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Abstract-We present two implementations of the Cube-4 volume rendering architecture, developed at 
SUNY Stony Brook, on the Teramac custom computing machine. Cube-4 uses a slice-parallel ray-casting 
algorithm that allows for a parallel and pipelined implementation of ray-casting. Tri-linear interpolation, 
surface normal estimation from interpolated samples, shading, classification, and compositing are part of 
the rendering pipeline. Using the partitioning schemes introduced in this paper, Cube-4 is capable of 
rendering in real-time large datasets (e.g., 10243) with a limited number of rendering pipelines. Teramac is 
a hardware simulator developed at Hewlett-Packard Research Laboratories. Teramac belongs to the new 
class of custom computing machines, which combine the speed of special-purpose hardware wifh the 
flexibility of general-purpose computers. Using Teramac as a development tool, we implemented two 
working Cube-4 prototypes capable of rendering 128’ datasets in 0.65 s at a very low 0.96 MHz 
processing frequency. The results from these implementations indicate scalable performance with the 
number of rendering niuelines and real-time frame-rates for high-resolution datasets. 0 1997 Elsevier 

- - . Science Ltd 

1. INTRODUCTION 

Volume rendering is a key technology with increas- 
ing importance for the visualization of 3-D sampled, 
computed, or modeled datasets. 3-D volumetric data 
is delivered by acquisition devices such as biomedical 
scanners (MRI, CT) or acoustic wave devices for 
geophysical explorations, as well as super-computer 
simulations and scientific experiments, including 
aerodynamics, weather simulations, material tests, 
and many more. Volume rendering provides a 
powerful technique to reveal the information con- 
tained in these datasets. Volume rendering is also 
used in volume graphics for rendering geometry- 
based models represented as volume datasets [I]. 

The computational cost for volume rendering is 
very high and becomes worse for the visualization of 
dynamically changing datasets in real-time, a process 
that is called 4-D (spatio-temporal) visualization. 
Numerous software approaches for interactive vo- 
lume rendering, mainly based on algorithmic opti- 
mizations and large-scale parallelism, have been 
introduced. The highest performance for rendering 
of a 2563 dataset at over 10 frames per second was 
achieved on a 16 processor SGI Challenge using the 
shear-warp algorithm [2]. This impressive achieve- 
ment is only possible by using lengthy precalcula- 
tions, storage of large auxiliary data structures, 
approximations, 2-D instead of 3-D interpolation, 
and expensive multi-processor machines. 

t Author for correspondence. 

Providing real-time volume rendering at a reason- 
able cost with high image quality is the goal of 
special-purpose volume rendering hardware. The 
Cube project [3-51 for hardware accelerated volume 
rendering pioneered several volume rendering archi- 
tectures using parallel rendering processors and a 
special interleaved memory organization to provide 
high processing performance and memory band- 
width. 

Cube-4, the most recent approach, is a parallel and 
scalable architecture with modular rendering pipe- 
lines using only local and fixed bandwidth inter- 
connections [5]. Cube-4 is estimated to achieve real- 
time performance (30 frames per second) for high- 
resolution (e.g., 1024’) datasets. Cube-4 uses 3-D 
interpolation and high-quality surface normal esti- 
mation without any precomputations or additional 
data storage. The performance of Cube-4 grows 
proportionally with increasing number of rendering 
pipelines, ultimately limited only by memory speed. 
The cost-performance ratio of Cube-4 is significantly 
better than existing solutions. 

This paper describes two prototype implementa- 
tions of the Cube-4 architecture on the Teramac 
hardware simulator at Hewlett-Packard research 
laboratories, Palo Alto, CA. Teramac belongs to a 
new class of machines called custom computing 
machines (CCM) which provide the user with a huge 
amount of programmable logic, thus combining the 
speed of special-purpose hardware with the flexibility 
of general-purpose computers. 

In Section 2 we describe the Cube-4 rendering 
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Base-Plane 

Fig. 1. Template-based ray-casting. 

pipeline which implements slice-parallel ray-casting, 
an efficient parallel algorithm for volume rendering. 
We discuss two architectural partitioning schemes 
for rendering large volumes with a small number of 
rendering pipelines. Section 3 gives an overview of 
the Teramac hardware and software system. In 
Section 4 we discuss our two Cube-4 implementa- 
tions on the Teramac and present results in the form 
of performance numbers and images. 

