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Fig. 1. lllustrative diagram of the experiment design. From left to right: the elements of the visualizations are labeled and categorized,
eye-tracking fixations are gathered for 10 seconds of “encoding”, eye-tracking fixations are gathered while visualization recognizability
is measured, and finally participants provide text descriptions of the visualizations based on blurred representations to gauge recall.

Abstract— In this paper we move beyond memorability and investigate how visualizations are recognized and recalled. For this study
we labeled a dataset of 393 visualizations and analyzed the eye movements of 33 participants as well as thousands of participant-
generated text descriptions of the visualizations. This allowed us to determine what components of a visualization attract people’s
attention, and what information is encoded into memory. Our findings quantitatively support many conventional qualitative design
guidelines, including that (1) titles and supporting text should convey the message of a visualization, (2) if used appropriately, pic-
tograms do not interfere with understanding and can improve recognition, and (3) redundancy helps effectively communicate the
message. Importantly, we show that visualizations memorable “at-a-glance” are also capable of effectively conveying the message of
the visualization. Thus, a memorable visualization is often also an effective one.

Index Terms—Information visualization, memorability, recognition, recall, eye-tracking study

1 INTRODUCTION

Understanding the perceptual and cognitive processing of a visualiza-
tion is essential for effective data presentation as well as communi-
cation to the viewer. Memorability, a basic cognitive concept, has
important implications for both the design of visualizations that will
be remembered but also lays the groundwork for understanding higher
cognitive functions such as comprehension. In our previous study [8],
the memorability scores for hundreds of real-world visualizations were
collected on Amazon’s Mechanical Turk (AMT). The results of this
research demonstrate that visualizations have inherent memorability,
consistent across different groups of observers. We also found that the
most memorable visualization types are those that are visually distinct
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(e.g., diagrams, tree and network diagrams, etc.), and that elements
such as color, visual complexity, and recognizable objects increase a
visualization’s memorability. However a few questions remain: What
visual elements do people actually pay attention to when examining a
visualization? What are the differences in memorability when given
more time to view a visualization? What information do people use
to recognize a visualization? What exactly do people recall about a
visualization?

To answer these questions, in this paper we present the results of a
three-phase experiment (see experimental design in Fig. 1). In contrast
to the previous study, where each visualization was presented for 1 sec-
ond (“at-a-glance”), we presented each visualization for 10 seconds
(“prolonged exposure”) in the encoding phase of our experiment to
allow participants more time to explore visualizations and to facilitate
the collection of eye movements. During the recognition phase, par-
ticipants viewed the target visualizations, mixed in with previously-
unseen (filler) visualizations for 2 seconds each and responded to in-
dicate which visualizations they recognized. During both phases, we
collected eye fixations to examine which elements a person focuses on
when visually encoding and retrieving a visualization from memory.
Finally, in the recall phase, participants were presented with the tar-
get visualizations correctly identified during the recognition phase in a
randomized order and asked to “Describe the visualization in as much
detail as possible.” This last experiment phase provides insight into
what visualization elements, types, and concepts were easily recalled
from memory. Together, the three phases of the experiment, along
with a new detailed labeling of the 393 target visualizations from [8],
allow us to analyze and quantify what visualization elements people
encode, retrieve, and recall from memory.



Contributions: This work represents the first study incorporating
eye-tracking as well as cognitive experimental techniques to investi-
gate which elements of visualizations facilitate subsequent recogni-
tion and recall. In addition, we present an analysis of the new labeled
visualizations in our database! in order to characterize visualization
design characteristics, including data and message redundancy strate-
gies, across different publication venues. Based on the results of our
experiment, we are able to offer quantitative evidence in direct support
of a number of existing conventional qualitative visualization design
guidelines, including that: (1) titles and supporting text should convey
the message of a visualization, (2) if used appropriately, pictograms
do not interfere with understanding and can improve recognition, and
(3) redundancy helps effectively communicate the message.

2 RELATED WORK

Perception and Memorability of Visualizations: Many important
works in the visualization community have studied how different vi-
sualization types are perceived, and the effect of different data types
and tasks [13, 29, 38]. The effect of “visual embellishments” on the
memorability and comprehensibility of visualizations is also an ac-
tive area of research [4, 5, 7, 8, 15, 22, 31, 35, 43, 46]. The effect
and role of specific visual elements have also been investigated within
the context of specific visualization types, e.g., attributes of node link
diagrams [1, 16], specific visual elements such as pictographs [18],
visual distortions [37], and more broadly [19]. It has been demon-
strated that interactions with visualizations affect memory and recall
(e.g., [25, 32]). As described in Sec.1, we evaluated the memorabil-
ity of visualizations using thousands of un-edited real-world visual-
izations from the web [8]. We found that some visualization types
are more memorable than others, and particular visual elements (e.g.,
human recognizable objects, color, etc.) seem to increase a visualiza-
tion’s memorability. In this study we build on all of this previous work
and move beyond basic memorability by studying what visualization
types and features contribute to visualization recognition and recall.

Visual Cognition and Memory: Work on image memorability has
reported high consistency between participants and experimental set-
tings with regards to which images are memorable and forgettable.
Studies have shown that the memorability rank of images is stable
over time [23] and over experimental contexts [12]. Memorability has
been demonstrated to be an intrinsic property of scene images [12, 23],
faces [3], and graphs [8]. Studies in visual cognition and memory have
demonstrated high fidelity of memories over time and massive storage
capacity in long-term memory [9, 12, 27, 47]. People remember ob-
jects that have defined meanings and use cases [10], people remember
a lot of details from visual objects and scenes [27, 47], and people
can easily distinguish between different exemplars of the same cate-
gory [10, 12, 27]. Also, unique or distinct visual stimuli have been
found to be easier to remember in massive memory studies [27, 12, 8].
Brady et al. have shown that when an object is retrieved from memory,
many details are retrieved along with it [10]. In this paper we go be-
yond the memorability of visualizations [8] and explore what details
of visualizations are remembered along with it, and what elements of
a visualization lead to better recognition and recall.

