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Overview 
• Part 1: More tutorial material (Markus) 

• Motivation and scope 
• Fundamentals, basic scalability issues and techniques 

•  Data representation, work/data partitioning, work/data reduction 

• Part 2: More state of the art material (Johanna) 
• Scalable volume rendering categorization and examples 

•  Working set determination 

•  Working set storage and access 

•  Rendering (ray traversal) 



Motivation and Scope 



Big Data 
“In information technology, big data is a collection of data sets so large and 
complex that it becomes difficult to process using on-hand database 
management tools or traditional data processing applications.  
The challenges include capture, curation, storage, search, sharing, analysis, 
and visualization.” 
 
‘Big Data’ on wikipedia.org  
 
Our interest: 
Very large 3D volume data 

Example: Connectomics (neuroscience) 



Data-Driven Science 
(eScience) 

EARTH SCIENCES 
Global Climate Models 

MEDICINE 
Digital Health Records 

BIOLOGY 
Connectomics 

ENGINEERING 
Large CFD Simulations 

courtesy Stefan Bruckner 



Volume Data Growth 

64x64x400 
(SabelIa 1988) 

21494x25790x1850 
 (Hadwiger et al. 2012) 

256x256x256 
(Krüger 2003) 

courtesy Jens Krüger 



Data Size Examples 
year paper data set size comments 
2002 Guthe et al. 512 x 512 x 999 (500 MB) 

2,048 x 1,216 x 1,877 (4.4 GB) 
multi-pass, wavelet compression, 

streaming from disk 
2003 Krüger & Westermann 256 x 256 x 256 (32 MB) single-pass ray-casting 
2005 Hadwiger et al. 576 x 352 x 1,536 (594 MB) single-pass ray-casting (bricked) 
2006 Ljung 512 x 512 x 628 (314 MB) 

512 x 512 x 3396 (1.7 GB) 
single-pass ray-casting, 

multi-resolution 
2008 Gobbetti et al. 2,048 x 1,024 x 1,080 (4.2 GB) ‘ray-guided’ ray-casting with 

occlusion queries 
2009 Crassin et al. 8,192 x 8,192 x 8,192 (512 GB) ray-guided ray-casting 
2011 Engel 8,192 x 8,192 x 16,384 (1 TB) ray-guided ray-casting 
2012 Hadwiger et al. 18,000 x 18,000 x 304 (92 GB) 

21,494 x 25,790 x 1,850 (955 GB) 
ray-guided ray-casting 

visualization-driven system 
2013 Fogal et al. 1,728 x 1,008 x 1,878 (12.2 GB) 

 8,192 x 8,192 x 8,192 (512 GB) 
ray-guided ray-casting 



The Connectome�
How is the Mammalian Brain Wired?�

Daniel Berger, MIT 



The Connectome�
How is the Mammalian Brain Wired?�

~60 µm3 

1 Teravoxel 
21,500 x 25,800 x 1,850 

 
Bobby Kasthuri, Harvard 



EM Slice Stacks (1) 



EM Slice Stacks (2) 
•  Huge amount of data (terabytes to petabytes) 
•  Scanning and segmentation take months   

High-throughput microscopy�
•  40 megapixels / second�
•  800 teravoxels = 88 months�

1 mm3 at 5 nm x 50 nm�
•  200k x 200k x 20,000�
•  40 gigapixels x 20k = 8800 teravoxels�



Survey Scope 
• Focus 

•  (Single) GPUs in standard workstations 
• Scalar volume data; single time step 
• But a lot applies to more general settings� 

• Orthogonal techniques (won’t cover details) 
• Parallel and distributed rendering, clusters, supercomputers, � 
• Compression 



Related Books and Surveys 
• Books 

•  Real-Time Volume Graphics, Engel et al., 2006 

•  High-Performance Visualization, Bethel et al., 2012 

• Surveys 
•  Parallel Visualization: Wittenbrink ’98, Bartz et al. ‘00, Zhang et al. ’05 