2. CUBE 4 

Cube-4 implements ray-casting, the most com- 
monly used image-space volume rendering method 
[6]. Rays are cast from the viewpoint into the 
volume. At evenly spaced locations along each ray, 
a sample value is computed using surrounding 
voxels. A surface normal approximation for a sample 
point is obtained by computing the gray-level 
gradient [7]. The so computed surface normal 
together with the computed sample value is used to 
assign each sample a color based on a local shading 
model. Using the density value and gradient magni- 
tude each sample is classified by assigning an opacity. 
Shaded and classified sample values are composited 
along the rays into pixel values of the final image. 

To achieve real-time performance we need to 
remove several bottlenecks of the ray-casting algo- 
rithm, the most important being the frequent and 

mostly random accesses to memory. Voxels may be 
addressed multiple times due to the non-uniform 
mapping of samples along the rays and due to the 
overlap of voxel neighborhoods during independent 
calculations, namely interpolation and gradient 
estimation. To get a one-to-one mapping of ray- 
samples onto voxels we use a template-based ray- 
casting technique first introduced by Yagel and 
Kaufman [LX], and shown in Fig. 1. 

Discrete voxel rays with a constant stepping of one 
in the major viewing direction are sent mto the 
volume from each pixel on the base-plane. which if 
the face of the volumetric dataset that is most 
perpendicular to the viewing direction. .4fter the 
volume has been rendered, the base-plane contains a 
distorted image which has to be warped onto the 
view-plane [9]. 

For real-time performance this template-based 
ray-casting algorithm needs to be parallelized. 111 
Cube-4 we implement a form of parallelism called 
slice-parallel processing [S]. During ray-casting, the 
volume is traversed along consecutive slices parallel 
to the base-plane. The conceptual dataflow of slice- 
parallel ray-casting is shown in Fig. 2. 

Two consecutive slices are required for tri-hnear 
interpolation. To reduce the number of memoi-y 
accesses, the previously fetched slice is stored in ‘1 
plane buffer (FIFO) so that it can be retrieved 
without further access to the voxel memory. The 
gradient is computed using samples from three slices 
of interpolated samples [4]. The two previously 
calculated slices of interpolated samples are stored 
in FIFO plane-buffers, delaying them by n and Z/z 
cycles, respectively. After shading and classilication 
each slice is composited onto the intemrediate results 
of the previous slices, yielding the final base-plane 
image after n2 cycles. 

The slice-parallel approach discussed so far 
operates on beams of n voxels, thus requiring il 
memory modules and II rendering pipelines, where II 
is the resolution of the dataset. This leads to an 
undesirable amount of hardware and limits the 

CFB T&Linear 
Interpolation 

ABC Buffers ABC Gradient 
Estimation 

Compusiting 

Fig. 2. Dataflow of slice-parallel ray-casting (CFB, Cubic Frame Buffer; ABC, Above Below Current). 
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maximum dataset size that can be rendered. To 
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proceeds along partial beams in +X, inside slices 
in - Y, and across slices in +Z direction. render datasets of size n3 with p <n rendering 

pipelines, we developed two different architectural 
partitioning approaches, called sub-volume parti- 
tioning and beam partitioning. 

In sub-volume partitioning, a volumetric dataset 
of size n3 is divided into smaller sub-volumes of 
resolution p, each being processed by p pipelines. The 
images of each sub-volume are combined to yield the 
final image. Our first prototype implementation on 
Teramac, described in Section 4, uses sub-volume 
partitioning. 

However, this first prototype revealed two main 
problems with this approach. First, the voxel 
neighborhood required for tri-linear interpolation 
and gradient estimation at sub-volume boundaries 
can only be provided by overlap of subvolumes. As 
Table 1 shows, this results in substantial memory 
overhead, which leads to higher execution time (see 
Section 5). 