In the psychology literature, there is a dual process model of mem-
ory called process dissociation [24, 34, 45, 30]. The two mem-
ory processes include a fast, automatic “familiarity-driven” process,
and a slower, conscious “recollection-driven” process. The former is
thought to be the result of the perceptual system’s quicker processing
of stimuli [24]. Thus, the experiments presented in this paper may be
thought of as accessing two memory processes: single-response recog-
nition and the longer, detail-retrieving recall. However, even with our
2-second recognition phase, the processes at play are not just percep-
tual, as participants have time to go back to some of the textual ele-
ments before making their response. We are thus likely capturing both
memory processes during both experimental phases, and both play an
important role in how and what people remember in visualizations.

'Massachusetts (Massive) Visualization Dataset (MASSVIS) available at
http://massvis.mit.edu.
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Fig. 2. Example labeled visualization in the LabelMe system [41]. This
pie chart from a government publication has 13 labeled elements includ-
ing where the data, annotations, and title are located.

Eye-tracking Evaluations in Visualization: Eye-tracking evalua-
tions can be an effective tool for understanding how a person views and
visually explores a visualization [6]. They have been used in the vi-
sualization community for evaluating specific visualization types such
as graphs [20, 21, 28, 39], tree diagrams [11], and parallel coordi-
nates [42], for comparing multiple types of visualizations [17], and for
evaluating cognitive processes in visualization interactions [25]. There
has also been research in the area of understanding different types of
tasks and visual search strategies for visualizations through the analy-
sis of eye-tracking fixation patterns as well as insights into cognitive
processes [39, 40]. The work presented in this paper does not focus on
specific tasks, nor on a specific type of visualization, but rather uses
eye-tracking for fixation location and duration analysis on hundreds of
labeled and categorized real-world visualizations from the web with
dozens of study participants. Within the context of our experimental
design, we are able to more deeply understand the specific cognitive
processes involved in recognition and recall of visualizations.

3 DATA COLLECTION AND ANNOTATION

We used the database of visualizations from our previous memorabil-
ity study [8]. The database was generated by scraping multiple sources
of real-world visualization publication venues online covering govern-
ment reports, infographic blogs, news media, and scientific journals.
The diversity and distribution of these visualizations represent a broad
set of data visualizations “in the wild”. For our present study, we used
the same 393 target visualizations utilized in the previous study [8]
along with 393 visualizations selected from the remaining “single”
(i.e., stand alone single-panel) visualizations in the collection as filler
images (see Sec. 5.3).

To gain deeper insight into what elements of a visualization affect
its recognition and recall, three experts manually labeled the polygons
of each of the visual elements in the 393 target visualizations using
the LabelMe system [41]. All labels were reviewed for accuracy and
consistency by three visualization experts. Examples of labeled visu-
alizations are shown in the leftmost panel of Fig. 1 and in Fig. 2.

The labeling taxonomy was based on the visualization taxonomy
from [8]. As described in Table 1, the labels classify the visualization
elements to be either data encoding, data-related components (e.g.,
axes, annotations, legends, etc.), textual elements (e.g., title, axis la-
bels, paragraphs, etc.), human recognizable objects (HRO), or graphi-
cal elements with no data encoding function. Labels could overlap in
that a single region could have a number of labels (e.g., an annotation
on a graph has an annotation label and a graph label). Additionally,
the title of each visualization was manually coded for further analysis.

We also documented whether each visualization exhibited one of
two types of redundancies: data and message redundancy. A visual-
ization exhibits data redundancy if the data being presented is visually
encoded in more than one way. This can include the addition of quan-
titative values as labels (e.g., numbers on top of bars in a bar chart, as
illustrated in Fig. 3, or on sectors in a pie chart), or the use of channels


http://massvis.mit.edu

Table 1. The visualization labeling taxonomy used to annotate our target visualizations. The data subtypes taxonomy is taken from [8].

LABEL [OPTIONAL SUBTYPES] DESCRIPTION

Annotation [Arrow] Outline of any visual elements annotating the data. A specific subtype of “arrow” was included to denote whether
the annotation was in the form of an arrow.

Axis [Time] Outline of where an axis is located including any tick marks and numeric values along the axis. A specific subtype of
“time” was included to denote an axis involving time.

Data Outline of where the full data plot area is located (e.g., the area between the x-axis and y-axis in a 2D plot).

Data (type) [Area, Bar, Circle, Diagram, Distribution, Grid & Matrix, Line, Map, Point, Table, Text, Trees & Networks] Outline of where
the actual data values are visually encoded (e.g., bars in a bar graph, points in a scatterplot, etc.).

Graphical Element Outline of any visual elements that are not related to the visual representation or description of the data.

Legend Outline of any legends or keys that explain the data’s visual encoding (e.g., color scales, symbol keys, map legends, etc.).

Object [Photograph, Pictogram] Outline of any human recognizable objects (HRO) in the image. Objects are either realistic in
representation (photograph) or abstract drawings (pictogram). Descriptions of each object were also recorded.

Text [Axis Label, Header Row, Label, Paragraph, Source, Title] Outline of any text in the image. Subtypes cover all the common
representations from prose to labels.
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Fig. 3. lllustrative examples of data redundancy (i.e., additional quanti-
tative encodings of the data) and message redundancy (i.e., additional
qualitative encodings of the main trend or message of the data). More
examples are provided in the Supplemental Material.

such as color, size, or opacity to represent a value already exhibited in
a visualization such as the x- or y-axis values. In contrast, a visualiza-
tion exhibits message redundancy if the main conclusion or message
of the visualization is explicitly presented to the viewer in multiple
ways: the addition of explanatory annotations, labels, text, and pic-
tures. A visualization can exhibit both data and message redundancy
(e.g., lower right panel of Fig. 3).

Annotating redundancy for each target visualization allows us to
evaluate whether redundancy enables more effective recognition and
recall. Each of the two types of redundancies were recorded as present
or absent, by three visualization experts. The visualizations were re-
viewed and discussed until unanimous consensus was found.

