
munication is based on TCP sockets, and can additionally use image
compression to reduce network bandwidth.

4 VISUALIZATION

In this section, we will explain the detailed components of our visu-
alization stage. First, we will focus on our GPU-based volume ray-
casting framework [6], based on a multi-resolution virtual memory hi-
erarchy that scales well to extremely large volume sizes (Section 4.1).
After introducing our renderer, we will explain the extension of our
system to segmentation data, and neuronal connectivity data based on
synapses (Section 4.2). Figure 7 shows some renderings of our volume
visualization system.

4.1 Volume Rendering
The design of our volume rendering framework differs from previous
systems in several important aspects. First, our ray-caster is not based
on creating and traversing a tree structure, such as an octree or kD tree.
Instead, our design is based on a multi-level, multi-resolution virtual
memory architecture that scales well to extremely large volume sizes.
This design is more efficient for deep resolution hierarchies as it re-
quires no tree traversal and no tree structure needs to be maintained.
Furthermore, it reduces latency by allowing each sample to be fetched
directly from any resolution level and enabling switching between res-
olutions without having to construct intermediate lower resolutions.
Finally, it supports arbitrary down-sampling ratios between resolution
levels, which enables better accommodation of anisotropic voxel data.

4.1.1 Virtual Memory Architecture
We operate in virtual volume space, which is the reference space that
corresponds to the size of the 3D tissue block that is being scanned by
the EM. We start by subdividing the volume into small 3D blocks. We
use 323 blocks, and add a single voxel boundary for correct interpola-
tion between neighboring blocks. Only the working set of these cur-
rently required (visible) blocks is resident in GPU memory in a large
3D cache texture that is updated dynamically. To access a sample in



Fig. 7: Our system supports the visualization of large-scale electron microscopy volumes, their segmentation information and synaptic connec-
tions. Left: Screenshot of our application showing an unsegmented axon. Middle: Segmented axons. Right: Combined rendering of EM data
with segmented axons.

the original volume, we now have to translate the sample’s position
to a coordinate in cache texture space, which is done on-the-fly using
page table look-ups. Therefore, the original volume becomes a virtual
volume that is accessed via a page table, and only the smaller cache
texture and the page table have to be stored on the GPU. If a block is
not resident in the cache texture, it is flagged as unmapped (i.e., miss-
ing) in the page table. However, for very large volumes one indirection
layer (i.e., page table) is not sufficient. Therefore, our system not only
virtualizes the original volume but can also virtualize page tables.We
refer to the top-level page table in the resulting hierarchy as the page
directory. Currently, we use two indirection layers, which already en-
ables scalability to several hundred teravoxels [6]. This is in contrast
to octree approaches, which require many more levels to be traversed.

For multi-resolution rendering, we conceptually have a separate hi-
erarchy of page tables for each resolution level of the data. However,
since the blocks of different resolution levels have the same voxel size
(e.g., 323), we can map blocks of any resolution level into the same
3D cache texture. The only structure that directly reflects the multi-
resolution nature of the data is the multi-resolution page directory.

4.1.2 Ray-Casting Virtual Multi-Resolution Volumes

Ray-casting marches along the ray from sample to sample, perform-
ing hierarchical address translation for each sample to map the virtual
volume position to the corresponding position in the 3D cache texture
(see Figure 6). The sample position on the ray is given by a normalized
coordinate in virtual volume space. At each sample point, we compute
the desired level of detail (LOD) to use for accessing the correspond-
ing resolution level of the data. We estimate the LOD by computing
the projected screen space size of the current voxel. The sample’s
position and LOD are used for the address translation look-up in the
corresponding level of the multi-resolution page directory.

An important property of our ray-casting scheme is that many suc-
cessive samples along a ray will map to the same page directory and
page table entries. Therefore, we can reduce the texture look-up over-
head significantly by exploiting spatial coherence and reducing the
number of required texture fetches. The closer a page table entry is
to the root of the hierarchy (the page directory), the less frequently
it needs to be fetched. For example, using 323 blocks, for an axis-
aligned ray the page table is accessed only every 32 voxels, and the
page directory only every 1024 voxels.