The second problem is that rays can traverse 
multiple sub-volumes for non-orthogonal viewing 
directions, as illustrated in Fig. 3. The intermediate 
cornpositing results for rays that cross the sub- 
volume boundary have to be stored in a buffer so 
that they can be accessed during processing of the 
next sub-volume. The order in which the sub- 
volumes have to be processed depends on the viewing 
direction and the cornpositing order (front-to-back 
or back-to-front). To access the buffer of intermedi- 
ate cornpositing results requires global connectivity 
between processing pipelines. 

These problems with sub-volume partitioning lead 
to the development of beam partitioning, A beam is 
a vector of voxels which is parallel to one of the main 
dataset axes. The parallel skewed memory organiza- 
tion used in all Cube architectures allows conflict free 
access to any beam in one memory access cycle [3]. 
Instead of subdividing the volume into sub-volumes, 
the size of beams is adjusted to the number of 
processing elements (see Fig. 4). With p processing 
units, beams are partitioned into b partial beams of 
width p, which are subsequently processed. In our 
Cube-4 implementations on Teramac, processing 
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Fig. 3. Sub-volume processing order for front-to-back 
cornpositing and a given viewing direction. Intermediate 
results at sub-volume boundaries have to be stored for 

subsequent processing. 

Similar to sub-volume partitioning, the voxel- 
neighborhoods required for tri-linear interpolation 
and gradient estimation need to overlap at the 
border of partial beams. For example, tri-linear 
interpolation at the rightmost position of a partial 
beam requires voxels from the partial beam which 
will be fetched in the next cycle. Using a technique 
called beam extension, these border cases can be 
handled without the overhead in computation and 
storage of sub-volume partitioning. Partial beam i at 
time t is delayed by one cycle so that the necessary 
extension for partial beam i can be transferred from 
partial beam if 1 at time t+ 1 (see Fig. 5). 

The next section gives an overview of the Teramac 
system. In Section 4 we describe the sub-volume 
partitioned prototype implementation of Cube-4 on 
Teramac, and Section 4.2 describes our beam 
partitioned Cube-4 prototype on Teramac. 

3. TERAMAC A CCM 
The merits of general-purpose versus special- 

purpose computers have long been debated by 
computer architects. The configurable custom ma- 
chine (CCM) [lo, 111 is a new class of machine that 
falls between these extremes. Teramac [12], the 
largest such machine built to date, achieves the 
massive parallelism of special-purpose computers 
and the re-usability of general purpose computers. 
Teramac provides large numbers of programmable 
gates, wires, and memories that can be configured to 
implement user designs. When special-purpose hard- 
ware is built, its correctness and usability can be 
verified first with a custom computer. The high speed 
of custom computing, relative to conventional soft- 
ware simulations, makes much more exhaustive 
testing possible. 

General-purpose computers have many virtues: 
they are ubiquitous, inexpensive, and easy to pro- 
gram. They typically also have significantly higher 
clock speeds than custom computers. However, 
because general-purpose computers execute at most 
a handful of instructions per clock cycle, while custom 
computers perform hundreds, custom computers are 
potentially much faster. On many applications, 
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Fig. 4. Volume traversal for beam partitioned slice-parallel 
ray-casting. 
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Fig. 5. Beam extension provides the necessary data on 
partial beam boundaries. 

Teramac has out-performed high-performance work- 
stations by a factor of a hundred or more. 

3.1. Teramac hardware 
Teramac is scalable, with systems comprising one 

to sixteen boards. Figure 6 shows four Teramac 
boards with the attached controller boards and the 
board to board connections. A full sixteen-board 
system is capable of running user designs with one 
million gates at speeds typically in the range of 
1 MHz. 

A custom field-programmable gate array (FPGA), 
called Plasma [13], supplies the majority of Tera- 
mat’s programmable resources: gates, crossbars, and 
multi-ported register files. Groups of 27 FPGAs are 
assembled into large multi-chip modules (MCMs) 
[14] (see Fig. 7). Each board contains four MCMs. 
Each board also contains four dual-ported two- 
megaword by 32 bit RAM’s; thus, Teramac’s mem- 
ory resources are very ample in both capacity and 
bandwidth. 