4 ANALYSIS OF LABELED VISUALIZATIONS

The labeled visualizations enable us to gain insight into and study the
distribution and type of visual elements employed across publication
venues and visualization types. These insights also help us under-
stand and put into context the observed trends and results of our study
(Sec. 6). Examining the proportion of image area covered by the data
label, as shown in Fig. 4, we see that it is highest for the scientific
journal visualizations. This is probably due to the publishing context
of scientific journal figures in which the visualization occurs as part of
a paper narrative. Additionally, authors commonly have enforced page
limits and figure limit constraints, so maximizing information per unit
area is a constraint.

Breaking down this measure of image area for data display by vi-
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Fig. 4. Percentage of visualization average pixel area covered by the
data label. Scientific visualizations on average had the highest percent-
age of image area devoted to data presentation.

sualization type, we see that diagrams, maps, and tables cover a larger
percentage of the image area than other visualization types. These
types of visualizations tend to have annotations and text labels incor-
porated into the data representation itself, thus requiring less of the
image area around the data plot for additional explanations.

Another observation is the difference in the average total number
of elements in a visualization across sources. Visualizations from
government sources have on average 11.9 labeled elements per visu-
alization, significantly fewer compared to other visualization sources
(p < 0.001,£(177) = 4.79 when compared? to the numerically closest
visualization source, science). In contrast, visualizations from info-
graphic sources have nearly twice as many elements (M = 38.7) as
compared news media (M = 19.7, p < 0.001, #(212) = 5.73) and sci-
entific visualizations (M = 18.4, p < 0.001, 7(169) = 5.23). The addi-
tional elements in the infographic visualizations are mostly in the form
of more text, objects, and graphical elements around the data.

Finally, there is a difference between publication venues in the per-
centage of the visualization’s area covered by human recognizable ob-
jects (HRO). There are no such objects in the government visualiza-
tions, and the percentages are generally less for scientific journal vi-
sualizations (M = 14%) as compared to news media (M = 25%) and
infographic (M = 29%) visualizations. The human recognizable ob-
jects are primarily in the form of company logos (McDonalds, Twitter,
Apple, etc.), international flags commonly used in the news media vi-
sualizations, and pictograms or photographs of human representations
and computer/technology depictions (see also the word cloud visual-
ization in the Supplemental Material).

In addition to the labels, each visualization was examined to de-
termine if it exhibited message redundancy, data redundancy, both, or
neither. As shown in Fig. 5, all publication venues included visual-

2For all the p-values reported in this paper, t-tests were corrected for multi-
ple comparisons.
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Fig. 5. The percent of visualizations that exhibit data and message re-
dundancies by publication source. The largest percentage of visualiza-
tions with message redundancy are from the Infographic and News me-
dia venues. Overall and across all visualization sources, there is more
frequent use of message redundancy as compared to data redundancy.

izations with message redundancy, with the highest rates in the info-
graphic and news media visualization. This is probably due to both
venues prioritizing clear communication of the visualization message.
In contrast, the scientific visualizations in our sample had the least
message redundancy and no data redundancy. When examining re-
dundancy across visualization types, the message redundancy rates are
comparable across all visualization types but highest for circle (53%
of circle visualizations contain message redundancy), table (51%), line
(44%), and bar chart (39%) visualizations.

5 EXPERIMENT OVERVIEW
5.1 Experiment Set-up & Participants

As discussed in Sec. 3, we labeled all the visual elements in the 393
target visualizations for which we have memorability scores [8]. We
also carefully selected 393 visualizations from the database of single
visualizations [8] to use as fillers during the recognition portion of the
experiment. These visualizations match the exact distribution of vi-
sualization types and original sources as the target visualizations. All
target and filler visualizations were resized, while preserving aspect
ratios, so that their maximum dimension was 1000 pixels.

For the eye-tracking portions of our experiment, we used an SR
Research EyeLink1000 desktop eye-tracking system with a chin-rest
mount 22 inches from a 19 inch CRT monitor (resolution: 1280 x
1024 pixels). At the beginning of an experimental session, participants
performed a randomized 9-point calibration and validation procedure.
At regular intervals, a drift check was performed and, if necessary,
recalibration took place. Optional breaks were offered to participants.

A total of 33 participants (17 females, 16 males) participated in the
experiment. All of the participants were recruited from the local com-
munities of Cambridge and Boston with an average age of 22.9 years
(SD = 4.2). All participants had normal color vision. In a single ex-
periment lasting 1 hour, a participant would see about 100 randomly-
selected (out of a total of 393) target visualizations. A single session
of the experiment lasted about 1 hour. Each participant was monetarily
compensated $25 for their time.

5.2 Encoding Phase

The first portion of the experiment, the encoding phase, lasted 20 min-
utes. As illustrated in Fig. 1, participants were each shown about 100
visualizations, randomly selected from the 393 labeled target visual-
izations. For this phase of the experiment, participants examined each
visualization for 10 seconds while being eye tracked. Visualizations
were separated by a 0.5 second fixation cross to clear their field of
view. A 10 second duration proved to be of sufficient length for a par-
ticipant to read the visualization’s title, axes, annotations, etc. as well
as explore the data encoding, and was short enough to avoid too much
redundancy in refixations as well as explorative strategies. The mea-

sures collected during this phase were the (x,y) fixation locations® (in
pixel coordinates on each visualization) and durations of each fixation
(measured in ms).

5.3 Recognition Phase

The recognition phase of the experiment, directly following the encod-
ing phase, lasted 10 minutes. Participants were shown the same 100
visualizations they saw in the encoding phase as well as 100 filler visu-
alizations. These 200 visualizations were presented in a random per-
mutation for 2 seconds each with a 0.5 second fixation cross between
visualizations. Participants pressed the spacebar to indicate recogni-
tion of a visualization from the previous experimental phase. A feed-
back message was presented (i.e., correct, incorrect) after each visu-
alization. The 2 second duration time was chosen to be brief enough
to quickly collect responses, but long enough to capture meaningful
eye-tracking data. The measures collected during this phase were the
(x,y) fixation locations and durations for each fixation (in ms), and the
number of correctly-recognized visualizations (HITs).