Missing data are detected during ray-casting whenever a page di-
rectory or page table entry is accessed that does not point to data but
is flagged as unmapped. This generates a missing block request for the
missing 3D block of visible data. These data requests are propagated
backwards in the pipeline. If they cannot be met by any of the caches
in our system (in GPU or CPU memory, or in the volume construction
module), they trigger the visualization-driven construction of volume
data from 2D image tiles. To ensure interactive frame rates, we im-
pose a limit on the number of blocks that can be downloaded to the

GPU each frame. Furthermore, to decide which blocks are no longer
needed and can be swapped out of the cache and discarded we use an
LRU scheme and track block usage in the ray-caster.

For further optimization we have implemented empty space skip-
ping on the granularity level of page table entries. If a data block is re-
ported to be empty, it is not downloaded to the GPU and its page table
entry is flagged as empty. Our system performs empty space skipping
on the EM data by culling against the current transfer function.

4.2 Segmented Data and Synapse Identification
Segmentation plays a crucial role in connectomics research, and is
used to partition the data into neuronal structures such as axons and
dendrites, to trace which structures are connected by synapses, and to
determine their spatial relationships. To this end, our framework sup-
ports the visualization of sparse segmentations (where only selected
structures are traced), as well as of dense segmentations (where all
structures are traced), as well as labeled synapses.

4.2.1 Visualization of Segmented Data
A detailed description of the used segmentation modules and tools is
outside the scope of this paper, and we will treat the actual segmenta-
tion algorithms as black boxes. However, we assume that the segmen-
tation runs on image data from the visualization archive, and that the
same archive is used to store the final segmentation results.

Segmentation data are stored as slices of image data (like the orig-
inal EM data), where each pixel contains the ID of the labeled object
it belongs to. To allow for a large number of distinct objects, we store

Fig. 8: Multi-Volume Visualization Scheme. All input data are
stored in the visualization archive. Data requests construct 3D blocks
for all requested volumes in a unified coordinate system (i.e., the vir-
tual volume). During ray-casting, multiple volumes can be sampled
and combined into the final rendering.



Fig. 9: Segmented Volume Rendering and Synapse Labeling. Left and Middle: Different zoom factors and transfer functions for volume
rendering segmentation data. The transparent transfer function in the middle image allows to visually follow otherwise occluded structures.
Right: Labeled synapse in 3D and slice view. The user can automatically navigate and zoom in to a synapse by selecting it in the 3D view. View
parameters and clipping planes are adjusted automatically.

these IDs as 24-bit data, which allows us to store over 16 million dif-
ferent objects. Once the segmentation data arrive at the visualization
archive, we compute 2D mipmaps for each slice, as it is done for the
EM data (Section 3.2). The main difference is that a different down-
sampling filter has to be used, because the segmentation data comprise
object IDs that must not be interpolated. The straightforward choice
for downsampling is to use nearest neighbor filtering, but more elab-
orate downsampling algorithms can also be used, e.g., using a rank
filter.

Figure 8 shows the main steps of our visualization pipeline for seg-
mented data. For highest possible generality, we handle the segmen-
tation volume as an additional data volume and perform multi-volume
rendering. This gives us the option to easily extend our system to in-
clude additional data volumes, such as functional brain data, in the
future. To handle two volumes, we run two instances of the volume
construction module, as well as two instances of the virtual memory
architecture. We allocate separate cache textures for the EM data and
the segmentation data, respectively, because these two types of data
are usually of different type, i.e., 8-bit intensity values for EM data,
and 24-bit integer IDs for segmentation data.

Actual rendering of the segmentation is performed in the ray-caster.
Our system supports different render modes where the object ID of the
current sample is used to assign and modify certain properties such as
color and opacity, which is then blended with the original EM data.
Colors are assigned according to the current sample’s object ID.