•  Real Time Interactive Massive Model Visualization: Kasik et al. ‘06 
•  Vis and Visual Analysis of Multifaceted Scientific Data: Kehrer and Hauser ‘13 

•  Compressed GPU-Based Volume Rendering: Rodriguez et al. ‘13 



Fundamentals 



Volume Rendering (1) 

• Assign optical properties (color, opacity) via transfer function 

courtesy Christof Rezk-Salama 



Volume Rendering (2) 

• Ray-casting 

courtesy Christof Rezk-Salama 



Scalability 

• Traditional HPC, parallel rendering definitions 
• Strong scaling (“more nodes are faster for same data”) 
• Weak scaling (“more nodes allow larger data”) 

• Our interest/definition: output sensitivity 
• Running time/storage proportional to size of output instead of input 

•  Computational effort scales with visible data and screen resolution�

•  Working set independent of original data size�



Some Terminology 
• Output-sensitive algorithms 

•  Standard term in (geometric) occlusion culling 

• Ray-guided volume rendering 
•  Determine working set via ray-casting 
•  Actual visibility; not approximate as in traditional occlusion culling 

• Visualization-driven pipeline 
•  Drive entire visualization pipeline by actual on-screen visibility 

• Display-aware techniques 
•  Image processing, � for current on-screen resolution 



Large-Scale Visualization Pipeline 

Data Processing Visualization 

Image 

Filtering Mapping Rendering Data  
Pre-Processing 



Large-Scale Visualization Pipeline 

Data Processing Visualization 

Image 

Filtering Data  
Pre-Processing 

Ray-Guided 
Rendering Data Structures Acceleration 

Metadata 
On-Demand 
Processing 

on-demand? 

Scalability 

Mapping Rendering 



Basic Scalability Issues 



Scalability Issues 
Scalability issues Scalable method 
Data representation and storage Multi-resolution data structures 

Data layout, compression 
Work/data partitioning In-core/out-of-core 

Parallel, distributed 
Work/data reduction Pre-processing 

On-demand processing 
Streaming 
In-situ visualization 
Query-based visualization 



Scalability Issues 
Scalability issues Scalable method 
Data representation and storage Multi-resolution data structures 

Data layout, compression 
Work/data partitioning In-core/out-of-core 

Parallel, distributed 
Work/data reduction Pre-processing 

On-demand processing 
Streaming 
In-situ visualization 
Query-based visualization 



• Additional issues 
•  Data layout (linear order, Z order, �) 

•  Compression 

Data Representations 

Data structure Acceleration Out-of-Core Multi-Resolution 
Mipmaps - Clipmaps Yes 
Uniform bricking Cull bricks (linear) Working set (bricks) No 
Hierarch. bricking Cull bricks (hierarch.) Working set (bricks) Bricked mipmap 
Octrees Hierarchical traversal Working set (subtree) Yes (interior nodes) 



Uniform vs. Hierarchical Decomposition 

• Grids 
• Uniform or non-uniform 

• Hierarchical data structures 
• Pyramid of uniform grids 

•  Bricked 2D/3D mipmaps 

• Tree structures 
•  kd-tree, quadtree, octree 

uniform grid bricked mipmap 

octree 

wikipedia.org 



Bricking (1) 

• Object space (data) decomposition 
• Subdivide data domain into small bricks 
• Re-orders data for spatial locality 
• Each brick is now one unit (culling, paging, loading, �) 



Bricking (2) 
• What brick size to use? 

•  Small bricks 
+ Good granularity 

(better culling efficiency, tighter working set, �) 

- More bricks to cull, more overhead for ghost voxels, 
one rendering pass per brick is infeasible 

 

•  Traditional out-of-core volume rendering: large bricks (e.g., 2563) 
• Modern out-of-core volume rendering: small bricks (e.g., 323) 

•  Task-dependent brick sizes (small for rendering, large for disk/network storage) 
 Analysis of different brick sizes: [Fogal et al. 2013] 



Filtering at Brick Boundaries 
• Duplicate voxels at border (ghost voxels) 

•  Need at least one voxel overlap 

•  Large overhead for small bricks 

• Otherwise costly filtering at brick boundary 
•  Except with new hardware support: sparse textures 



Pre-Compute All Bricks? 

