
Implementations of Cube-4 on the Teramac Custom

Computing Machine

U. Kanus, M. Mei�ner, W. Stra�er

WSI/GRIS, University of T�ubingen, Germany

H. P�ster, A. Kaufman

Center for Visual Computing, Computer Science Department, SUNY at Stony

Brook, NY, USA

R. Amerson, R.J. Carter, B. Culbertson, P. Kuekes, G. Snider

Hewlett-Packard Research Laboratories, Palo Alto, CA, USA

Abstract

We present two implementations of the Cube-4 volume rendering architecture,
developed at SUNY Stony Brook, on the Teramac custom computing machine.
Cube-4 uses a slice-parallel ray-casting algorithm that allows for a parallel and
pipelined implementation of ray-casting. Tri-linear interpolation, surface normal
estimation from interpolated samples, shading, classi�cation, and compositing are
part of the rendering pipeline. Using the partitioning schemes introduced in this
paper, Cube-4 is capable of rendering in real-time large datasets (e.g., 10243) with a
limited number of rendering pipelines. Teramac is a hardware simulator developed at
Hewlett-Packard Research Laboratories. Teramac belongs to the new class of custom
computing machines, which combine the speed of special-purpose hardware with the
exibility of general-purpose computers. Using Teramac as a development tool, we
implemented two working Cube-4 prototypes capable of rendering 1283 datasets
in 0.65 seconds at a very low 0.96 MHz processing frequency. The results from
these implementations indicate scalable performance with the number of rendering
pipelines and real-time frame-rates for high-resolution datasets.

1 Introduction

Volume rendering is a key technology with increasing importance for the visu-
alization of 3D sampled, computed, or modeled datasets. 3D volumetric data
is delivered by acquisition devices such as biomedical scanners (MRI, CT) or

Preprint submitted to Elsevier Science 2 December 1996

acoustic wave devices for geophysical explorations, as well as super-computer
simulations and scienti�c experiments, including aerodynamics, weather simu-
lations, material tests, and many more. Volume rendering provides a powerful
technique to reveal the information contained in these datasets. Volume ren-
dering is also used in volume graphics for rendering geometry-based models
represented as volume datasets [KCY93].

The computational cost for volume rendering is very high and becomes worse
for the visualization of dynamically changing datasets in real-time, a pro-
cess that is called 4D (spatio-temporal) visualization. Numerous software ap-
proaches for interactive volume rendering, mainly based on algorithmic op-
timizations and large-scale parallelism, have been introduced. The highest
performance for rendering of a 2563 dataset at over 10 frames per second was
achieved on a 16 processor SGI Challenge using the shear-warp algorithm
[Lac96]. This impressive achievement is only possible by using lengthy pre-
calculations, storage of large auxiliary data structures, approximations, 2D
instead of 3D interpolation, and expensive multi-processor machines.

Providing real-time volume rendering at a reasonable cost with high image
quality is the goal of special-purpose volume rendering hardware. The Cube
project [KB88,PKC94,PK96] for hardware accelerated volume rendering pio-
neered several volume rendering architectures using parallel rendering proces-
sors and a special interleaved memory organization to provide high processing
performance and memory bandwidth.

Cube-4, the most recent approach, is a parallel and scalable architecture with
modular rendering pipelines using only local and �xed bandwidth intercon-
nections [PK96]. Cube-4 is estimated to achieve real-time performance (30
frames per second) for high-resolution (e.g., 10243) datasets. Cube-4 uses 3D
interpolation and high-quality surface normal estimation without any pre-
computations or additional data storage. The performance of Cube-4 grows
proportionally with increasing number of rendering pipelines, ultimately lim-
ited only by memory speed. The cost-performance ratio of Cube-4 is signi�-
cantly better than existing solutions.

This paper describes two prototype implementations of the Cube-4 architec-
ture on the Teramac hardware simulator at Hewlett-Packard research labora-
tories, Palo Alto, CA. Teramac belongs to a new class of machines called cus-

tom computing machines (CCM) which provide the user with a huge amount
of programmable logic, thus combining the speed of special-purpose hardware
with the exibility of general-purpose computers.