4.2.2 Synapse Labeling
In addition to the segmentation data, we can also render labeled
synapses that are stored in tabular format in the visualization archive.
Each entry in the table defines a single synapse consisting of: the po-
sition in the virtual volume, a textual label, the IDs of the two objects
it connects (i.e., one axon and one dendrite) and some additional meta
information.

During rendering we can display all loaded synapses, their labels,
and their connections. Additionally, the system allows the user to add
new synapses to the data, which are then stored in the visualization
archive. Synapses are rendered as small geometric shapes, located
at the position specified in the synapse table. To simplify naviga-
tion within the volume, the user can select individual synapses which
are then automatically centered in the current view. Figure 9, right,
shows a volume rendering of segmented axons zoomed-in on a labeled
synapse.

5 RESULTS AND DISCUSSION

Currently, our collaborating neuroscientists are working on the seg-
mentation and analysis of an electron microscopy data set of a mouse
cortex with a resolution of 21,494×25,790×1,850 voxels, which is a
total size of roughly one teravoxel. Over the course of several months,

they have segmented several hundred structures by manually tracing
them from slice to slice. Most of the segmented structures are axons,
which are long and narrow tubular structures that conduct electrical
impulses away from the neuron’s cell body. The electrical impulses
are propagated to neighboring neurons over synapses that connect one
neuron’s axon to another neuron’s dendrite. Dendrites are treelike ex-
tensions of a neuron to receive electrical impulses. In our data set,
we have segmented 329 axons and 4 dendrites, where each dendrite
makes many synapses. The majority of segmented axons are oriented
along the z direction, on average spanning over 490 slices of the data
set, with about a dozen of them spanning over the entire 1,850 slices,
and the smallest spanning only over a couple of slices. In our data set
a segmented axon consists on average of over 6.2 million voxels, with
a minimum of twelve voxels and a maximum of 37.5 million voxels.
The segmented axons constitute less than 0.2% of the entire data set.
We have detailed information on 263 synapses, including their loca-
tion, label, and IDs of the axon and dendrite it connects. On average,
in our data set each segmented dendrite is connected to 53 labeled
synapses, with a minimum of one and a maximum of 101 synapses.
Axons, on the other hand, on average only have two labeled synapses,
with a minimum of one, and a maximum of seven synapses.

Figure 7 and Figure 9 show different renderings of this data set,
including the segmented axons and labeled synapses.

5.1 Performance
We have tested the performance of our system on three 12-core dual-
CPU 3 GHz machines with 48 GB CPU RAM, and NVIDIA Quadro

Table 1: Performance numbers for the different stages in our sys-
tem. For the raw image processing stage, the number indicates the
number of megapixels that can be processed per second for 8-bit pixel
data. For the registration and the stitching and resampling (i.e., block
construction) stages, the numbers indicate the number of megapixels
the stage can output per second. Transfer function 1 (TF1) is a linear
ramp for color and opacity, transfer function 2 (TF 2) is a more trans-
parent transfer function, as used in Figure 9, middle. The viewport for
volume rendering was set to 1024×768.

module performance
raw image processing 85 Mpixels / sec
registration 20 Mpixels / sec
stitching & resampling 30-65 Mpixels / sec

TF 1 TF 2
EM volume rendering 75 fps 12 fps
segmented volume rendering 70 fps 9 fps



6000 GPUs with 6 GB GPU RAM. Our system is implemented in
C++, the ray-caster uses GLSL, and for the tile processing we use
CUDA and OpenMP. In our current setup, these three machines run
the raw tile processing, the volume construction, and the visualization
stage including the user interface, respectively. This setup allows us
to exploit parallelism between the different stages and to maximize
the available cache sizes. All network communication is done using
TCP/IP and Winsocks2 over a 1 Gb network. Table 1 shows timing
results for the 3D block construction and the raw image tile process-
ing, as well as frame rates for ray-casting the one teravoxel data set,
including segmented volume rendering. For measuring the ray-casting
frame rate we have used two different transfer functions, the first one
is a linear ramp, the second one is a more transparent transfer function
allowing to see farther inside the volume.