• Pre-computation might take very long 
• Brick on demand? Brick in streaming fashion (e.g., during scanning)? 

• Different brick sizes for different tasks (storage, rendering)? 
• Re-brick to different size on demand? 
• Dynamically fix up ghost voxels? 

• Can also mix 2D and 3D 
• E.g., 2D tiling pre-computed, but compute 3D bricks on demand 



Multi-Resolution Pyramids (1) 

• Collection of different resolution levels 
• Standard: dyadic pyramids (2:1 resolution reduction) 
• Can manually implement arbitrary reduction ratios 

• Mipmaps 
•  Isotropic 

level 0 level 1 level 2 level 3 



Multi-Resolution Pyramids (2) 

• 3D mipmaps 
•  Isotropic 

level 0 
(8x8x8) 

level 1 
(4x4x4) 

level 2 
(2x2x2) 

level 3 
(1x1x1) 



Multi-Resolution Pyramids (3) 

• Scanned volume data are often anisotropic 
• Reduce resolution anisotropically to reach isotropy 

level 0 
(8x8x4) 

level 1 
(4x4x4) 

level 2 
(2x2x2) 

level 3 
(1x1x1) 



Bricking Multi-Resolution Pyramids (1) 

• Each level is bricked individually 
• Use same brick resolution (# voxels) in each level 

spatial 
extent 

level 0 level 1 level 2 



Bricking Multi-Resolution Pyramids (2) 

• Virtual memory: Each brick will be a “page” 
•  “Multi-resolution virtual memory”: every page lives in some resolution level 

4x4 pages 1 page 

memory 
extent 

2x2 pages 



Octrees for Volume Rendering (1) 
• Multi-resolution 

• Adapt resolution of data to screen resolution 
•  Reduce aliasing 
•  Limit amount of data needed 

• Acceleration 
• Hierarchical empty space skipping 
• Start traversal at root 

(but different optimized traversal algorithms: 
kd-restart, kd-shortstack, etc.) 



Octrees for Volume Rendering (2) 
• Representation 

•  Full octree 
•  Every octant in every resolution level 

•  Sparse octree 
•  Do not store voxel data of empty nodes 

• Data structure 
•  Pointer-based  

•  Parent node stores pointer(s) to children 
•  Pointerless  

•  Array to index full octree directly 

wikipedia.org 



Scalability Issues 
Scalability issues Scalable method 
Data representation and storage Multi-resolution data structures 

Data layout, compression 
Work/data partitioning In-core/out-of-core 

Parallel, distributed 
Work/data reduction Pre-processing 

On-demand processing 
Streaming 
In-situ visualization 
Query-based visualization 



Work/Data Partitioning 

• Out-of-core techniques 
• Domain decomposition 
• Parallel and distributed rendering 



Out-of-Core Techniques (1) 

• Data too large for GPU memory 
• Stream volume bricks from CPU to GPU on demand 

• Data too large for CPU memory 
• Stream volume bricks from disk on demand 

• Data too large for local disk storage 
• Stream volume bricks from network storage 

GPU 

CPU 

disk network 



• Preparation 
• Subdivide spatial domain 

•  May also be done “virtually”, i.e., data re-ordering may be delayed 

• Allocate cache memory (e.g., large 3D cache texture) 

• Run-Time 
• Determine working set 
• Page working set into cache memory 
• Render from cache memory 

Out-of-Core Techniques (2) 



Domain Decomposition (1) 

• Subdivide image domain (image space) 
•  “Sort-first rendering” [Molnar, 1994] 

• View-dependent 



Domain Decomposition (2) 

• Subdivide data domain (object space) 
•  “Sort-last rendering” [Molnar, 1994] 

• View-independent 



Sort-First vs. Sort-Last 

sort-first 
(image domain) 

sort-last 
(data domain) 



Scalability Issues 
Scalability issues Scalable method 
Data representation and storage Multi-resolution data structures 

Data layout, compression 
Work/data partitioning In-core/out-of-core 

Parallel, distributed 
Work/data reduction Pre-processing 

On-demand processing 
Streaming 
In-situ visualization 
Query-based visualization 



On-Demand Processing 

• First determine what is visible / needed 
• Then process only this working set 

• Basic processing 
•  Noise removal and edge detection  

•  Registration and alignment 
•  Segmentation, � 

• Basic data structure building 
•  Construct pages/bricks/octree nodes only on demand? 



