
Comput. & Graphics, Vol. 21, No. 2, pp. 199-208, 1997
6 1997 Ekvier Science Ltd. All rights reserved

Printed in Great Britain
0097-8493/97 $17.00+0.00

PII: S0097-8493(96)00083-0
Graphics Hardware

IMPLEMENTATIONS OF CUBE-4 ON THE TERAMAC
CUSTOM COMPUTING MACHINE

U. KANUS’, M. MEIDNER’, W. STRAfiER’+, H. PFISTER’, A. KAUFMAN2, R. AMERSON”,
R. J. CARTER3, B. CULBERTSON3, P. KUEKES3 and G. SNIDER”

‘WSI/GRIS, University of Tiibingen, Auf der Morgenstelle IO, C9, 72076 Tiibingen, Germany
2Center for Visual Computing, Computer Science Department, SUNY at Stony Brook,

New York, U.S.A.
‘Hewlett-Packard Research Laboratories, Palo Alto, CA, U.S.A.

Abstract-We present two implementations of the Cube-4 volume rendering architecture, developed at
SUNY Stony Brook, on the Teramac custom computing machine. Cube-4 uses a slice-parallel ray-casting
algorithm that allows for a parallel and pipelined implementation of ray-casting. Tri-linear interpolation,
surface normal estimation from interpolated samples, shading, classification, and compositing are part of
the rendering pipeline. Using the partitioning schemes introduced in this paper, Cube-4 is capable of
rendering in real-time large datasets (e.g., 10243) with a limited number of rendering pipelines. Teramac is
a hardware simulator developed at Hewlett-Packard Research Laboratories. Teramac belongs to the new
class of custom computing machines, which combine the speed of special-purpose hardware wifh the
flexibility of general-purpose computers. Using Teramac as a development tool, we implemented two
working Cube-4 prototypes capable of rendering 128’ datasets in 0.65 s at a very low 0.96 MHz
processing frequency. The results from these implementations indicate scalable performance with the
number of rendering niuelines and real-time frame-rates for high-resolution datasets. 0 1997 Elsevier

- - . Science Ltd

1. INTRODUCTION

Volume rendering is a key technology with increas-
ing importance for the visualization of 3-D sampled,
computed, or modeled datasets. 3-D volumetric data
is delivered by acquisition devices such as biomedical
scanners (MRI, CT) or acoustic wave devices for
geophysical explorations, as well as super-computer
simulations and scientific experiments, including
aerodynamics, weather simulations, material tests,
and many more. Volume rendering provides a
powerful technique to reveal the information con-
tained in these datasets. Volume rendering is also
used in volume graphics for rendering geometry-
based models represented as volume datasets [I].

The computational cost for volume rendering is
very high and becomes worse for the visualization of
dynamically changing datasets in real-time, a process
that is called 4-D (spatio-temporal) visualization.
Numerous software approaches for interactive vo-
lume rendering, mainly based on algorithmic opti-
mizations and large-scale parallelism, have been
introduced. The highest performance for rendering
of a 2563 dataset at over 10 frames per second was
achieved on a 16 processor SGI Challenge using the
shear-warp algorithm [2]. This impressive achieve-
ment is only possible by using lengthy precalcula-
tions, storage of large auxiliary data structures,
approximations, 2-D instead of 3-D interpolation,
and expensive multi-processor machines.

t Author for correspondence.

Providing real-time volume rendering at a reason-
able cost with high image quality is the goal of
special-purpose volume rendering hardware. The
Cube project [3-51 for hardware accelerated volume
rendering pioneered several volume rendering archi-
tectures using parallel rendering processors and a
special interleaved memory organization to provide
high processing performance and memory band-
width.

Cube-4, the most recent approach, is a parallel and
scalable architecture with modular rendering pipe-
lines using only local and fixed bandwidth inter-
connections [5]. Cube-4 is estimated to achieve real-
time performance (30 frames per second) for high-
resolution (e.g., 1024’) datasets. Cube-4 uses 3-D
interpolation and high-quality surface normal esti-
mation without any precomputations or additional
data storage. The performance of Cube-4 grows
proportionally with increasing number of rendering
pipelines, ultimately limited only by memory speed.
The cost-performance ratio of Cube-4 is significantly
better than existing solutions.