The Teramac routing resources, consisting of 
crossbars in the FPGAs and wires on the MCMs and 
boards, are sufficient for implementing almost any 
circuit topology. In particular, user circuits are not 
limited to systolic arrays, as they were in earlier 
custom computers. Users control Teramac from a 
host workstation, which connects to Teramac via a 
SCSI bus. The host also provides configurations and 
I/O. 

Fig. 6. Four Teramac boards, connected to each other with 
ribbon cable, and to a controller board. The pins of one 

multi-chip module (MCM) can he seen in the middle. 

Fig. 7. The Teramac hardware. (a) A PLASMA FPGA 
chip, configurable in 3 s. (b) MCM with 27 PLASMA chips 
on it. The interconnections are routed in 39 layers. Each 

MCM has over 3000 pins.) 

3.2. Teramac sqjiware 
Configurable computers are of limited usefulness 

unless they include software to map designs onto 
them. Teramac was designed with the goal that user 
designs would be mapped onto it quickly and 
completely automatically. To ensure that this goal 
was achieved, the Teramac hardwamand mapping 
software were created in tandem. Large designs that 
fill our eight-board Teramac system typically are 
mapped onto the system in about half an hour, 
making design iterations reasonably painless. 

Users enter their designs into software tools that 
transform them in two steps into conf$urations that 
are ready to run on Teramac. For design entry and 
the first step of the transformation process, we use 
general-purpose digital hardware design tools. To 
maximize user productivity, we have chosen tools 
that permit the user to express their designs at a high 
level of abstraction. These tools use logic synthesis to 
automatically convert the high level designs into 
netlists of simple gates. 

The Cube-4 design was created with the Tsutsuji 
design system [15]. Tsutsuji accommodates large 
designs particularly well and synthesizes them into 
gates within minutes. Tsutsuji designs are hierarchies 
of block diagrams. The blocks represent one of three 
things: sub-designs which are themselves block 
diagrams; data path elements (adders, multipliers, 
multiplexers, etc.) for which Tsutsuji provides an 
extensive library of sophisticated module generators; 
and sub-designs whose behavior is described in 
Tsutsuji’s textual Logic Description Format (LDF). 
LDF is intended for describing state machines, 
random logic, and truth tables. We have found that 
LDF is also useful for creating parameter&d 
designs. Parameterized designs are ideal for parallel 
applications because they allow the degre of 
parallelism in the design to be scaled to fill the 
available hardware. 

The second step of the process of creating 
configurations is called mapping. It is performed by 
the Teramac compiler, which was written expressly 
for Teramac. It reads the netlists, merges the simple 
gates into FPGA-specific gates, performs placement 
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Fig. 8. Design-flow for Teramac. 

and routing, and ultimately creates configuration 
bitstreams. Figure 8 shows the design-flow for 
Teramac. 

In the following section we introduce the imple- 
mentation of two Cube-4 prototype designs using the 
Teramac system and highlight the achieved results. 

4. CUBE 4 PROTOTYPES ON TERAMAC 

Two prototype designs of Cube-4 were implemen- 
ted on the Teramac custom computing system. The 
first design is based on the sub-volume approach, 
while the second uses beam partitioning. 

4.1. Sub-volume partitioned design 
The sub-volume partitioned approach has been 

implemented with eight parallel pipelines, shown in 

Fig. 9. Each pipeline includes the Cubic Frame 
Buffer (CFB) volume memory, the CFB address 
generator, tri-linear interpolation unit (TRI), and 
gradient estimation unit (GRA). Shading, classifica- 
tion and cornpositing have been implemented in 
software. 

To provide the original volume data in a skewed 
and partitioned format we use a software front-end 
written in C. A dataset is transformed into a file 
containing the skewed data of all sub-volumes in 
sequential order, for down-loading to the Teramac 
memory. Our implementation on Teramac performs 
memory access for arbitrary viewing directions, tri- 
linear interpolation between data slices, and ABC 
gradient estimation around sample points. The 
resulting sample values and gradient vectors are 
transferred from the Teramac memory onto the host 
computer for post-processing (shading, classification 
and cornpositing) with the software back-end. 