5.2 Scalability Discussion
This section discusses the major scalability aspects of our system:
scalability of our volume representation including multi-volumes, vol-
ume traversal and ray-casting.

With our design we have created a system that is scalable to render-
ing petavoxel data. Our virtual multi-resolution volume representa-
tion is extremely scalable due to the small number of hierarchy levels
that are needed for the page table hierarchy. Two or three levels are
sufficient for extremely large volumes, resulting in easily manageable
page directory sizes [6]. In our current implementation, we use two
page table hierarchy levels (with a voxel block size of 323), which, for
example, allows rendering a 4 teravoxel volume with a page directory
size of only 32×32×4. This enables easily accommodating multiple
volumes and handling multiple page directories, as well as their cor-
responding page table hierarchy. Even a data set of several hundred
petavoxels could be represented by a page table hierarchy with three
levels, with page directory sizes under 643 [6].

Volume traversal in our system is extremely efficient. To access an
arbitrary resolution level, we only have to traverse the very compact
page table hierarchy (i.e., two or three levels), effectively resulting in
an O(1) traversal time for accessing any resolution level. In contrast,
octree-based schemes have to traverse the tree from the root to the re-
quested resolution level, which is logarithmic in the number of voxels
in the octree. Especially when looking at high resolutions, which is
very common in the typical neuroscience use-case, these differences
show up clearly in practice. This is illustrated by a more detailed scal-
ability analysis in [6].

For multi-volume rendering and segmented volume rendering we
have a separate page table hierarchy for every volume. This has the
advantage that very sparse segmentation data can be stored in a smaller
cache than very dense EM data. To reduce the number of required tex-
tures and texture fetches, one can potentially share page directory and
page table look-ups among multiple volumes. However, this requires
the same size and layout in all cache textures, which in turn can lead
to inefficient cache usage.

Our system assumes that the current working set (i.e., all visible
data of the desired resolution) fit into the block cache in GPU mem-
ory. If the current working set does not fit into the block cache, our
system can lower the requested resolution. Another option would be
to perform multiple rendering passes on a single GPU [5], or to utilize
parallel rendering on multiple GPUs.

5.3 Discussion
The main objective of our system is to enable exploration of petas-
cale EM volumes in 3D at interactive frame rates. A main advantage
of our design is that it allows the frame rate to be completely decou-
pled from the time it takes until missing data have been constructed
and downloaded into the GPU cache textures. Therefore, our render-
ing system never stalls because it is waiting for new data. Naturally,
this approach incurs a latency until all visible data have arrived in the
requested resolution and a fully complete image is visible on screen.
This is very similar to the latency encountered in Google maps, for
example, but with 3D data blocks instead of 2D map tiles. The overall
latency varies significantly, and ultimately depends on the number of

new 3D blocks that must be constructed for a new frame in addition
to already cached data. However, in a typical scenario that number is
often small, leading to low latencies.

6 CONCLUSIONS

We have presented a scalable system design for the interactive 3D ex-
ploration and navigation of segmented high-resolution EM data. We
have illustrated the major design choices of our system: visualization-
driven volume data construction, and a novel multi-resolution virtual
memory scheme. Segmentation data can be integrated by following a
multi-volume data handling and rendering approach that scales well,
even for multiple volumes. Scalability to petascale (petavoxel) EM
data streams is achieved by (1) decoupling data acquisition from the
multi-resolution hierarchy required for visualization (this is made pos-
sible by the visualization-driven approach of volume data construc-
tion), and (2) decoupling the resolution hierarchy of the data from the
hierarchy for volume sampling during ray-casting (this is made possi-
ble by our virtual memory scheme).

In the future, we want to develop intuitive 3D navigation metaphors
for large-scale volume data. We also want to extend our system to
support distributed volume rendering, especially for handling and ren-
dering multiple volumes that are too large to handle efficiently in a
single GPU out-of-core memory approach.
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