This paper describes two prototype implementa-
tions of the Cube-4 architecture on the Teramac
hardware simulator at Hewlett-Packard research
laboratories, Palo Alto, CA. Teramac belongs to a
new class of machines called custom computing
machines (CCM) which provide the user with a huge
amount of programmable logic, thus combining the
speed of special-purpose hardware with the flexibility
of general-purpose computers.

In Section 2 we describe the Cube-4 rendering

199

200 U. Kanus et ul.

Base-Plane

Fig. 1. Template-based ray-casting.

pipeline which implements slice-parallel ray-casting,
an efficient parallel algorithm for volume rendering.
We discuss two architectural partitioning schemes
for rendering large volumes with a small number of
rendering pipelines. Section 3 gives an overview of
the Teramac hardware and software system. In
Section 4 we discuss our two Cube-4 implementa-
tions on the Teramac and present results in the form
of performance numbers and images.

2. CUBE 4

Cube-4 implements ray-casting, the most com-
monly used image-space volume rendering method
[6]. Rays are cast from the viewpoint into the
volume. At evenly spaced locations along each ray,
a sample value is computed using surrounding
voxels. A surface normal approximation for a sample
point is obtained by computing the gray-level
gradient [7]. The so computed surface normal
together with the computed sample value is used to
assign each sample a color based on a local shading
model. Using the density value and gradient magni-
tude each sample is classified by assigning an opacity.
Shaded and classified sample values are composited
along the rays into pixel values of the final image.

To achieve real-time performance we need to
remove several bottlenecks of the ray-casting algo-
rithm, the most important being the frequent and

mostly random accesses to memory. Voxels may be
addressed multiple times due to the non-uniform
mapping of samples along the rays and due to the
overlap of voxel neighborhoods during independent
calculations, namely interpolation and gradient
estimation. To get a one-to-one mapping of ray-
samples onto voxels we use a template-based ray-
casting technique first introduced by Yagel and
Kaufman [LX], and shown in Fig. 1.

Discrete voxel rays with a constant stepping of one
in the major viewing direction are sent mto the
volume from each pixel on the base-plane. which if
the face of the volumetric dataset that is most
perpendicular to the viewing direction. .4fter the
volume has been rendered, the base-plane contains a
distorted image which has to be warped onto the
view-plane [9].

For real-time performance this template-based
ray-casting algorithm needs to be parallelized. 111
Cube-4 we implement a form of parallelism called
slice-parallel processing [S]. During ray-casting, the
volume is traversed along consecutive slices parallel
to the base-plane. The conceptual dataflow of slice-
parallel ray-casting is shown in Fig. 2.

Two consecutive slices are required for tri-hnear
interpolation. To reduce the number of memoi-y
accesses, the previously fetched slice is stored in ‘1
plane buffer (FIFO) so that it can be retrieved
without further access to the voxel memory. The
gradient is computed using samples from three slices
of interpolated samples [4]. The two previously
calculated slices of interpolated samples are stored
in FIFO plane-buffers, delaying them by n and Z/z
cycles, respectively. After shading and classilication
each slice is composited onto the intemrediate results
of the previous slices, yielding the final base-plane
image after n2 cycles.

The slice-parallel approach discussed so far
operates on beams of n voxels, thus requiring il
memory modules and II rendering pipelines, where II
is the resolution of the dataset. This leads to an
undesirable amount of hardware and limits the

CFB T&Linear
Interpolation

ABC Buffers ABC Gradient
Estimation

Compusiting

Fig. 2. Dataflow of slice-parallel ray-casting (CFB, Cubic Frame Buffer; ABC, Above Below Current).

Teramac custom computing machine

maximum dataset size that can be rendered. To

201

proceeds along partial beams in +X, inside slices
in - Y, and across slices in +Z direction. render datasets of size n3 with p <n rendering

pipelines, we developed two different architectural
partitioning approaches, called sub-volume parti-
tioning and beam partitioning.