Our slice-parallel sub-volume partitioned Cube-4 
design on Teramac is capable of rendering datasets 
of 1283 voxels. Our implementation contains eight 
rendering pipelines, although available logic gates on 
Teramac would allow implementing a design with 16 
pipelines. The timing results of this design (see 
Section 5) indicate high performance. However, the 
global connectivity required for the partial result 
buffers in the cornpositing units is a major drawback 
of the sub-volume partitioned design. Consequently, 
no further effort was put into this implementation. 

1 S$adinadind wmpoaiting 
- 

Fig. 9. Block diagram of the sub-volume partitioned Cube-4 implementation on the Teramac with eight 
rendering pipelines (M, DRAM Memory Module; CFB, Cubic Frame Buffer Address Generation; TRI, 

Tri-linear Interpolation Unit; GRA, ABC Gradient Estimation Unit). 
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4.2. Beam partitioned design 
Our second prototype design on Teramac uses 

beam partitioning and implements the complete 
rendering pipelines, including shading (SHA) and 
cornpositing (COM) (see Fig. 10). The back-end 
software performs the 2-D image warp, while all other 
rendering operations are implemented in hardware. 

We implemented a Cube-4 configuration with five 
parallel rendering pipelines. The limitation to five 
pipelines was given due to the structure of the 
Teramac memory system. A total of 256 Mbytes of 
memory, distributed across several memory banks, is 
available on Teramac. We use memory banks to 
realize the plane-buffers, the look-up tables for 
opacity, color transfer-functions, and shading para- 
meters, as well as the intermediate image buffers in 
the cornpositing units. Five Cube-4 rendering pipe- 
lines used up all available Teramac memory banks. 

Our beam partitioned Teramac prototype is able 
to process datasets of 12S3 voxels. A dataset is down- 
loaded into Teramac memory, processed, and the 
final base-plane pixels are stored in memory modules 
at the end of each rendering pipeline. A software 

Fig. 10. Block diagram of the beam partitioned Cube-4 
implementation on the Teramac with five rendering 
pipelines (M, DRAM Memory Module; CFB, Cubic Frame 
Buffer Address Generation; TRI, Tri-linear Interpolation 
Unit; GR4, ABC Gradient Estimation Unit; SHA, Shading 
Unit; COM, Compositing Unit). The interconnections 
provided inside the extension units are only local, not 

global. 

program uploads the pixel values and performs the 
2-D image warp from the base-plane to the image 
plane. In the following section we describe the design 
of the different pipeline stages in more detail. 

4.3. Rendering pipeline hardware 
The address of a voxel in volume space can be 

described in terms of a slice index (S-INDEX or S) in 
major viewing direction, a beam index (B-INDEX or 
B) in scanline direction, a partial beam index 
(PB-INDEX or PB) and a PIPELINE-INDEX for 
the location inside a partial beam. For p = 5 memory 
banks, we obtain the memory address A using the 
following formula: 

This formula is used in the CFB to address the 
memory banks. The CFB is the main control unit of 
each pipeline. It is split up into four sub-units as 
shown in Fig. 11. The first is the TRAVERSAL-U- 
NIT which keeps track of the position of the 
currently fetched voxel inside the volume. It consists 
of three cascaded counters, one for PB-INDEX. one 
for B-INDEX, and one for S-INDEX (see Fig. 4). 
The values of the three counters are provided to the 
other sub-units of the CFB unit. The ADDRESS 

UNIT is connected to the voxel memory of each 
pipeline, one 8 Mbytes bank of Teramac memory. 
The TEMPLATE UNIT generates the resamphng 
weights for the tri-linear interpolation which are 
forwarded to the TRI unit. To reduce the amount of 
logic, weights are updated incrementally every time 
the S-INDEX changes. The current resampling 
weights in X and I’ are updated by simply adding 
the components of the viewing vector VIEW-X and 
VZEW-Y, respectively, module, 256 (we use X bits 
for resampling weights). 

The CONTROL-UNIT provides the control in- 
formation (13 bits, shown in Table 2) forwarded with 
data, allowing the other stages of the pipeline to 
correctly align the data. Start and End indicate the 
beginning and the end of a volume. Forget marks 
invalid intermediate values. X-wrap and Y-wrup mdi- 
cate that a sample is the last one along a ray, o/d-X- 
step, old- Y-step, X-step and Y-step mark discrete steps 
along rays between slices. This information is required 
to reconstruct the rays for cornpositing. 