Example: 3D Brick Construction from 2D EM Streams 

3D Block �
Request�

[Hadwiger et al., IEEE Vis 2012] 



Example: Denoising & Edge Enhancement 

• Edge enhancement for EM data 
• Caching scheme 

• Process only currently visible bricks 
• Cache result for re-use 

• GPU Implementation 
• CUDA and shared memory for fast computation 

• Different noise removal and filtering algorithms 
[Jeong et al., IEEE Vis 2009] 

Scalable and Interactive Segmentation and 
Visualization of Neural Processes in EM Datasets 



Example: Registration & Alignment 
• Registration at screen/brick resolution 

[Beyer et al., CG&A 2013] 
Exploring the Connectome – Petascale Volume 

Visualization of Microscopy Data Streams 



Questions for Part 1? 

Next:  
(More) Scalable Volume Rendering 



THANKS�

Webpage:�
http://people.seas.harvard.edu/~jbeyer/star.html�

 



Part 2 -  
Scalable Volume Rendering 



Part 2 - Scalable Volume Rendering 
• History 

• Categorization  

•  Working Set Determination 

•  Working Set Storage & Access 

•  Rendering (Ray Traversal) 

• Ray-Guided Volume Rendering Examples 

• Conclusion 



History (1) 

• Texture slicing [Cullip and Neumann ’93, Cabral et al. ’94, 
Rezk-Salama et al. ‘00] 
+ Minimal hardware requirements (can run on WebGL) 
- Visual artifacts, less flexibility 



History (2) 

• GPU ray-casting [Röttger et al. ‘03, Krüger and Westermann ‘03] 
+ standard image order approach, embarrassingly parallel 
+ supports many performance and quality enhancements 



History (3) 

• Large data volume rendering 
• Octree rendering based on texture-slicing  

[LaMar et al. ’99, Weiler et al. ’00, Guthe et al. ’02] 
• Bricked single-pass ray-casting  

[Hadwiger et al. ’05, Beyer et al. ’07] 
• Bricked multi-resolution single-pass ray-casting  

[Ljung et al. ’06, Beyer et al. ’08, Jeong et al. ’09] 
• Optimized CPU ray-casting [Knoll et al. ’11] 



Examples 



Octree Rendering and Texture Slicing 
• GPU 3D texture mapping with arbitrary 

levels of detail 
• Consistent interpolation between 

adjacent resolution levels 
• Adapting slice distance with respect to 

desired LOD (needs opacity correction) 
•  LOD based on user-defined focus point 

[Weiler et al., IEEE Symp. Vol Vis 2000] 
Level-Of-Detail Volume Rendering via  
3D Textures 

Working set determination: View frustum 
Volume representation:  Octree 
Rendering:  CPU octree traversal, texture slicing 



Bricked Single-Pass Ray-Casting 
•  3D brick cache for out-of-core volume rendering 
• Object space culling and empty space skipping 

in ray setup step 
• Correct tri-linear interpolation between bricks 

[Hadwiger et al., Eurographics 2005] 
Real-Time Ray-Casting and Advanced 
Shading of Discrete Isosurfaces 

Working set determination: Global, view frustum 
Volume representation:  Single-resolution grid (page table) 
Rendering:  Bricked single-pass ray-casting 



Bricked Multi-Resolution Ray-Casting 
• Adaptive object- and image-space sampling 