In sub-volume partitioning, a volumetric dataset
of size n3 is divided into smaller sub-volumes of
resolution p, each being processed by p pipelines. The
images of each sub-volume are combined to yield the
final image. Our first prototype implementation on
Teramac, described in Section 4, uses sub-volume
partitioning.

However, this first prototype revealed two main
problems with this approach. First, the voxel
neighborhood required for tri-linear interpolation
and gradient estimation at sub-volume boundaries
can only be provided by overlap of subvolumes. As
Table 1 shows, this results in substantial memory
overhead, which leads to higher execution time (see
Section 5).

The second problem is that rays can traverse
multiple sub-volumes for non-orthogonal viewing
directions, as illustrated in Fig. 3. The intermediate
cornpositing results for rays that cross the sub-
volume boundary have to be stored in a buffer so
that they can be accessed during processing of the
next sub-volume. The order in which the sub-
volumes have to be processed depends on the viewing
direction and the cornpositing order (front-to-back
or back-to-front). To access the buffer of intermedi-
ate cornpositing results requires global connectivity
between processing pipelines.

These problems with sub-volume partitioning lead
to the development of beam partitioning, A beam is
a vector of voxels which is parallel to one of the main
dataset axes. The parallel skewed memory organiza-
tion used in all Cube architectures allows conflict free
access to any beam in one memory access cycle [3].
Instead of subdividing the volume into sub-volumes,
the size of beams is adjusted to the number of
processing elements (see Fig. 4). With p processing
units, beams are partitioned into b partial beams of
width p, which are subsequently processed. In our
Cube-4 implementations on Teramac, processing

A 27 Viewine Direction
,/ 7,

437-

6 :,*’ : ,---- , ,,,.........I
.,..!

Y
Z

k X

Subvolume process% t
Intermediate result buffer

Fig. 3. Sub-volume processing order for front-to-back
cornpositing and a given viewing direction. Intermediate
results at sub-volume boundaries have to be stored for

subsequent processing.

Similar to sub-volume partitioning, the voxel-
neighborhoods required for tri-linear interpolation
and gradient estimation need to overlap at the
border of partial beams. For example, tri-linear
interpolation at the rightmost position of a partial
beam requires voxels from the partial beam which
will be fetched in the next cycle. Using a technique
called beam extension, these border cases can be
handled without the overhead in computation and
storage of sub-volume partitioning. Partial beam i at
time t is delayed by one cycle so that the necessary
extension for partial beam i can be transferred from
partial beam if 1 at time t+ 1 (see Fig. 5).

The next section gives an overview of the Teramac
system. In Section 4 we describe the sub-volume
partitioned prototype implementation of Cube-4 on
Teramac, and Section 4.2 describes our beam
partitioned Cube-4 prototype on Teramac.

3. TERAMAC A CCM
The merits of general-purpose versus special-

purpose computers have long been debated by
computer architects. The configurable custom ma-
chine (CCM) [lo, 111 is a new class of machine that
falls between these extremes. Teramac [12], the
largest such machine built to date, achieves the
massive parallelism of special-purpose computers
and the re-usability of general purpose computers.
Teramac provides large numbers of programmable
gates, wires, and memories that can be configured to
implement user designs. When special-purpose hard-
ware is built, its correctness and usability can be
verified first with a custom computer. The high speed
of custom computing, relative to conventional soft-
ware simulations, makes much more exhaustive
testing possible.

General-purpose computers have many virtues:
they are ubiquitous, inexpensive, and easy to pro-
gram. They typically also have significantly higher
clock speeds than custom computers. However,
because general-purpose computers execute at most
a handful of instructions per clock cycle, while custom
computers perform hundreds, custom computers are
potentially much faster. On many applications,

x:

fi?

i :
; : ,...... ~........

/..y :y

Bea Slices
Partial beams
(p Voxels wide)

Fig. 4. Volume traversal for beam partitioned slice-parallel
ray-casting.

202

P&&am1

l%ltidtX&llO

U. Kanus et al.

1)9&b
i

Fig. 5. Beam extension provides the necessary data on
partial beam boundaries.

Teramac has out-performed high-performance work-
stations by a factor of a hundred or more.