In Section 2 we describe the Cube-4 rendering pipeline which implements
slice-parallel ray-casting, an e�cient parallel algorithm for volume rendering.
We discuss two architectural partitioning schemes for rendering large volumes

2

with a small number of rendering pipelines. Section 3 gives an overview of
the Teramac hardware and software system. In Section 4 we discuss our two
Cube-4 implementations on the Teramac and present results in the form of
performance numbers and images.

2 Cube-4

Cube-4 implements ray-casting, the most commonly used image-space volume
rendering method [Lev88]. Rays are cast from the viewpoint into the volume.
At evenly spaced locations along each ray, a sample value is computed us-
ing surrounding voxels. A surface normal approximation for a sample point is
obtained by computing the gray-level gradient [HB86]. The so computed sur-
face normal together with the computed sample value is used to assign each
sample a color based on a local shading model. Using the density value and
gradient magnitude each sample is classi�ed by assigning an opacity. Shaded
and classi�ed sample values are composited along the rays into pixel values of
the �nal image.

To achieve real-time performance we need to remove several bottlenecks of
the ray-casting algorithm, the most important being the frequent and mostly
random accesses to memory. Voxels may be addressed multiple times due to
the non-uniform mapping of samples along the rays and due to the overlap
of voxel neighborhoods during independent calculations, namely interpolation
and gradient estimation. To get a one-to-one mapping of ray-samples onto
voxels we use a template-based ray-casting technique �rst introduced by Yagel
and Kaufman [YK92], and shown in Figure 1.

Voxel Locations

Sample Locations

Base-Plane

Z

X 1

1

Fig. 1. Template-based ray-casting.

Discrete voxel rays with a constant stepping of one in the major viewing direc-
tion are sent into the volume from each pixel on the base-plane, which is the
face of the volumetric dataset that is most perpendicular to the viewing direc-
tion. After the volume has been rendered, the base-plane contains a distorted
image which has to be warped onto the view-plane [LL94].

3

For real-time performance this template-based ray-casting algorithm needs to
be parallelized. In Cube-4 we implement a form of parallelism called slice-

parallel processing [PK96]. During ray-casting, the volume is traversed along
consecutive slices parallel to the base-plane. The conceptual dataow of slice-
parallel ray-casting is shown in Figure 2.

Two consecutive slices are required for tri-linear interpolation. To reduce the
number of memory accesses, the previously fetched slice is stored in a plane
bu�er (FIFO) so that it can be retrieved without further access to the voxel
memory. The gradient is computed using samples from three slices of inter-
polated samples [PKC94]. The two previously calculated slices of interpolated
sample are stored in FIFO plane-bu�ers, delaying them by n and 2n cycles,
respectively. After shading and classi�cation each slice is composited onto the
intermediate results of the previous slices, yielding the �nal base-plane image
after n2 cycles.

The slice-parallel approach discussed so far operates on beams of n voxels,
thus requiring n memory modules and n rendering pipelines, where n is the
resolution of the dataset. This leads to an undesirable amount of hardware and
limits the maximum dataset size that can be rendered. To render datasets of
size n3 with p < n rendering pipelines, we developed two di�erent architectural
partitioning approaches, called sub-volume partitioning and beam partitioning.

In sub-volume partitioning, a volumetric dataset of size n3 is divided into
smaller sub-volumes of resolution p, each being processed by p pipelines. The
images of each sub-volume are combined to yield the �nal image. Our �rst pro-
totype implementation on Teramac, described in Section 4, uses sub-volume
partitioning.

However, this �rst prototype revealed two main problems with this approach.
First, the voxel neighborhood required for tri-linear interpolation and gradient

Interpolation
Tri-LinearCFB CompositingABC Buffers

Y X

Z

Estimation
ABC Gradient

Fig. 2. Dataow of slice-parallel ray-casting. (CFB = Cubic Frame Bu�er, ABC =
Above Below Current)

4

estimation at sub-volume boundaries can only be provided by overlap of sub-
volumes. As Table 1 shows, this results in substantial memory overhead, which
leads to higher execution time (see Section 5).

Rendering Pipelines Memory Overhead (in percent)

p Sub-volume Size is p� p� 128

8 61%

16 34%

32 18%

64 10%

Table 1
Memory overhead in percent due to boundary-voxel overlap for sub-volume parti-
tioning of a 1283 dataset.