In the tri-linear interpolation unit (TRI) the 
interpolation of the samples is performed using the 
weights calculated in the CFB. Seven linear inter- 
polators are able to calculate one sample per cycle 
[16]. The gradient unit (GRA) aligns samples out of 
three consecutive slices to compute the gray-level 
gradient [7]. This unit also performs a correction of 
the values to generate a gradient parallel to the Z- 
axis and to prevent aliasing [17]. 

The shading unit (SHA) uses the three components 
of the gray-level gradient for a lookup-table baaed 
implementation of Phong shading [18]. The lookup- 
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Fig. 11. CFB address unit block diagram. PB INDEX indicates the index of the current partial beam, 
while B-INDEX and S_INDEfindicate the current beam and slice-index. 

table requires only 1.5 kbytes of memory and four 
memory accesses per computation cycle. We used a 
four times wider implementation with 6 kbytes 
lookup-tables because the Teramac memory banks 
limit memory access to one read and one write per 
cycle. The resulting intensity value from the shading 
unit is then used as an index into three color lookup 
tables, resulting in red, green, and blue color 
components. Sample values are used to assign 
32 bit opacity values for compositing. The tables 
for the classification of the samples are 32 bits wide 
and 256 entries deep, corresponding to the 8 bit 
representation of voxel values. 

In the compositing unit (COM), the color samples 
delivered by the shading unit are blended into final 
pixels. The slice-by-slice order requires a base-plane 
buffer for one slice of intermediate compositing 
results, which has 125 entries of 25 bits each per 
pipeline. Incoming shaded samples are directly 
composed with the corresponding previous values 
from the base-plane buffer. Compositing is per- 
formed in front-to-back order [6], and the base-plane 
buffer is implemented using Teramac memory banks. 
After a ray is finished, its final pixel value is output 
into Teramac memory together with its base-plane x 
and y address. 

5. RESULTS 

The sub-volume partitioned design with eight 
rendering pipelines is capable of rendering 1283 

datasets. Using multiple register stages in the 
rendering pipeline allowed us to optimize the design 
from an initial processing frequency of 0.37 MHz to 
a final frequency of 0.96 MHz. At 0.96 MHz we 
achieved a frame-rate of 1.5 Hz using eight parallel 
rendering pipelines. The design of the eight rendering 
pipelines uses 162,816 logic gates, where one CFB 
unit requires 5578 gates, one tri-linear unit (TRI) 
requires 8557 gates, and one gradient estimation unit 
(GRA) requires 6142 gates. The &linear unit 
requires more gates than any of the other units due 
to the multipliers for the seven linear interpolators 
used for tri-linear interpolation. Figure 12 shows 
volume rendered images of a CT scanned lobster 
with different transfer functions and different light 
sources rendered with the sub-volume partitioned 
Cube-4 design. 

The beam partitioned Cube-4 implementation with 
five pipelines has not been optimized for speed. A 
SPICE-estimated maximum clock-rate of 0.2 MHz 
was achieved for 1253 datasets. The resulting frame 
rate of 0.5 Hz could be increased to 2.5 Hz by 
pipelining the design further to a clock frequency of 
0.96 MHz. In that case the beam partitioned design 
with five pipelines would be faster than the sub- 
volume partitioned design with eight pipelines. 

The complete design uses 380,341 logic gates, where 
one CFB unit requires 3918 gates, one tri-linear unit 
requires 11,037 gates, one gradient estimation unit 
requires 18,030 gates, one shading unit requires 
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Fig. 12. Volume rendered images of a 12S3 dataset of a CT lobster rendered with the sub-volume 
implementation of Cube-4 on the Teramac. Each image took 0.6 s on the Teramdc running at very low 

0.96 MHz. 

13,858 gates, and one cornpositing unit requires 
12,861 gates. The logic needed to implement the 
beam extensions requires 80,932 gates. Tri-linear and 
gradient estimation units have a larger size due to the 
necessary partial-beam buffers. Many gates can be 
saved if the partial-beam buffers are implemented 
with Teramac memory or hardware FIFOs instead of 
using the expensive Teramac registers. 