3.1. Teramac hardware
Teramac is scalable, with systems comprising one

to sixteen boards. Figure 6 shows four Teramac
boards with the attached controller boards and the
board to board connections. A full sixteen-board
system is capable of running user designs with one
million gates at speeds typically in the range of
1 MHz.

A custom field-programmable gate array (FPGA),
called Plasma [13], supplies the majority of Tera-
mat’s programmable resources: gates, crossbars, and
multi-ported register files. Groups of 27 FPGAs are
assembled into large multi-chip modules (MCMs)
[14] (see Fig. 7). Each board contains four MCMs.
Each board also contains four dual-ported two-
megaword by 32 bit RAM’s; thus, Teramac’s mem-
ory resources are very ample in both capacity and
bandwidth.

The Teramac routing resources, consisting of
crossbars in the FPGAs and wires on the MCMs and
boards, are sufficient for implementing almost any
circuit topology. In particular, user circuits are not
limited to systolic arrays, as they were in earlier
custom computers. Users control Teramac from a
host workstation, which connects to Teramac via a
SCSI bus. The host also provides configurations and
I/O.

Fig. 6. Four Teramac boards, connected to each other with
ribbon cable, and to a controller board. The pins of one

multi-chip module (MCM) can he seen in the middle.

Fig. 7. The Teramac hardware. (a) A PLASMA FPGA
chip, configurable in 3 s. (b) MCM with 27 PLASMA chips
on it. The interconnections are routed in 39 layers. Each

MCM has over 3000 pins.)

3.2. Teramac sqjiware
Configurable computers are of limited usefulness

unless they include software to map designs onto
them. Teramac was designed with the goal that user
designs would be mapped onto it quickly and
completely automatically. To ensure that this goal
was achieved, the Teramac hardwamand mapping
software were created in tandem. Large designs that
fill our eight-board Teramac system typically are
mapped onto the system in about half an hour,
making design iterations reasonably painless.

Users enter their designs into software tools that
transform them in two steps into conf$urations that
are ready to run on Teramac. For design entry and
the first step of the transformation process, we use
general-purpose digital hardware design tools. To
maximize user productivity, we have chosen tools
that permit the user to express their designs at a high
level of abstraction. These tools use logic synthesis to
automatically convert the high level designs into
netlists of simple gates.

The Cube-4 design was created with the Tsutsuji
design system [15]. Tsutsuji accommodates large
designs particularly well and synthesizes them into
gates within minutes. Tsutsuji designs are hierarchies
of block diagrams. The blocks represent one of three
things: sub-designs which are themselves block
diagrams; data path elements (adders, multipliers,
multiplexers, etc.) for which Tsutsuji provides an
extensive library of sophisticated module generators;
and sub-designs whose behavior is described in
Tsutsuji’s textual Logic Description Format (LDF).
LDF is intended for describing state machines,
random logic, and truth tables. We have found that
LDF is also useful for creating parameter&d
designs. Parameterized designs are ideal for parallel
applications because they allow the degre of
parallelism in the design to be scaled to fill the
available hardware.

The second step of the process of creating
configurations is called mapping. It is performed by
the Teramac compiler, which was written expressly
for Teramac. It reads the netlists, merges the simple
gates into FPGA-specific gates, performs placement

Teramac custom computing machine 203

I
lbntmujl
CoInpiln

Fig. 8. Design-flow for Teramac.

and routing, and ultimately creates configuration
bitstreams. Figure 8 shows the design-flow for
Teramac.

In the following section we introduce the imple-
mentation of two Cube-4 prototype designs using the
Teramac system and highlight the achieved results.

4. CUBE 4 PROTOTYPES ON TERAMAC

Two prototype designs of Cube-4 were implemen-
ted on the Teramac custom computing system. The
first design is based on the sub-volume approach,
while the second uses beam partitioning.

4.1. Sub-volume partitioned design
The sub-volume partitioned approach has been

implemented with eight parallel pipelines, shown in

Fig. 9. Each pipeline includes the Cubic Frame
Buffer (CFB) volume memory, the CFB address
generator, tri-linear interpolation unit (TRI), and
gradient estimation unit (GRA). Shading, classifica-
tion and cornpositing have been implemented in
software.