The second problem is that rays can traverse multiple sub-volumes for non-
orthogonal viewing directions, as illustrated in Figure 3. The intermediate
compositing results for rays that cross the sub-volume boundary have to be
stored in a bu�er so that they can be accessed during processing of the next
sub-volume. The order in which the sub-volumes have to be processed depends
on the viewing direction and the compositing order (front-to-back or back-to-
front). To access the bu�er of intermediate compositing results requires global
connectivity between processing pipelines.

These problems with sub-volume partitioning lead to the development of beam
partitioning. A beam is a vector of voxels which is parallel to one of the main
dataset axes. The parallel skewed memory organization used in all Cube ar-
chitectures allows conict free access to any beam in one memory access cycle
[KB88]. Instead of subdividing the volume into sub-volumes, the size of beams

Viewing Direction

Intermediate result buffer
Subvolume processing

X

Z
Y

Fig. 3. Sub-volume processing order for front-to-back compositing and a given view-
ing direction. Intermediate results at sub-volume boundaries have to be stored for
subsequent processing.

5

(p Voxels wide)

Slices
Partial beams

Beams

X

-Y
Z

Fig. 4. Volume traversal for beam partitioned slice-parallel ray-casting.

is adjusted to the number of processing elements (see Figure 4). With p pro-
cessing units, beams are partitioned into b partial beams of width p, which are
subsequently processed. In our Cube-4 implementations on Teramac, process-
ing proceeds along partial beams in +X, inside slices in �Y , and across slices
in +Z direction.

Similar to sub-volume partitioning, the voxel-neighborhoods required for tri-
linear interpolation and gradient estimation need to overlap at the border of
partial beams. For example, tri-linear interpolation at the rightmost position
of a partial beam requires voxels from the partial beam which will be fetched in
the next cycle. Using a technique called beam extension, these border cases can
be handled without the overhead in computation and storage of sub-volume
partitioning. Partial beam i at time t is delayed by one cycle so that the
necessary extension for partial beam i can be transferred from partial beam
i+ 1 at time t+ 1 (see Figure 5).

The next section gives an overview of the Teramac system. In Section 4 we
describe the sub-volume partitioned prototype implementation of Cube-4 on
Teramac, and Section 4.2 describes our beam partitioned Cube-4 prototype
on Teramac.

Partial beam 2

Partial beam 1

3

Partial beam b-1

Partial beam (i+1) % b

Partial beam 0

Partial beam i

Extended partial beam i

Fig. 5. Beam extension provides the necessary data on partial beam boundaries.

6

3 Teramac - a CCM

The merits of general-purpose versus special-purpose computers have long
been debated by computer architects. The con�gurable custommachine (CCM)
[BRV89,ABD92] is a new class of machine that falls between these extremes.
Teramac [ACC+95], the largest such machine built to date, achieves the mas-
sive parallelism of special-purpose computers and the re-usability of general-
purpose computers. Teramac provides large numbers of programmable gates,
wires, and memories that can be con�gured to implement user designs. When
special-purpose hardware is built, its correctness and usability can be veri�ed
�rst with a custom computer. The high speed of custom computing, relative
to conventional software simulations, makes much more exhaustive testing
possible.

General-purpose computers have many virtues: they are ubiquitous, inexpen-
sive, and easy to program. They typically also have signi�cantly higher clock
speeds than custom computers. However, because general-purpose comput-
ers execute at most a handful of instructions per clock cycle, while custom
computers perform hundreds, custom computers are potentially much faster.
On many applications, Teramac has out-performed high-performance work-
stations by a factor of a hundred or more.

3.1 Teramac Hardware

Teramac is scalable, with systems comprising one to sixteen boards. Figure
6 shows four Teramac boards with the attached controller boards and the
board to board connections. A full sixteen-board system is capable of running
user designs with one million gates at speeds typically in the range of one
megahertz.

A custom �eld-programmable gate array (FPGA), called Plasma [ACC+96],
supplies the majority of Teramac's programmable resources: gates, crossbars,
and multi-ported register �les. Groups of twenty-seven FPGAs are assembled
into large multi-chip modules (MCMs) [AK94] (see Figure 7). Each board
contains four MCMs. Each board also contains four dual-ported two-megaword
by 32-bit RAM's; thus, Teramac's memory resources are very ample in both
capacity and bandwidth.