5.4 Recall Phase

The final portion of the experiment, the recall phase, lasted 20 minutes.
Participants’ gazes were not recorded. In this phase, all the visualiza-
tions the participant correctly recognized in the previous phase were
presented in a randomized sequence. Each visualization was presented
at 60% of its original size and blurred by a 40-pixel wide Gaussian
filter to make the text unreadable. The purpose of blurring visualiza-
tions was to allow the visualization to be recognizable, but not contain
enough visual detail to enable the extraction of any new information.

Next to each blurred visualization was an empty text box with the
instruction: “Describe the visualization in as much detail as possi-
ble.” The goal was to elicit from the participant as much information
about the visualization as they could recall from memory. Participants
were given 20 minutes in total to write as many descriptions as possi-
ble. There was no limit to how much time or text length was spent on
each visualization, nor any requirement to complete a certain number
of visualizations. The measures collected during this phase were the
participant-generated text descriptions of what they could recall of a
given visualization.

Displaying blurred visualizations at this phase of the experiment
has its limitations, including the potential to bias participants to more
easily recall visual elements. However, we chose to use this modal-
ity due to the following advantages: (1) the study can be performed
at-scale, showing participants many visualizations and collecting text
responses in a later phase, (2) no assumptions are made about what
participants can remember and at what level they extract the content,
and thus free-form responses can be collected, and (3) participants
can be queried on specific visualizations they have stored in long-term
memory via visual hints (i.e., the blurred visualizations).

5.5 Performance Metrics

We computed fixation measures by intersecting fixation locations with
labeled visualization elements (Table 1) to determine when fixations
landed within each element. We analyze the total duration of a
viewer’s fixations landing on a given visual element throughout the en-
tire viewing period. We also measure refixations - the total number of
times a viewer returns to an element during the entire viewing period
(including the first time the element is fixated). Consecutive fixations
on the same element are not counted. Note that a single fixation can
land on several elements at once (e.g., an annotation on a graph). In
this case, we count the fixation as belonging to all of those elements.
We collect all of a viewer’s fixations during a particular viewing period
(i.e., 10 seconds for encoding, 2 seconds for recognition), and we dis-
card as noise fixations lasting less than 150 milliseconds. All fixation
measures are averaged across viewers and different sets of visualiza-
tions, and compared using Bonferroni-corrected t-tests.

3The ordering of fixations is also available in the data, but was not used for
the present study.
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We also computed the recognition hit rate (HR) for each visual-
ization. This is the fraction of participants who correctly recognized
a visualization when they saw it during the recognition phase of the
experiment. This value ranges from O to 1. See the Supplemental
Material for a discussion of the measurement of memorability in this
experiment compared to [8].

To quantify the qualitative aspects of the text descriptions collected
during the recall phase of the experiment, three visualization experts
went through all 2,449 descriptions. The description quality is a mea-
sure of how well a participant recalled the content and message of the
visualization. Quality was rated from O to 3 where 0 was an incorrect
or incoherent description, and 3 was a text description that touched
upon the visualization topic, what data or information is presented in
the visualization, the main message of the visualization, and one addi-
tional specific detail about the visualization. The quality ratings were
assigned based on unanimous consensus. Each description was also
reviewed for the visual components explicitly discussed or referenced
from the visualization including the title and other textual elements.
Finally, descriptions were flagged if they were not perfectly accurate
(i.e., contained a factual error).

6 EXPERIMENTAL RESULTS AND DISCUSSION

In our previous study [8], we showed that people are highly consistent
in which visualizations they recognize and which they forget. Visu-
alizations were only shown for 1 second at a time, so we were able
to measure how memorable visualizations are “at-a-glance”. In this
study we want to test not just recognizability, but we also want to
discover which visualization elements people encode and are consec-
utively able to recall (top right quadrant of Fig. 6¢). We also want to
test what aspects of a visualization impact how well the main mes-
sage of the visualization is understood. For this purpose we extended
encoding time from 1 to 10 seconds and analyzed eye movements at
encoding, responses at recognition, and textual descriptions at recall.

6.1 “At-a-glance” vs. “prolonged exposure” memorability
6.1.1

During the recognition phase of the current study, as discussed in
Sec. 5, hit rates (HR) were generated for each visualization (i.e., what
percentage of participants correctly identified the visualization as oc-
curring during the encoding phase). For the current memorability
study discussed in this paper (with 10 seconds of encoding), the mean
HR is 79.70% (SD = 17.98%) as compared to a mean HR of 55.61%

Does “at-a-glance” memorability generalize?

(8D = 15.30%) from the previous study [8] (with 1 second of encod-
ing). We compare the memorability scores (HR) of both studies for
all the target visualizations in Fig. 6a-b. When time to encode a vi-
sualization is increased from 1 to 10 seconds, it is natural for the ab-
solute memorability scores to increase. However, what we are more
interested in is the stability of the relative scores (i.e., ranks) of the
visualizations across studies. We find a Spearman rank correlation of
0.62 (p < 0.001) between the memorability scores of the two studies.
Note that the inter-participant consistency in the initial study was not
perfectly correlated either, with a rank correlation of 0.83 [8]. Thus,
the relatively high correlation between the two studies (despite the dif-
ference in experimental set-up, participant population, and encoding
time) points to the stability of memorability ranks of the visualiza-
tions. We also see that this trend holds if we look separately within
each source category. The Spearman rank correlations between the HR
scores of the two studies are: 0.44 for infographics, 0.38 for news, 0.56
for government, and 0.59 for science (p < 0.001 for all). Thus, visual-
izations that were memorable ‘“‘at-a-glance’ (after only 1 second of
encoding) are often the same ones that are memorable after “pro-
longed exposure” (10 seconds of encoding). The same holds for the
forgettable visualizations. Thus our initial study’s findings generalize
to a longer encoding time when people can process more of the visual
and textual input. However, now that encoding time has increased, we
also notice that 8% of the visualizations that were not previously in the
top third most memorable visualizations move up in rank as compared
to the previous study. In the next section we discuss why some visu-
alizations become more memorable after 10 seconds of encoding than
after 1 second, and why others remain forgettable in both cases.