To provide the original volume data in a skewed
and partitioned format we use a software front-end
written in C. A dataset is transformed into a file
containing the skewed data of all sub-volumes in
sequential order, for down-loading to the Teramac
memory. Our implementation on Teramac performs
memory access for arbitrary viewing directions, tri-
linear interpolation between data slices, and ABC
gradient estimation around sample points. The
resulting sample values and gradient vectors are
transferred from the Teramac memory onto the host
computer for post-processing (shading, classification
and cornpositing) with the software back-end.

Our slice-parallel sub-volume partitioned Cube-4
design on Teramac is capable of rendering datasets
of 1283 voxels. Our implementation contains eight
rendering pipelines, although available logic gates on
Teramac would allow implementing a design with 16
pipelines. The timing results of this design (see
Section 5) indicate high performance. However, the
global connectivity required for the partial result
buffers in the cornpositing units is a major drawback
of the sub-volume partitioned design. Consequently,
no further effort was put into this implementation.

1 S$adinadind wmpoaiting
-

Fig. 9. Block diagram of the sub-volume partitioned Cube-4 implementation on the Teramac with eight
rendering pipelines (M, DRAM Memory Module; CFB, Cubic Frame Buffer Address Generation; TRI,

Tri-linear Interpolation Unit; GRA, ABC Gradient Estimation Unit).

204 U. Kanus et (II.

4.2. Beam partitioned design
Our second prototype design on Teramac uses

beam partitioning and implements the complete
rendering pipelines, including shading (SHA) and
cornpositing (COM) (see Fig. 10). The back-end
software performs the 2-D image warp, while all other
rendering operations are implemented in hardware.

We implemented a Cube-4 configuration with five
parallel rendering pipelines. The limitation to five
pipelines was given due to the structure of the
Teramac memory system. A total of 256 Mbytes of
memory, distributed across several memory banks, is
available on Teramac. We use memory banks to
realize the plane-buffers, the look-up tables for
opacity, color transfer-functions, and shading para-
meters, as well as the intermediate image buffers in
the cornpositing units. Five Cube-4 rendering pipe-
lines used up all available Teramac memory banks.

Our beam partitioned Teramac prototype is able
to process datasets of 12S3 voxels. A dataset is down-
loaded into Teramac memory, processed, and the
final base-plane pixels are stored in memory modules
at the end of each rendering pipeline. A software

Fig. 10. Block diagram of the beam partitioned Cube-4
implementation on the Teramac with five rendering
pipelines (M, DRAM Memory Module; CFB, Cubic Frame
Buffer Address Generation; TRI, Tri-linear Interpolation
Unit; GR4, ABC Gradient Estimation Unit; SHA, Shading
Unit; COM, Compositing Unit). The interconnections
provided inside the extension units are only local, not

global.

program uploads the pixel values and performs the
2-D image warp from the base-plane to the image
plane. In the following section we describe the design
of the different pipeline stages in more detail.

4.3. Rendering pipeline hardware
The address of a voxel in volume space can be

described in terms of a slice index (S-INDEX or S) in
major viewing direction, a beam index (B-INDEX or
B) in scanline direction, a partial beam index
(PB-INDEX or PB) and a PIPELINE-INDEX for
the location inside a partial beam. For p = 5 memory
banks, we obtain the memory address A using the
following formula:

This formula is used in the CFB to address the
memory banks. The CFB is the main control unit of
each pipeline. It is split up into four sub-units as
shown in Fig. 11. The first is the TRAVERSAL-U-
NIT which keeps track of the position of the
currently fetched voxel inside the volume. It consists
of three cascaded counters, one for PB-INDEX. one
for B-INDEX, and one for S-INDEX (see Fig. 4).
The values of the three counters are provided to the
other sub-units of the CFB unit. The ADDRESS

UNIT is connected to the voxel memory of each
pipeline, one 8 Mbytes bank of Teramac memory.
The TEMPLATE UNIT generates the resamphng
weights for the tri-linear interpolation which are
forwarded to the TRI unit. To reduce the amount of
logic, weights are updated incrementally every time
the S-INDEX changes. The current resampling
weights in X and I’ are updated by simply adding
the components of the viewing vector VIEW-X and
VZEW-Y, respectively, module, 256 (we use X bits
for resampling weights).