The Teramac routing resources, consisting of crossbars in the FPGAs and
wires on the MCMs and boards, are su�cient for implementing almost any
circuit topology. In particular, user circuits are not limited to systolic arrays,
as they were in earlier custom computers. Users control Teramac from a host
workstation, which connects to Teramac via a SCSI bus. The host also provides

7

Fig. 6. Four Teramac boards, connected to each other with ribbon cable, and to
a controller board. The pins of one multi-chip module (MCM) can be seen in the
middle.

(a) (b)

Fig. 7. The Teramac hardware. a) A PLASMA FPGA chip, con�gurable in three
seconds. b) MCM with 27 PLASMA chips on it. The interconnections are routed in
39 layers. Each MCM has over 3,000 pins.

con�gurations and I/O.

3.2 Teramac Software

Con�gurable computers are of limited usefulness unless they include software
to map designs onto them. Teramac was designed with the goal that user
designs would be mapped onto it quickly and completely automatically. To
insure that this goal was achieved, the Teramac hardware and mapping soft-
ware were created in tandem. Large designs that �ll our eight-board Teramac
system typically are mapped onto the system in about half an hour, making
design iterations reasonably painless.

Users enter their designs into software tools that transform them in two steps
into con�gurations that are ready to run on Teramac. For design entry and
the �rst step of the transformation process, we use general-purpose digital

8

Tsutsuji
Compiler

Compiler

Tsutsuji library Private libraryTsutsuji

Netlist

Teramac

Teramac

Fig. 8. Design-ow for Teramac.

hardware design tools. To maximize user productivity, we have chosen tools
that permit the user to express their designs at a high level of abstraction.
These tools use logic synthesis to automatically convert the highlevel designs
into netlists of simple gates.

The Cube-4 design was created with the Tsutsuji design system [COO+93].
Tsutsuji accommodates large designs particularly well and synthesizes them
into gates within minutes. Tsutsuji designs are hierarchies of block diagrams.
The blocks represent one of three things: sub-designs which are themselves
block diagrams; data path elements (adders, multipliers, multiplexors, etc.) for
which Tsutsuji provides an extensive library of sophisticated module genera-
tors; and sub-designs whose behavior is described in Tsutsuji's textual Logic
Description Format (LDF). LDF is intended for describing state machines,
random logic, and truth tables. We have found that LDF is also useful for
creating parameterized designs. Parameterized designs are ideal for parallel
applications because they allow the degree of parallelism in the design to be
scaled to �ll the available hardware.

The second step of the process of creating con�gurations is called mapping.
It is performed by the Teramac compiler, which was written expressly for
Teramac. It reads the netlists, merges the simple gates into FPGA-speci�c
gates, performs placement and routing, and ultimately creates con�guration
bitstreams. Figure 8 shows the design-ow for Teramac.

In the following section we introduce the implementation of two Cube-4 pro-
totype designs using the Teramac system and highlight the achieved results.

4 Cube-4 Prototypes on Teramac

Two prototype designs of Cube-4 were implemented on the Teramac custom
computing system. The �rst design is based on the sub-volume approach, while
the second uses beam partitioning.

9

4.1 Sub-Volume Partitioned Design

The sub-volume partitioned approach has been implemented with eight par-
allel pipelines, shown in Figure 9. Each pipeline includes the Cubic Frame
Bu�er (CFB) volume memory, the CFB address generator, tri-linear interpo-
lation unit (TRI), and gradient estimation unit (GRA). Shading, classi�cation
and compositing have been implemented in software.

TRI

GRA

M

CFB CFB

TRI

GRA

M

F
IF

O

F
IF

O

F
IF

O

F
IF

O

C-program
Skew

F
IF

O

F
IF

O

F
IF

O

F
IF

O

(C-program)

2D final
Image

2D warped
Image

 Sub-
Volumes

C-program

Partition
Data
Raw

of gradients
Skewed volume

Backmapping

TRI

GRA

C-program
Shading and compositing

CFBCFB

TRI

GRA

M

CFBCFB

Skewed
Data

M

TRI

GRA

M

CFB

TRI

GRA

M

TRI

GRA

M

TRI

GRA

M

CFB

Fig. 9. Block diagram of the sub-volume partitioned Cube-4 implementation on
the Teramac with eight rendering pipelines. (M = DRAM Memory Module, CFB
= Cubic Frame Bu�er Address Generation, TRI = Tri-linear Interpolation Unit,
GRA = ABC Gradient Estimation Unit.)