6.1.2 What are the differences between the most and least
recognizable visualizations?

We use the eye movements of a participant at recognition time, just
before a response is made, as indicators of which parts of the visu-
alization trigger the response (i.e., help retrieve the memory of the
visualization). We can compare the differences in eye movements for
the visualizations that are “at-a-glance” the most and least recogniz-
able [8]. By considering the eye movements made on these visual-
izations during 10 seconds of encoding and at recognition time, we
can see what parts of a visualization are encoded and what parts are
required for recognition.

As shown in Fig. 7, the heat maps overlaid on the visualizations
represent the average of all of the participants’ encoding fixations on
the visualization. The fixation patterns in the encoding phase demon-
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Fig. 7. Examples of the most and least recognizable visualizations from [8]. TOP: Eye-tracking fixation heat maps (i.e., average of all participants’
fixation locations) from the encoding phase of the experiment in which each visualization was presented for 10 seconds. The fixation patterns
demonstrate visual exploration of the visualization. BOTTOM: Eye-tracking fixation heat maps from the recognition phase of the experiment in
which each visualization was presented for 2 seconds or until response. The most recognizable visualizations all have a single focus in the center
indicating quick recognition of the visualization, whereas the least recognizable visualizations have fixation patterns similar to the encoding fixations

indicative of visual exploration (e.g., title, text, etc.) for recognition.

strate patterns of visual exploration (e.g., view graph, read title, look at
legend, etc.), corresponding to the trends described in Sec. 6.2. These
visual exploration patterns are seen in both the most and least recog-
nizable visualizations.

The heat maps generated for recognition fixations are obtained by
taking only the fixations until a positive response is made, i.e., only the
fixations that lead up to a successful recognition, so that we can deter-
mine which parts of a visualization participants look at to recognize a
visualization. In Fig. 7 we see a distinct difference between the fixa-
tion heat maps of the most and least recognizable visualizations in the
recognition phase, where the most recognizable visualizations have a
fixation bias towards the center of the visualization. This indicates that
a fixation near the center, with the accompanying peripheral context,
provides sufficient information to recognize the visualization without
requiring further eye movements. In contrast, the least recognizable
visualizations have fixation heat maps that look more like the fixation
patterns of visual exploration in the encoding phase. These visual-
izations are not recognizable “at-a-glance” and participants visually
search the visualization for an association, i.e., a component in the
visualization that will help with recognition. The fixations along the
top of the heat map for the least recognizable visualizations generally
correspond to the location of the title and paragraph text describing the
visualization in further detail. We conducted statistical tests to verify
that the fixation patterns are significantly different between the most
and least recognizable visualizations, and we describe these analyses
in the Supplemental Material.

We see that the recognition fixations are significantly different
between the most and least recognizable visualizations in that the
least recognizable visualizations require more exploration before
they can be retrieved from memory. There is more eye movement
during recognition for the least recognizable visualizations indicating
that people need to look at more parts of a visualization before they
can recognize it. The visual appearance is no longer enough and peo-
ple start exploring the text. In the following section we will discuss
some possible explanations for this difference and what visualization
elements people may be using for recognition.

6.1.3 Which visualization elements help recognition?

We have demonstrated that there is a distinct difference between the
fixation patterns of the most and least recognizable visualizations.
Which visual elements in the visualization contribute to this differ-
ence in fixation patterns, and which elements help explain the overall
HR increase for recognition? We believe that people are utilizing two

types of associations to help with visualization recognition: visual as-
sociations and semantic associations. The recognizable visualizations
tend to contain more human recognizable objects (objects are present
in 74% of the top third most recognizable visualizations) compared to
the least recognizable visualizations (objects are present in 8% of the
bottom third least recognizable visualizations). These human recog-
nizable objects are examples of visual associations.

The visualizations that are not visually distinct must be recogniz-
able due to semantic associations, such as the visualization’s title or
similar text. In fact, the elements with the highest total fixation time
during recognition are the titles (M = 274ms) followed by human rec-
ognizable objects (M = 246ms, p < 0.01). The titles serve as a seman-
tic association, and the objects as a visual association for recognition.
Note that in Fig. 7 the fixations outside of the central focus in the least
recognizable visualizations during recognition correspond to the visu-
alizations’ title and other textual elements near the top. Thus these
types of semantic associations, i.e., textual components, are used for
recognition if the visualization is not visually distinct or does not con-
tain sufficient visual associations.

The least recognizable visualizations likely do not have a strong vi-
sual association nor a strong semantic association to assist with recog-
nition (Fig. 6b). The least recognizable visualizations after 10 sec-
onds have significant overlap with the least memorable visualizations
from [8] (after 1 second). Also, of the 1/3 least recognizable visualiza-
tions 54% are from government sources (compare that to only 3% of
government sources in the top 1/3 most recognizable visualizations),
while of the 1/3 most recognizable visualizations, 49% are from in-
fovis sources (and only 2% of the bottom 1/3 least recognizable vi-
sualizations are from infovis). Government visualizations tend to use
the same templates and similar aesthetics, contributing to confusion
between visualizations during recognition. The government visualiza-
tions are also heavily composed of the least memorable visualization
types including bar and line graphs. The least memorable visualiza-
tions ‘““at-a-glance” are also the least recognizable even after pro-
longed exposure.

6.1.4 What do people recall after 10 seconds of encoding?

Across 374 target visualizations*, the study participants generated
2,733 text descriptions (see Supplemental Material for examples of
participant-generated descriptions). The mean length of a descrip-

4We removed visualizations for which participants complained about the
text being too small to read.
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Fig. 8. The total number of mentions of specific visualization elements
in the participant-generated recall text descriptions. Textual elements
received the most mentions overall, and specially the title received the
most mentions across all visualizations.