The CONTROL-UNIT provides the control in-
formation (13 bits, shown in Table 2) forwarded with
data, allowing the other stages of the pipeline to
correctly align the data. Start and End indicate the
beginning and the end of a volume. Forget marks
invalid intermediate values. X-wrap and Y-wrup mdi-
cate that a sample is the last one along a ray, o/d-X-
step, old- Y-step, X-step and Y-step mark discrete steps
along rays between slices. This information is required
to reconstruct the rays for cornpositing.

In the tri-linear interpolation unit (TRI) the
interpolation of the samples is performed using the
weights calculated in the CFB. Seven linear inter-
polators are able to calculate one sample per cycle
[16]. The gradient unit (GRA) aligns samples out of
three consecutive slices to compute the gray-level
gradient [7]. This unit also performs a correction of
the values to generate a gradient parallel to the Z-
axis and to prevent aliasing [17].

The shading unit (SHA) uses the three components
of the gray-level gradient for a lookup-table baaed
implementation of Phong shading [18]. The lookup-

Teramac custom computing machine 205

Fig. 11. CFB address unit block diagram. PB INDEX indicates the index of the current partial beam,
while B-INDEX and S_INDEfindicate the current beam and slice-index.

table requires only 1.5 kbytes of memory and four
memory accesses per computation cycle. We used a
four times wider implementation with 6 kbytes
lookup-tables because the Teramac memory banks
limit memory access to one read and one write per
cycle. The resulting intensity value from the shading
unit is then used as an index into three color lookup
tables, resulting in red, green, and blue color
components. Sample values are used to assign
32 bit opacity values for compositing. The tables
for the classification of the samples are 32 bits wide
and 256 entries deep, corresponding to the 8 bit
representation of voxel values.

In the compositing unit (COM), the color samples
delivered by the shading unit are blended into final
pixels. The slice-by-slice order requires a base-plane
buffer for one slice of intermediate compositing
results, which has 125 entries of 25 bits each per
pipeline. Incoming shaded samples are directly
composed with the corresponding previous values
from the base-plane buffer. Compositing is per-
formed in front-to-back order [6], and the base-plane
buffer is implemented using Teramac memory banks.
After a ray is finished, its final pixel value is output
into Teramac memory together with its base-plane x
and y address.

5. RESULTS

The sub-volume partitioned design with eight
rendering pipelines is capable of rendering 1283

datasets. Using multiple register stages in the
rendering pipeline allowed us to optimize the design
from an initial processing frequency of 0.37 MHz to
a final frequency of 0.96 MHz. At 0.96 MHz we
achieved a frame-rate of 1.5 Hz using eight parallel
rendering pipelines. The design of the eight rendering
pipelines uses 162,816 logic gates, where one CFB
unit requires 5578 gates, one tri-linear unit (TRI)
requires 8557 gates, and one gradient estimation unit
(GRA) requires 6142 gates. The &linear unit
requires more gates than any of the other units due
to the multipliers for the seven linear interpolators
used for tri-linear interpolation. Figure 12 shows
volume rendered images of a CT scanned lobster
with different transfer functions and different light
sources rendered with the sub-volume partitioned
Cube-4 design.

The beam partitioned Cube-4 implementation with
five pipelines has not been optimized for speed. A
SPICE-estimated maximum clock-rate of 0.2 MHz
was achieved for 1253 datasets. The resulting frame
rate of 0.5 Hz could be increased to 2.5 Hz by
pipelining the design further to a clock frequency of
0.96 MHz. In that case the beam partitioned design
with five pipelines would be faster than the sub-
volume partitioned design with eight pipelines.