•  Adaptive sampling density along ray 

•  Adaptive image-space sampling, based on statistics for 
screen tiles 

• Single-pass fragment program 
•  Correct neighborhood samples for interpolation fetched in 

shader 

• Transfer function-based LOD selection 

[Ljung, Volume Graphics 2006] 
Adaptive Sampling in Single Pass, GPU-
based Raycasting of Multiresolution Volumes 

Working set determination: Global, view frustum 
Volume representation:  Multi-resolution grid 
Rendering:  Bricked single-pass ray-casting 



Categorization 

• Main questions 
• Q1: How is the working set determined? 
• Q2: How is the working set stored? 
• Q3: How is the rendering done? 

Huge difference between ‘traditional’ and ‘modern’ ray-guided approaches! 



Categorization 
Working set  

determination 
Full volume Basic culling  

(global attributes, view frustum) 
Ray-guided /  

visualization-driven 

Volume data  
representation 

-  Linear  
(non-bricked) 

-  Single-resolution grid 
-  Grid with octree  

per brick 

-  Octree 
-  Kd-tree 
-  Multi-resolution 

grid 

-  Octree 
-  Multi-resolution grid 

Rendering  
(ray traversal) 

-  Texture 
slicing 

-  Non-bricked  
ray-casting 

-  CPU octree traversal (multi-pass) 
-  CPU kd-tree traversal (multi-pass) 
-  Bricked/virtual texture ray-casting  

(single-pass) 

-  GPU octree traversal 
(single-pass) 

-  Multi-level virtual texture 
ray-casting (single-pass) 

Scalability  Low Medium High 



Q1: Working Set Determination - Traditional 

• Global attribute-based culling (view-independent) 
• Cull against transfer function, iso value, enabled objects, etc. 

• View frustum culling (view-dependent) 
• Cull bricks outside the view frustum 

• Occlusion culling? 



Global Attribute-Based Culling 
• Cull bricks based on attributes; view-independent 

•  Transfer function 
•  Iso value 
•  Enabled segmented objects 

• Often based on min/max bricks 
•  Empty space skipping 
•  Skip loading of ‘empty’ bricks 
•  Speed up on-demand spatial queries 



View Frustum, Occlusion Culling 

• Cull all bricks against view frustum 
• Cull all occluded bricks 



Q1: Working Set Determination – Modern (1) 

• Visibility determined during ray traversal 
•  Implicit view frustum culling (no extra step required) 
•  Implicit occlusion culling (no extra steps or occlusion buffers) 



Q1: Working Set Determination – Modern (2) 

• Rays determine working set directly 
• Each ray writes out list of bricks it requires (intersects) front-to-back 
• Use modern OpenGL extensions 

(GL_ARB_shader_storage_buffer_object, �) 



Q2: Working Set Storage - Traditional 

• Different possibilities: 
•  Individual texture for each brick 

•  OpenGL-managed 3D textures (paging done by OpenGL) 

•  Pool of brick textures (paging done manually) 

• Multiple bricks combined into single texture 
•  Need to adjust texture coordinates for each brick 



Q2: Working Set Storage – Modern (1) 

• Shared cache texture for all bricks (“brick pool”) 



Q2: Working Set Storage – Modern (2) 

• Caching Strategies  
• LRU, MRU 

• Handling missing bricks 
• Skip or substitute lower resolution 

• Strategies if the working set is too large 
• Switch from single-pass to multi-pass rendering 
•  Interrupt rendering on cache miss (“page fault handling”) 



Q3: Rendering - Traditional 

• Traverse bricks in front-to-back visibility order 
• Order determined on CPU 
• Easy to do for grids and trees (recursive) 

• Render each brick individually 
• One rendering pass per brick 

• Traditional problems 
• When to stop? (early ray termination vs. occlusion culling) 
• Occlusion culling of each brick usually too conservative 



Q3: Rendering - Modern 

• Preferably single-pass rendering 
• All rays traversed in front-to-back order 
• Rays perform dynamic address translation (virtual to physical) 
• Rays dynamically write out brick usage information 