Table 3. Most frequently mentioned visualization elements by publica-
tion source (percent of time element was mentioned in the text descrip-
tion out of total number of times it was present). Titles, labels, and
paragraphs are mentioned most often.

Rank: st 2nd 3rd

Overall Title (46%) Label (27%) Paragraph (24%)
Infographics Title (72%) Label (28%) Paragraph (24%)
News Paragraph (45%)  Title (43%) Label (33%)
Government Title (55%) Legend (26%) Data (21%)
Science Label (27%) Axis (14%) Legend (13%)

tion is 13.1 words (SD = 9.6), with an average of 7.3 descriptions
(SD = 4.0) per visualization. Table 2 contains a breakdown of the
description statistics per source category. We can see that info-
graphics sources generated the most number of descriptions in total
(877), with the largest average number of descriptions per visualiza-
tion (M = 11.2, SD = 3.0) and the longest descriptions in terms of
word count (M = 14.3, SD = 10.0). More importantly, they also cor-
respond to the highest-quality descriptions (M = 2.09, SD = 0.79),
statistically higher than the descriptions for the news media visualiza-
tions (M = 1.99, SD = 0.88,p < 0.001). As discussed in Sec. 5, the
description quality is a measure of how well participants recalled the
content and message of the visualization. A higher description quality
for infographics implies that participants recalled more details about
the source that had the most recognizable visualizations. For reporting
statistics related to description quality, we only consider visualizations
with at least 3 participant-generated descriptions (so that computations
of average description quality are more meaningful). The source with
least recognizable visualizations, government, also had the fewest total
descriptions (465), the fewest descriptions per visualization (M = 4.7,
SD = 2.9), and the shortest descriptions (M = 10.8, SD = 8.4). The
average description quality was 1.37 (SD = 0.93), similar to science
visualizations. Thus participants were able to recall fewer things about
the least recognizable visualizations.

Overall, the Spearman rank correlation between ‘“at-a-glance”
HR [8] and description quality (after prolonged exposure) is 0.34
(p < 0.001), and within just infographics, the source with the highest-
quality descriptions, the correlation is 0.24 (p < 0.01). The posi-
tive correlation is also present (though not significant) for the other
3 sources, possibly due to insufficient data (fewer visualizations and
fewer descriptions per visualization than in the infographics category).
Fig. 6¢ contains example visualizations categorized by how memo-
rable they were and the quality of descriptions generated for them
(i.e., whether what was memorable was the main content and mes-
sage). Sample visualizations with descriptions, sorted by source, are

included in the Supplemental Material.

At this point, although we cannot make any causality assumptions,
the findings above demonstrate that visualization recognition is related
to description quality. In other words, visualizations that were most
recognizable after only 1 second of viewing also tend to be bet-
ter described (after 10 second exposure). It might very well be that
a third factor (e.g., relevance of topic to viewer) contributes both to
recognizability and description quality. However, even in that case,
knowing something about recognizability can tell us something about
description quality. Thus, visualizations that were memorable for their
visual content after 1 second of viewing are memorable after 10 sec-
onds of viewing, and more importantly, their semantic content (the
message of the visualizations) is correctly recalled by experimental
participants (hence the higher description quality).

6.2 The effects of visualization elements on memorability
and comprehension

In this section we investigate which visualization elements attract at-
tention during encoding through the analysis of eye movements, and
which elements are recalled when a visualization is described from
memory through the analysis of textual descriptions. We use the eye
movements on a visualization as a proxy for what information is being
encoded into memory. From the content of the recall text descriptions,
we can infer from which elements of a visualization a participant ex-
tracted information. As discussed in Sec. 5, the description quality
score corresponds to the extent to which a participant recalled details
and the main message of the visualization. These two metrics (eye
movements and textual descriptions) together are evidence for which
elements of a visualization contribute to a participant’s memory and
understanding of a visualization.

6.2.1

When participants were shown visualizations with titles during encod-
ing, the titles were fixated 59% of the time. Correspondingly, during
the recall phase of the experiment, titles were the element most likely
to be described if present (see Fig. 8). When presented visualizations
with titles, 46% of the time the participants described the contents, or
rewording, of the title. For the infographics sources, titles were fixated
and described most often (80% and 72% of the time, respectively). A
full breakdown by source category of elements described most often
is presented in Table 3.

What is the contribution of visualization titles to the quality of the
textual descriptions? Across the 330 visualizations with at least 3 de-
scriptions, the average description quality of visualizations with titles
is 1.90 as compared to 1.30 for visualizations without titles (the dif-
ference in quality is statistically significant at p < 0.001). This trend
is partially driven by the absence of titles for the scientific visualiza-
tions. We believe this might be one explanatory factor as to why the
scientific visualizations have the lowest quality descriptions.

Titles were also more likely to be fixated (76% of the time) when
present at the top of the visualization than when present at the bot-
tom (fixated 63% of the time). This trend holds across the source
categories. Note that government visualizations, the least memorable
category with poorer descriptions, contained the most occurrences of
titles at the bottom of the visualization (73% of all visualizations that
had a title at the bottom are from a government source). Interestingly,
for government visualizations, table header rows were fixated more
frequently and longer than titles (see Supplemental Material). For gov-
ernment sources, titles that were found at the top of the visualization
were fixated 85% of the time and described 59% of the time, compared
to titles that were found at the bottom of the visualization, which were
fixated only 62% of the time and described 46% of the time (see Table
2 in the Supplemental Material for the complete breakdown). Thus,
titles are more likely to be paid attention to and later recalled when
present at the top of a visualization.

Across all textual elements, the title is among the most impor-
tant. A good or a bad title can sometimes make all of the difference be-
tween a visualization that is recalled correctly from one that is not. We

Titles



Table 2. Summary of statistics related to visualization descriptions by source (** = p < 0.001). Mean description quality is computed only on
visualizations with at least 3 participant-generated descriptions. Infographics had the most, longest, and highest-quality descriptions.