The complete design uses 380,341 logic gates, where
one CFB unit requires 3918 gates, one tri-linear unit
requires 11,037 gates, one gradient estimation unit
requires 18,030 gates, one shading unit requires

206 u. Kanus et ul

Fig. 12. Volume rendered images of a 12S3 dataset of a CT lobster rendered with the sub-volume
implementation of Cube-4 on the Teramac. Each image took 0.6 s on the Teramdc running at very low

0.96 MHz.

13,858 gates, and one cornpositing unit requires
12,861 gates. The logic needed to implement the
beam extensions requires 80,932 gates. Tri-linear and
gradient estimation units have a larger size due to the
necessary partial-beam buffers. Many gates can be
saved if the partial-beam buffers are implemented
with Teramac memory or hardware FIFOs instead of
using the expensive Teramac registers.

Assuming perfect pipelining of interpolation,
shading, and compositing, the theoretical perfor-
mance of Cube-4 is dependent on the number of
rendering pipelines p and the processing frequency
fb. If n is the dimension of the dataset, and fr the
rendering rate in frames per second, we can calculate
the necessary processing frequency fp in Hz as:

It can be seen from Fig. 13 that 8 rendering pipelines
achieve 32 frames per second projection rates for
2563 datasets at 64 MHz processing frequency. At
16 bits per voxel, such a dataset requires 32 Mbytes
of DRAM. Using two 16 Mbits synchronous
DRAM @DRAM) modules per rendering pipeline
requires only 16 SDRAMs. Given the gate count for
logic from our Teramac implementation, it is fair to
assume that we can fit four rendering pipelines onto
one application specific integrated circuit (ASK).
Such a Cube-4 ASIC would require less than 500,OOfl
logic gates and about 40 kbytes SRAM for the
internal data buffers. Two ASICs (with 8 rendering
pipelines), 16 SDRAMs (with 32 Mbytes total capa-
city), and a PC1 host interface can fit onto a PC1
card for cost-effective, 30 frames per second visuali-

zation of 2563 datasets. Practical implementations
for higher resolution datasets require more Cube-4
ASICs and higher processing frequencies. Figure
14 shows parallel projections of several datasets.
Those images were rendered completely on Teramac.
Additionally, we implemented a protocol for auto-
matically generating all the frames for an animation
on Teramac.

6. CONCLUSIONS

We presented two scalable and modular partition-
ing schemes for the Cube-4 slice-parallel ray-casting
architecture and proved their feasibility by imple-

256

l.23

64

32

16

8 16 32 64 128 236
R

Fig. 13. Processing frequency, ,/i, vs the number of
rendering pipelines p for three dataset resolutions. Render-

ing performance is .f; = 32 frames per second.

207

(a> b)

Fig. 14. Volume rendering images of 128’ datasets produced by the beam partitioned implementation of
Cube-4 on Teramac. Each image took 1.5 s at very low 0.2 MHz clock rate. (a) Hippocampal pyramidal
cell. (b) CT head, 45” rotated. (c) Simulated silicon lattice. (d) Simulated high-potential iron protein. (e)
Volume-sampled geometric mechanical part. (f) MRI brain. (g) Bullfrog ganglion cell. (h) Volume-

sampled sphere flake.

menting them on the Teramac system. Simulating
architectures of this size is not a trivial task. Teramac
was a valuable tool that allowed us to efficiently
implement those designs in a very limited time-frame.
An important future extension to the Teramac
system is a frame-buffer to display graphics without
uploading results to a host. Furthermore, porting
designs to Teramac will be easier in the future when
the software is able to directly compile a VHDL
description.

Implementing Cube-4 on the Teramac system was
a major step towards a full-fledged real-time volume
rendering system. We were able to prove the
feasibility of the scalable and modular Cube-4 design
and obtained a first impression of its image quality.
The next logical step is to use this experience to
develop an improved VLSI implementation of Cube-
4 which will then provide real-time performance for
datasets of up to 1O243 voxels. These are our near
future goals.