To provide the original volume data in a skewed and partitioned format we use
a software front-end written in C. A dataset is transformed into a �le contain-
ing the skewed data of all sub-volumes in sequential order, for down-loading
to the Teramac memory. Our implementation on Teramac performs memory
access for arbitrary viewing directions, tri-linear interpolation between data
slices, and ABC gradient estimation around sample points. The resulting sam-
ple values and gradient vectors are transferred from the Teramac memory onto
the host computer for post-processing (shading, classi�cation and composit-
ing) with the software back-end.

Our slice-parallel sub-volume partitioned Cube-4 design on Teramac is capa-
ble of rendering datasets of 1283 Voxels. Our implementation contains eight
rendering pipelines, although available logic gates on Teramac would allow
implementing a design with 16 pipelines. The timing results of this design

10

(see Section 5) indicate high performance. However, the global connectivity
required for the partial result bu�ers in the compositing units is a major draw-
back of the sub-volume partitioned design. Consequently, no further e�ort was
put into this implementation.

4.2 Beam Partitioned Design

Our second prototype design on Teramac uses beam partitioning and imple-
ments the complete rendering pipelines, including shading (SHA) and com-
positing (COM) (see Figure 10). The back-end software performs the 2D image
warp, while all other rendering operations are implemented in hardware.

M

COM

T R I L I N - E X T E N S I O N

SHA SHA

COM

SHA

COM

M

G R A D I E N T - E X T E N S I O N

M

CFB

S H A D E R - E X T E N S I O N

M

CFB

2D warped
Image

2D final

F
IF

O

F
IF

O

F
IF

O

F
IF

O

F
IF

O

Image

Skewed
DataC-program

Skew

Backmapping
C-program

Raw
Data

COM

MM

SHA SHA

COM

M

TRI TRI

GRAGRA GRAGRA GRA

M

CFBCFB CFB

MM

TRI TRITRI

Fig. 10. Block diagram of the beam partitioned Cube-4 implementation on the
Teramac with �ve rendering pipelines. (M = DRAMMemory Module, CFB = Cubic
Frame Bu�er Address Generation, TRI = Tri-linear Interpolation Unit, GRA =
ABC Gradient Estimation Unit, SHA = Shading Unit, COM = Compositing Unit.)
The interconnections provided inside the extension units are only local, not global.

We implemented a Cube-4 con�guration with �ve parallel rendering pipelines.
The limitation to �ve pipelines was given due to the structure of the Tera-
mac memory system. A total of 256 MBytes of memory, distributed across
several memory banks, is available on Teramac. We use memory banks to re-

11

alize the plane-bu�ers, the look-up tables for opacity, color transfer-functions,
and shading parameters, as well as the intermediate image bu�ers in the com-
positing units. Five Cube-4 rendering pipelines used up all available Teramac
memory banks.

Our beam partitioned Teramac prototype is able to process datasets of 1253

voxels. A dataset is down-loaded into Teramac memory, processed, and the
�nal base-plane pixels are stored in memory modules at the end of each ren-
dering pipeline. A software program uploads the pixel values and performs
the 2D image warp from the base-plane to the image plane. In the following
section we describe the design of the di�erent pipeline stages in more detail.

4.3 Rendering Pipeline Hardware

The address of a voxel in volume space can be described in terms of a slice

index (S INDEX or S) in major viewing direction, a beam index (B INDEX

or B) in scanline direction, a partial beam index (PB INDEX or PB) and a
(PIPELINE INDEX) for the location inside a partial beam. For p = 5 memory
banks, we obtain the memory address A using the following formula:

A = S �
1252

5
+B �

125

5
+ PB (1)

This formula is used in the CFB to address the memory banks. The CFB is
the main control unit of each pipeline. It is split up into four sub-units as
shown in Figure 11. The �rst is the TRAVERSAL UNIT which keeps track
of the position of the currently fetched voxel inside the volume. It consists of
three cascaded counters, one for PB INDEX, one for B INDEX, and one for
S INDEX (see Figure 4). The values of the three counters are provided to the
other sub-units of the CFB unit.