Source Total # of Total # of Mean # of Mean desc. Vis. with Vis. with at  Correlation = Mean desc. Inaccurate
vis. desc. desc. per length no desc. least 3 (HR, # of quality (0-3  desc.
vis. (# words) desc. desc.) scale)
Overall 374 2733 7.3 13.1 6% 84% 0.57%* 1.77 13.1%
(SD:4.0) (SD: 9.6) (SD: 0.94)
Infographics 78 877 11.2 14.3 15% 85% 0.51%* 2.09 14.9%
(20.9%) (32.1%) (SD:3.0) (SD: 10.0) (SD: 0.79)
News 120 848 7.1 14.1 3% 88% 0.43%* 1.99 15.7%
(32.0%) (31.0%) (SD:3.8) (SD: 10.0) (SD:0.88)
Government 99 465 4.7 10.8 3% 74% 0.36%* 1.37 8.6%
(26.5%) (17.0%) (SD:2.9) (SD: 8.4) (SD: 0.93)
Science 77 543 7.1 11.5 3% 90% 0.49%* 1.24 10.1%
(20.6%) (19.9%) (SD:3.4) (SD: 8.7) (SD: 0.93)

observed that when the title included the main message of the visual-
ization (e.g., “66% of Americans feel Romney Performed Better Than
Obama in Debates’’), more participant-generated descriptions recalled
the visualization’s message compared to instances when the title was
more generic or less clear (e.g., “Cities”). Select participant-generated
descriptions for exemplar visualizations with good and bad titles are
presented in the Supplemental Material. Note that prior psychology
studies have demonstrated that concrete, imageable words (those that
can be easily imagined or visualized) are easier to remember than ab-
stract ones [26, 36, 48, 33]. Recent work by Mahowald and colleagues
[33] has begun investigating the memorability of individual words,
opening up future extensions to designing more memorable titles.

6.2.2 Pictograms

Pictograms, i.e., human recognizable objects (HRO), did not seem to
distract participants during encoding. In fact, averaged over all visual-
ization elements, the total fixation time spent on pictograms was less
than all the other visualization elements (see Supplemental Material).
Infographics is the only source where pictograms were refixated the
most and fixated for the longest time in total, but these are also the vi-
sualizations with the highest recognizability and quality descriptions.

Overall (as in Table 4), the average description quality for visual-
izations with pictograms (2.01) is statistically higher than for visual-
izations without pictograms (1.50, p < 0.001). Within each source cat-
egory, the mean description quality for visualizations with pictograms
is always higher than for visualizations without pictograms. This is
not always a significant difference, but what this demonstrates is that
even if pictograms do not always help, they do not seem to hinder de-
scription quality. In fact, if we consider the top third best described
visualizations, 20% of them have pictograms, compared to only 2%
among the visualizations in the bottom third (Supplemental Material).
Across all source categories, the visualizations with the best descrip-
tions are more likely to contain pictograms than the visualizations
with the lowest-quality descriptions. Thus, what participants recall
about visualizations is not hindered by pictograms. In other words,
with pictograms the message of the visualization is correctly recalled
(and in fact, often better). Participants may use pictograms in these
cases as visual associations (see Sec. 6.1.3). Pictograms might also
provide a form of message redundancy (see Sec. 6.3).

Note, however, that some pictograms can hurt the understanding
of a visualization. Any time people spend on a pictogram is time not
spent on the data or the message (unless the pictogram contains part
of the data or message), and if the link between the data/message and
the pictogram is not clear, people may misunderstand and/or misrecall
what the visualization was about. In the Supplemental Material, we
qualitatively review the lowest quality text descriptions and see that
pictograms that do not relate to the visualization’s data or message can
produce confusion and misdirect attention.

6.2.3 Other Elements

Across all visualizations, the elements that were refixated the most
were the legend, table header row (often acting as a title), and title.

Table 4. Across all sources, visualizations with pictograms have similar
or better quality descriptions than visualizations without pictograms (** =
p < 0.001 when comparing visualizations with and without pictograms).

Mean description quality (0-3 scale)

Source

With pictogram Without pictogram
Overall 2.01%%* 1.50%%*
Infographics 2.09 2.07
News 2.10%* 1.84%*
Government 1.46 1.36
Science 1.52%%* 1.12%*

The elements that were fixated the longest were the paragraph, legend,
and header row (a full breakdown by source is provided in the Sup-
plemental Material.) We find that the elements that most commonly
contribute to the textual descriptions, across all visualizations, include
title, label, and paragraph (see Table 3). For news media sources, the
paragraph is used more often than the title and label in the recall de-
scriptions. This may be due to the commonly short, and not necessar-
ily informative, titles provided. For example, a viewer will gain more
from the explanatory paragraph “Numbers of companies in the cotton
market that ‘defaulted’ by ignoring arbitration decisions” instead of
its title “Broken Promises”. Recall that the science visualizations we
have do not contain titles, a common convention in scientific journals,
and so participants refer instead to the labels, axis, and legend in their
descriptions (since those are often the only elements that contain any
explanatory content). Thus, when the title is not sufficient, people
turn to the other text in a visualization, including the explanatory
paragraph and annotations (labels).

6.3 The Importance of Redundancy

The average description quality is higher for visualizations that con-
tain message redundancy (M = 1.99) than for visualizations that do
not (M =1.59, p < 0.001). Similarly, visualizations that contain data
redundancy also have better quality descriptions (M = 2.01) than those
that do not (M = 1.70, p < 0.001). We can also see this trend by ex-
amining redundancy in the visualizations of the top third and bottom
third of average description quality rankings. Of the visualizations in
the top third of description quality ranks, 57% contain message redun-
dancy and 34% contain data redundancy. In contrast, of the visual-
izations in the bottom third of description quality ranks, only 22% of
visualizations contain message redundancy and 12% contain data re-
dundancy. These trends hold within each of the source categories (see
Table 5) in that the mean description quality tends to be better for visu-
alizations with message/data redundancy than without, and similarly,
the visualizations with the best descriptions (the top third) are more
likely to contain both forms of redundancy.