Acknowledgements-Cube-4 has been developed at the
Visualization Lab of the Center for Visual Comoutinz.
State University of New York at Stony Brook, NY, and has
been supported by the National Science Foundation under
grant MIP-9527694, Japan Radio Corporation, and Hew-
lett Packard. Datasets for Figs 12 and 14 are courtesy of
Siemens, Scripps Clinic, AVS, UNC, Howard Hughes
Medical Institute, and the Visualization Laboratory at
Stony Brook. The authors would like to thank ah the
members of the Cube-4 team that contributed to this
research, especially Frank Wessels, Ingmar Bitter, and Pat
Tonra. Urs Kanus and Michael MeiSner performed this
work as part of their MS thesis at Stony Brook, NY, and at
Hewlett-Packard Research Laboratories, Palo Alto, CA.
We would like to thank Fred Kitson and Tom Malzbender
at Hewlett-Packard for their support that made this
collaboration possible.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

REFERENCES
Kaufman, A., Cohen, D. and Yagel, R., Volume
graphics. Computer, 1993, 26, 5164.
Lacroute, P., Analysis of a parallel volume rendering
system based on the shear-warp factorization. IEEE
Trunsuctions on Visualizution turd Computer Gruphics,
1996,3,218-231.
Kaufman, A. and Bakalash, R., Memory and proces-
sing architecture for 3D voxel-based imagery. IEEE
Computer Graphics & Applications, 1988, 8, 10-23.
Ptister, H., Kaufman, A. and Chiueh, T., Cube-3: a
real-time architecture for high-resolution volume vi-
sualization. ACM/IEEE Workshop on Volume Visuali-
zution, Washington, DC, 1994, pp. 75-83.
Pfister, H. and Kaufman, A., Cube-4-a scalable
architecture for realtime volume rendering. In Proceed-
ings of ACM/IEEE Symposium on Volume Visualiza-
tion. San Francisco. CA. 1996. DD. 47-54.
Levoy, M., Display of surf&& from volume data.
IEEE Computer Gruphics & Applicutions, 1988, 8(5),
29-37.
Hiihne, K. H. and Bernstein, R., Shading 3D-images
from CT using gray-level gradients. IEEE Trunsactions
on Medical Imaging, 1986, 5, 45-47.
Yagel, R. and Kaufman, A., Template-based volume
viewing. Computer Graphics Forum, 1992, 11, 153-167.
Lacroute, P. and Levoy, P., Fast volume rendering
using a shearwarp factorization of the viewing trans-
form. In Proceedings of SIGGRAPH 94, 1994, pp. 451-
457.
Bertin, P., Roncin, D. and Vuillemin, J., Introduction
to programmable active memories. In Systolic Array
Processors, Killarney, Ireland, 1989, pp. 301-309.
Arnold, J. M., Bell, D. A. and Davis, E. G., Splash 2.
In Proceeedings of the 4th Annum ACM Symposium on
Purullel Algorithms wd Architectures, 1992, pp. 316
322.
Amerson, R., Carter, R. J., Culbertson, W. B., Kuekes,
P. and Snider, G., Teramac-configurable custom
computing. In Proceedings of the IEEE Symposium on
FPGAS for Custom Computing Muchines, Napa, CA,
1995, pp. 32-38.
Amerson, R., Carter, R., Culbertson, W., Kuekes, P.

208 U. Kanus et (11.

and Snider, G., Plasma: an fpga for million gate
systems. In Proceedings of the ACMjSIGDA Inter-
national Symposium on Field Programmable Gute
Arruys, 1996, pp. l&16.

14. Amerson, R. and Kuekes, P., The design of an
extremely large MCM-C-a case study. The International
Journal of Microcircuits und Electronic Puckaging,
1994, 331-382.

15. Culbertson, W. B., Osame, T., Otsuru, Y., Shackleford,
J. B. and Tanaka, M., The hp tsutsuji logic synthesis
system. Hewlett Packard Journul, 1993, 38-51.

16. Knittel, G. VERVE: voxel engine for real-time visual-

ization and examination. Computer Graphics Forum,
1993,12, 37-48.

17. Pfister, H., Wessels, F. and Kaufman, A., Sheared
interpolation and gradient es.tirrra@n for m&time
volume rendering. In Proceedings of the 9th Euro-
graphics Hardware Work&p (Proceedbags), Oslo,
Norway, 1994, pp. 70-79.

18. Bosma, M. and van Schettinga, J., EfBcient super
resolution volume rendering. Master’s theois, TR EL-
BSCQ79N95, Faculty of Electrical Engineering,
University of Twente, Enschede, The Netherlands,
1995.