The ADDRESS UNIT is connected to the voxel memory of each pipeline, one
8 MBytes bank of Teramac memory. The TEMPLATE UNIT generates the
resampling weights for the tri-linear interpolation which are forwarded to the
TRI unit. To reduce the amount of logic, weights are updated incrementally
every time the S INDEX changes. The current resampling weights in X and Y
are updated by simply adding the components of the viewing vector VIEW X

and VIEW Y , respectively, modulo 256 (we use 8 bits for resampling weights).

The CONTROL UNIT provides the control information (13 bits, shown in
Table 2) forwarded with data, allowing the other stages of the pipeline to
correctly align the data. Start and End indicate the beginning and the end
of a volume. Forget marks invalid intermediate values. X-wrap and Y-wrap

12

WEIGHTS

VIEW_Y

CONTROL

VIEW_Y
VIEW_X

TEMPLATE_UNIT

VIEW_X
S_INDEX
B_INDEX
PB_INDEX

RESET

PIPELINE_INDEX

PB_INDEX
B_INDEX
S_INDEX

PB_INDEX

PIPELINE_INDEX

TRAVERSAL_UNIT

RESET

VIEW_Y

VIEW_X

B_INDEX

CONTROLCONTROL_UNIT

S_INDEX
B_INDEX
PB_INDEX

WEIGHTS

ADDRESS

PIPELINE_INDEX

ADDRESS_UNIT

S_INDEX

MEM_ADDR

Fig. 11. CFB address unit block diagram. PB INDEX indicates the index of the
current partial beam, while B INDEX and S INDEX indicate the current beam-
and slice-index.

indicate that a sample is the last one along a ray. old-X-step, old-Y-step, X-
step and Y-step mark discrete steps along rays between slices. This information
is required to reconstruct the rays for compositing.

In the tri-linear interpolation unit (TRI) the interpolation of the samples is
performed using the weights calculated in the CFB. Seven linear interpolators
are able to calculate one sample per cycle [Kni93]. The gradient unit (GRA)
aligns samples out of three consecutive slices to compute the gray-level gra-
dient [HB86]. This unit also performs a correction of the values to generate a
gradient parallel to the Z-axis and to prevent aliasing [PWK94].

Bit-No. 0 1 2

Signal Start End Forget

Bit-No. 3/4 5,6/7,8 9,10/11,12

Signal X/Y-wrap old-X/Y-step X/Y-step

Table 2
Control signals for the beam partitioned approach.

13

The shading unit (SHA) uses the three components of the gray-level gradi-
ent for a lookup-table based implementation of Phong shading [BvS95]. The
lookup-table requires only 1.5 kBytes of memory and four memory accesses per
computation cycle. We used a four times wider implementation with 6 kBytes
lookup-tables because the Teramac memory banks limit memory access to one
read and one write per cycle. The resulting intensity value from the shading
unit is then used as an index into three color lookup tables, resulting in red,
green, and blue color components. Sample values are used to assign 32-bit
opacity values for compositing. The tables for the classi�cation of the samples
are 32 bits wide and 256 entries deep, corresponding to the 8-bit representation
of voxel values.

In the compositing unit (COM), the color samples delivered by the shading
unit are blended into �nal pixels. The slice-by-slice order requires a base-
plane bu�er for one slice of intermediate compositing results, which has 125
entries of 25 bits each per pipeline. Incoming shaded samples are directly
composed with the corresponding previous values from the base-plane bu�er.
Compositing is performed in front-to-back order [Lev88], and the base-plane
bu�er is implemented using Teramac memory banks. After a ray is �nished, its
�nal pixel value is output into Teramac memory together with its base-plane
x and y address.

5 Results

The sub-volume partitioned design with eight rendering pipelines is capable
of rendering 1283 datasets. Using multiple register stages in the rendering
pipeline allowed us to optimize the design from an initial processing frequency
of 0.37 MHz to a �nal frequency of 0.96 MHz. At 0.96 MHz we achieved a
frame-rate of 1.5 Hz using eight parallel rendering pipelines. The design of the
eight rendering pipelines uses 162,816 logic gates, where one CFB unit requires
5,578 gates, one tri-linear unit (TRI) requires 8,557 gates, and one gradient
estimation unit (GRA) requires 6,142 gates. The tri-linear unit requires more
gates than any of the other units due to the multipliers for the seven linear
interpolators used for tri-linear interpolation. Figure 12 shows volume rendered
images of a CT scanned lobster with di�erent transfer functions and di�erent
light sources rendered with the sub-volume partitioned Cube-4 design.