Assuming perfect pipelining of interpolation, 
shading, and compositing, the theoretical perfor- 
mance of Cube-4 is dependent on the number of 
rendering pipelines p and the processing frequency 
fb. If n is the dimension of the dataset, and fr the 
rendering rate in frames per second, we can calculate 
the necessary processing frequency fp in Hz as: 

It can be seen from Fig. 13 that 8 rendering pipelines 
achieve 32 frames per second projection rates for 
2563 datasets at 64 MHz processing frequency. At 
16 bits per voxel, such a dataset requires 32 Mbytes 
of DRAM. Using two 16 Mbits synchronous 
DRAM @DRAM) modules per rendering pipeline 
requires only 16 SDRAMs. Given the gate count for 
logic from our Teramac implementation, it is fair to 
assume that we can fit four rendering pipelines onto 
one application specific integrated circuit (ASK). 
Such a Cube-4 ASIC would require less than 500,OOfl 
logic gates and about 40 kbytes SRAM for the 
internal data buffers. Two ASICs (with 8 rendering 
pipelines), 16 SDRAMs (with 32 Mbytes total capa- 
city), and a PC1 host interface can fit onto a PC1 
card for cost-effective, 30 frames per second visuali- 

zation of 2563 datasets. Practical implementations 
for higher resolution datasets require more Cube-4 
ASICs and higher processing frequencies. Figure 
14 shows parallel projections of several datasets. 
Those images were rendered completely on Teramac. 
Additionally, we implemented a protocol for auto- 
matically generating all the frames for an animation 
on Teramac. 

6. CONCLUSIONS 

We presented two scalable and modular partition- 
ing schemes for the Cube-4 slice-parallel ray-casting 
architecture and proved their feasibility by imple- 

256 
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16 
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R 

Fig. 13. Processing frequency, ,/i, vs the number of 
rendering pipelines p for three dataset resolutions. Render- 

ing performance is .f; = 32 frames per second. 
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(a> b) 

Fig. 14. Volume rendering images of 128’ datasets produced by the beam partitioned implementation of 
Cube-4 on Teramac. Each image took 1.5 s at very low 0.2 MHz clock rate. (a) Hippocampal pyramidal 
cell. (b) CT head, 45” rotated. (c) Simulated silicon lattice. (d) Simulated high-potential iron protein. (e) 
Volume-sampled geometric mechanical part. (f) MRI brain. (g) Bullfrog ganglion cell. (h) Volume- 

sampled sphere flake. 

menting them on the Teramac system. Simulating 
architectures of this size is not a trivial task. Teramac 
was a valuable tool that allowed us to efficiently 
implement those designs in a very limited time-frame. 
An important future extension to the Teramac 
system is a frame-buffer to display graphics without 
uploading results to a host. Furthermore, porting 
designs to Teramac will be easier in the future when 
the software is able to directly compile a VHDL 
description. 

Implementing Cube-4 on the Teramac system was 
a major step towards a full-fledged real-time volume 
rendering system. We were able to prove the 
feasibility of the scalable and modular Cube-4 design 
and obtained a first impression of its image quality. 
The next logical step is to use this experience to 
develop an improved VLSI implementation of Cube- 
4 which will then provide real-time performance for 
datasets of up to 1O243 voxels. These are our near 
future goals. 

Acknowledgements-Cube-4 has been developed at the 
Visualization Lab of the Center for Visual Comoutinz. 
State University of New York at Stony Brook, NY, and has 
been supported by the National Science Foundation under 
grant MIP-9527694, Japan Radio Corporation, and Hew- 
lett Packard. Datasets for Figs 12 and 14 are courtesy of 
Siemens, Scripps Clinic, AVS, UNC, Howard Hughes 
Medical Institute, and the Visualization Laboratory at 
Stony Brook. The authors would like to thank ah the 
members of the Cube-4 team that contributed to this 
research, especially Frank Wessels, Ingmar Bitter, and Pat 
Tonra. Urs Kanus and Michael MeiSner performed this 
work as part of their MS thesis at Stony Brook, NY, and at 
Hewlett-Packard Research Laboratories, Palo Alto, CA. 
We would like to thank Fred Kitson and Tom Malzbender 
at Hewlett-Packard for their support that made this 
collaboration possible. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