Overall, if we compare the source categories to each other (see
Table 5), infographic visualizations contain the most message redun-
dancy, followed by news media, government, and science. The ex-
act same trend holds for data redundancy. Thus, although no causal



Table 5. The effect of redundancy on the description quality of visualizations: across all sources, the presence of message or data redundancy is
linked to higher description quality on average (* = p < 0.01 when comparing visualizations with and without message or data redundancy).

Mean description quality (0-3 scale)

% with msg redundancy % with data redundancy

Source

All Message redundancy  Data redundancy All Top Bottom All Top Bottom
images images 1/3 1/3 images 1/3 1/3
With Without With Without (good) (bad) (good) (bad)
Overall 1.77 1.99%* 1.59%* 2.01%* 1.70%* 39% 57% 22% 22% 34% 12%
Infographics 2.09 2.11 2.06 2.16 2.05 63% 69% 58% 37% 38% 27%
News 1.99 2.05 1.90 2.02 1.97 50% 51% 43% 27% 26% 26%
Government 1.37 1.41 1.36 1.40 1.37 28% 25% 21% 20% 21% 8%
Science 1.24 1.60* 1.19* NA 1.24 7% 13% 0% 0% 0% 0%

conclusions can be made at this point, we can see that redundancy is
related to how well a visualization is recognized and recalled. The
importance of data and message redundancy has also been observed
for animated and video visualizations [2]. Data and message redun-
dancy in visualizations help people grasp on to the main trends
and messages, and improves visualization recognition and recall.

7 CONCLUSIONS

Based on the results presented in the preceding sections, we summa-
rize below the key observations from our study. In addition to our
experimental results shedding light on the fundamental theory of how
visualizations are encoded, recognized, and recalled from memory, our
results also provide direct quantitative empirical evidence in support
of many conventional established qualitative visualization design and
presentation guidelines. The conclusions listed below, with related es-
tablished design principles where appropriate, relate to having a good
and clear presentation, making effective use of text and annotations,
drawing a viewer’s attention to the important details, providing effec-
tive visual hooks for recall, and guiding the viewer through a visual-
ization using effective composition and visual narrative.

Visualizations that are memorable “at-a-glance” have memorable
content. Visualizations that are most memorable “at-a-glance” are
those that can be quickly retrieved from memory (i.e., require less eye
movements to recognize the visualization). Importantly, when these
visualizations are retrieved from memory, many details of the visual-
ization are retrieved as well. Thus, participant-generated descriptions
tend to be higher quality for these visualizations (Sec. 6.1).

Titles and text are key elements in a visualization and help recall
the message. Titles and text attract people’s attention, are dwelled
upon during encoding, and correspondingly contribute to recognition
and recall. People spend the most amount of time looking at the text in
a visualization, and more specifically, the title. If a title is not present,
or is in an unexpected location (i.e., not at the top of the visualization),
other textual elements receive attention. As exhibited by these results,
the content of a title has a significant impact on what a person will take
away from, and later recall, about a visualization (Sec. 6.2).

“Words on graphics are data-ink. It is nearly always helpful to write lit-
tle messages on the plotting field to explain the data, to label outliers and
interesting data points.” (Edward Tufte [44])

Pictograms do not hinder the memory or understanding of a vi-
sualization. Visualizations that contain pictograms tend to be better
recognized and described. Pictograms can often serve as visual hooks
into memory, allowing a visualization to be retrieved from memory
more effectively. If designed well, pictograms can help convey the
message of the visualization, as an alternative, and addition to text
(Sec. 6.2).

“The same ink should often serve more than one graphical purpose. A
graphical element may carry data information and also perform a design
Sfunction usually left to non-data-ink. Or it might show several different
pieces of data. Such multi-functioning graphical elements, if designed with
care and subtlety, can effectively display complex, multivariate data.”
(Edward Tufte [44])

Redundancy helps with visualization recall and understanding.
When redundancy is present, to communicate quantitative values (data
redundancy) or the main trends or concepts of a visualization (message
redundancy), the data is presented more clearly as measured through
better-quality descriptions and a better understanding of the message
of the visualization at recall (Sec. 6.3).

“Redundancy, upon occasion, has its uses; giving a context and order to
complexity, facilitating comparisons over various parts of the data, perhaps
creating an aesthetic balance.” (Edward Tufte [44])

“Telling things once is often not enough: redundancy helps restore messages
damaged by noise.” (Jean-Luc Doumont [14])

All of these findings come down to the following well-phrased com-
munication advice:

“Effective communication is getting messages across. Thus it implies some-
one else: it is about an audience, and it suggests that we get this audience
to understand something. To ensure that they understand it, we must first get
them to pay attention. In turn, getting them to understand is usually nothing
but a means to an end: we may want them to remember the material com-
municated, be convinced of it, or ultimately, act or at least be able to act on
the basis of it.” (Jean-Luc Doumont [14])

The previous paper on visualization memorability [8] presented find-
ings on which visualizations are most memorable and which are most
forgettable, when participants are only given 1 second to encode each
visualization. We were able to show that this “at-a-glance” memora-
bility is very consistent across participants, and thus likely a property
of the visualizations themselves. In this paper, we extended encoding
to give participants enough time to process the content (textual compo-
nents, messages, and trends) of a visualization. We measured memora-
bility and analyzed the information that participants were able to recall
about the visualizations. Participants remembered and forgot the same
visualizations whether given 1 or 10 seconds for encoding, and more
importantly, participants better recalled the main message/content of
the visualizations that were more memorable “at-a-glance”. Thus, to
get people to understand a visualization, “we must first get them to
pay attention” - memorability is one way to get there. Then, with
care, one can design and introduce as necessary text, pictograms, and
redundancy into the visualization so as to get the messages across.
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