The beam partitioned Cube-4 implementation with �ve pipelines has not been
optimized for speed. A SPICE-estimated maximum clock-rate of 0.2 MHz
was achieved for 1253 datasets. The resulting frame rate of 0.5 Hz could be
increased to 2.5 Hz by pipelining the design further to a clock frequency of
0.96 MHz. In that case the beam partitioned design with �ve pipelines would
be faster than the sub-volume partitioned design with eight pipelines.

14

The complete design uses 380,341 logic gates, where one CFB unit requires
3,918 gates, one tri-linear unit requires 11,037 gates, one gradient estimation
unit requires 18,030 gates, one shading unit requires 13,858 gates, and one
compositing unit requires 12,861. The logic needed to implement the beam
extensions requires 80,932 gates. Tri-linear and gradient estimation units have
a larger size due to the necessary partial-beam bu�ers. Many gates can be
saved if the partial-beam bu�ers are implemented with Teramac memory or
hardware FIFOs instead of using the expensive Teramac registers.

Assuming perfect pipelining of interpolation, shading, and compositing, the
theoretical performance of Cube-4 is dependent on the number of rendering
pipelines p and the processing frequency fp. If n is the dimension of the dataset,
and fr the rendering rate in frames per second, we can calculate the necessary
processing frequency fp in Hz as:

fp = d
n3fr

p
e:

Figure 12 shows the processing frequency fp as a function of the number of
rendering pipelines p for di�erent dataset resolutions and 32 projections per
second (fr = 32).

64 128 256

64

128

32

pProcessing Frequency f [MHz]

8 16

256

3

1024 3

512

32

16

Rendering Pipelines p

256 3

Fig. 12. Processing frequency, fp, vs. the number of rendering pipelines p for three
dataset resolutions. Rendering performance is fr = 32 frames per second.

It can be seen from Figure 12 that 8 rendering pipelines achieve 32 frames
per second projection rates for 2563 datasets at 64 MHz processing frequency.
At 16 bits per voxel, such a dataset requires 32 MBytes of DRAM. Using
two 16 Mbits synchronous DRAM (SDRAM) modules per rendering pipeline
requires only 16 SDRAMs. Given the gate count for logic from our Teramac
implementation, it is fair to assume that we can �t four rendering pipelines
onto one application speci�c integrated circuit (ASIC). Such a Cube-4 ASIC
would require less than 500,000 logic gates and about 40 kBytes SRAM for the

15

internal data bu�ers. Two ASICs (with 8 rendering pipelines), 16 SDRAMs
(with 32 MBytes total capacity), and a PCI host interface can �t onto a PCI
card for cost-e�ective, 30 frames per second visualization of 2563 datasets.
Practical implementations for higher resolution datasets require more Cube-4
ASICs and higher processing frequencies.

Figure 14 shows parallel projections of several datasets. Those images were
rendered completely on Teramac. Additionally, we implemented a protocol for
automatically generating all the frames for an animation on Teramac.

6 Conclusions

We presented two scalable and modular partitioning schemes for the Cube-4
slice-parallel ray-casting architecture and proved their feasibility by imple-
menting them on the Teramac system. Simulating architectures of this size is
not a trivial task. Teramac was a valuable tool that allowed us to e�ciently
implement those designs in a very limited time-frame. An important future
extension to the Teramac system is a frame-bu�er to display graphics without
uploading results to a host. Furthermore, porting designs to Teramac will be
easier in the future when the software is able to directly compile a VHDL
description.

Implementing Cube-4 on the Teramac system was a major step towards a
full-edged real-time volume rendering system. We were able to prove the
feasibility of the scalable and modular Cube-4 design and obtained a �rst
impression of its image quality. The next logical step is to use this experience to
develop an improved VLSI implementation of Cube-4 which will then provide
real-time performance for datasets of up to 10243 voxels. These are our near
future goals.