REFERENCES 
Kaufman, A., Cohen, D. and Yagel, R., Volume 
graphics. Computer, 1993, 26, 5164. 
Lacroute, P., Analysis of a parallel volume rendering 
system based on the shear-warp factorization. IEEE 
Trunsuctions on Visualizution turd Computer Gruphics, 
1996,3,218-231. 
Kaufman, A. and Bakalash, R., Memory and proces- 
sing architecture for 3D voxel-based imagery. IEEE 
Computer Graphics & Applications, 1988, 8, 10-23. 
Ptister, H., Kaufman, A. and Chiueh, T., Cube-3: a 
real-time architecture for high-resolution volume vi- 
sualization. ACM/IEEE Workshop on Volume Visuali- 
zution, Washington, DC, 1994, pp. 75-83. 
Pfister, H. and Kaufman, A., Cube-4-a scalable 
architecture for realtime volume rendering. In Proceed- 
ings of ACM/IEEE Symposium on Volume Visualiza- 
tion. San Francisco. CA. 1996. DD. 47-54. 
Levoy, M., Display of surf&& from volume data. 
IEEE Computer Gruphics & Applicutions, 1988, 8(5), 
29-37. 
Hiihne, K. H. and Bernstein, R., Shading 3D-images 
from CT using gray-level gradients. IEEE Trunsactions 
on Medical Imaging, 1986, 5, 45-47. 
Yagel, R. and Kaufman, A., Template-based volume 
viewing. Computer Graphics Forum, 1992, 11, 153-167. 
Lacroute, P. and Levoy, P., Fast volume rendering 
using a shearwarp factorization of the viewing trans- 
form. In Proceedings of SIGGRAPH 94, 1994, pp. 451- 
457. 
Bertin, P., Roncin, D. and Vuillemin, J., Introduction 
to programmable active memories. In Systolic Array 
Processors, Killarney, Ireland, 1989, pp. 301-309. 
Arnold, J. M., Bell, D. A. and Davis, E. G., Splash 2. 
In Proceeedings of the 4th Annum ACM Symposium on 
Purullel Algorithms wd Architectures, 1992, pp. 316 
322. 
Amerson, R., Carter, R. J., Culbertson, W. B., Kuekes, 
P. and Snider, G., Teramac-configurable custom 
computing. In Proceedings of the IEEE Symposium on 
FPGAS for Custom Computing Muchines, Napa, CA, 
1995, pp. 32-38. 
Amerson, R., Carter, R., Culbertson, W., Kuekes, P. 



208 U. Kanus et (11. 

and Snider, G., Plasma: an fpga for million gate 
systems. In Proceedings of the ACMjSIGDA Inter- 
national Symposium on Field Programmable Gute 
Arruys, 1996, pp. l&16. 

14. Amerson, R. and Kuekes, P., The design of an 
extremely large MCM-C-a case study. The International 
Journal of Microcircuits und Electronic Puckaging, 
1994, 331-382. 

15. Culbertson, W. B., Osame, T., Otsuru, Y., Shackleford, 
J. B. and Tanaka, M., The hp tsutsuji logic synthesis 
system. Hewlett Packard Journul, 1993, 38-51. 

16. Knittel, G. VERVE: voxel engine for real-time visual- 

ization and examination. Computer Graphics Forum, 
1993,12, 37-48. 

17. Pfister, H., Wessels, F. and Kaufman, A., Sheared 
interpolation and gradient es.tirrra@n for m&time 
volume rendering. In Proceedings of the 9th Euro- 
graphics Hardware Work&p (Proceedbags), Oslo, 
Norway, 1994, pp. 70-79. 

18. Bosma, M. and van Schettinga, J., EfBcient super 
resolution volume rendering. Master’s theois, TR EL- 
BSCQ79N95, Faculty of Electrical Engineering, 
University of Twente, Enschede, The Netherlands, 
1995. 