Acknowledgments

Cube-4 has been developed at the Visualization Lab of the Center for Vi-
sual Computing, State University of New York at Stony Brook, NY, and has
been supported by the National Science Foundation under grant MIP-9527694,
Japan Radio Corporation, and Hewlett Packard. Datasets for Figures 15 and
17 are courtesy of Siemens, Scripps Clinic, AVS, UNC, Howard Hughes Med-
ical Institute, and the Visualization Laboratory at Stony Brook. The authors
would like to thank all the members of the Cube-4 team that contributed to
this research, especially Frank Wessels, Ingmar Bitter, and Pat Tonra. Urs

16

Kanus and Michael Mei�ner performed this work as part of their MS thesis at
Stony Brook, NY, and at Hewlett-Packard Research Laboratories, Palo Alto,
CA. We would like to thank Fred Kitson and Tom Malzbender at Hewlett-
Packard for their support that made this collaboration possible.

References

[ABD92] J. M. Arnold, D. A. Bell, and E. G. Davis. Splash 2. In Proceedings of the
4th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 316{322, 1992.

[ACC+95] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider.
Teramac { con�gurable custom computing. In Proceedings of the 1995

IEEE Symposium on FPGA's for Custom Computing Machines, pages
32{38, Napa, CA, April 1995.

[ACC+96] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, and G. Snider.
Plasma: An fpga for million gate systems. In Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pages 10{16, 1996.

[AK94] R. Amerson and P. Kuekes. The design of an extremely large mcm-c { a
case study. In The International Journal of Microcircuits and Electronic
Packaging, pages 337{382, 1994.

[BRV89] P. Bertin, D. Roncin, and J. Vuillemin. Introduction to programmable
active memories. In Systolic Array Processors, pages 301{309, Killarney,
Ireland, May 1989.

[BvS95] M. Bosma and J. van Scheltinga. E�cient super resolution volume
rendering. Master's thesis, University of Twente, Faculty of Electrical
Engineering, Enschede, The Netherlands, August 1995. TR EL-BSC-
079N95.

[COO+93] W.B. Culbertson, T. Osame, Y. Otsuru, J.B. Shackleford, and
M. Tanaka. The hp tsutsuji logic synthesis system. Hewlett Packard
Journal, pages 38{51, 1993.

[HB86] K. H. H�ohne and R. Bernstein. Shading 3D-images from CT using gray-
level gradients. IEEE Transactions on Medical Imaging, MI-5(1):45{47,
March 1986.

[KB88] A. Kaufman and R. Bakalash. Memory and processing architecture
for 3D voxel-based imagery. IEEE Computer Graphics & Applications,
8(6):10{23, November 1988.

[KCY93] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. Computer,
26(7):51{64, July 1993.

17

[Kni93] G. Knittel. VERVE: Voxel engine for real-time visualization and
examination. In Computer Graphics Forum, volume 12, No. 3, pages
37{48, September 1993.

[Lac96] P. Lacroute. Analysis of a parallel volume rendering system based on
the shear-warp factorization. IEEE Transactions on Visualization and

Computer Graphics, 3(2):218{231, September 1996.

[Lev88] M. Levoy. Display of surfaces from volume data. IEEE Computer
Graphics & Applications, 8(5):29{37, May 1988.

[LL94] P. Lacroute and M. Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transform. In Computer Graphics,
Proceedings of SIGGRAPH 94, pages 451{457, July 1994.

[PK96] H. P�ster and A. Kaufman. Cube-4 { a scalable architecture for real-
time volume rendering. In 1996 ACM/IEEE Symposium on Volume
Visualization, pages 47{54, San Francisco, CA, October 1996.

[PKC94] H. P�ster, A. Kaufman, and T. Chiueh. Cube-3: A real-time architecture
for high-resolution volume visualization. In 1994 ACM/IEEE Workshop
on Volume Visualization, pages 75{83, Washington, DC, October 1994.

[PWK94] H. P�ster, F. Wessels, and A. Kaufman. Sheared interpolation and
gradient estimation for real-time volume rendering. In Proceedings of

the 9th Eurographics Hardware Workshop, pages 70{79, Oslo, Norway,
September 1994.

[YK92] R. Yagel and A. Kaufman. Template-based volume viewing. Computer
Graphics Forum, Proceedings Eurographics, 11(3):153{167, September
1992.

18