• Missing bricks (“cache misses”) 
• Bricks in use (for replacement strategy: LRU/MRU) 

• Rays dynamically determine required resolution 
• Per-sample or per-brick 



Virtual Texturing 
• Similar to CPU virtual memory but in 2D/3D texture space 

•  Domain decomposition of virtual texture space: pages 

•  Page table maps from virtual pages to physical pages 

•  Working set of physical pages stored in cache texture 

cache 
virtual image or 

volume space 

[Kraus and Ertl, Graphics Hardware ’02] 
Adaptive Texture Maps 



Address Translation 

• Map virtual to physical address 
•  pt_entry = pageTable[ virtAddx / brickSize ]; 

•  physAddx = pt_entry.physAddx + virtAddx % brickSize; 

 

If cache is a texture, need to transform coordinates to texture domain (scale factor)! 

+��

•                        virtAddx / brickSize •  pt_entry = pageTable[ virtAddx / brickSize ] •  pt_entry = pageTable[ virtAddx / brickSize ]; 

•  physAddx = pt_entry.physAddx + virtAddx % brickSize; 

•  pt_entry = pageTable[ virtAddx / brickSize ]; 

•  physAddx = pt_entry.physAddx + virtAddx % brickSize; 

•  pt_entry = pageTable[ virtAddx / brickSize ]; 

•  physAddx = pt_entry.physAddx + virtAddx % brickSize; 

virtual 
volume space 

 
cache 

page table 



Address Translation Variants 
• Tree (quadtree/octree) 

• Linked nodes; dynamic traversal 
• Uniform page tables 

• Can do page table mipmap; uniform in each level 
• Multi-level page tables 

• Recursive page structure decoupled from multi-resolution hierarchy 
• Spatial hashing 

• Needs collision handling; hashing function must minimize collisions 



Tree Traversal 

• Adapt tree traversal from ray tracing 
• Standard traversal: recursive with stack 
• GPU algorithms without or with limited stack 

•  Use “ropes” between nodes [Havran et al. ’98, Gobbetti et al. ‘08] 
•  kd-restart, kd-shortstack [Foley and Sugerman ‘05] 

courtesy Foley and Sugerman 



Variant 1: Tree Traversal 

• Tree can be seen as a ‘page table’  
• Linked nodes; dynamic traversal 
• Nodes contain page table entries 

“page table hierarchy”  
(tree) coupled to  
resolution hierarchy! 



Variant 1: Tree Traversal 

• Tree can be seen as a ‘page table’  
• Linked nodes; dynamic traversal 
• Nodes contain page table entries 

does not 
require full tree! 



Variant 2: Uniform Page Tables 
• Only feasible when page table is not too large (depends on brick size) 

•  For “medium-sized” volumes or “large” page/brick sizes 

requires full-size page table! 



Variant 3: Multi-Level Page Tables 
• Virtualize page tables recursively 

• Same idea as in CPU multi-level page tables 
• Pages of page table entries like pages of voxels 

• Recursive page table hierarchy 
• Decoupled from data resolution levels ! 
•  # page table levels << # data resolution levels 

data 
(virtual) 

page table 
(virtual) 

page directory 
(top-level page table) 



Multi-Level Page Tables: Multi-Resolution 

multi-resolution 
page directory 

[Hadwiger et al., 2012] 



Variant 4: Spatial Hashing (1) 

• Instead of virtualizing page table, put entries into hash table 
• Hashing function maps virtual brick to page table entry 
• Hash table size is maximum working set size 

working set 



Ray-guided Volume Rendering (1) 

• Working set determination on GPU 
• Ray-guided / visualization-driven approaches 

• Prefer single-pass rendering 
• Entire traversal on GPU 
• Use small brick sizes 
• Multi-pass only when working set too large for single pass 

• Virtual texturing 
• Powerful paradigm with very good scalability 



Ray-Guided Volume Rendering (2) 
• With octree traversal (kd-restart) 

• Gigavoxels [Crassin et al., 2009] 

•  Gigavoxel isosurface and volume rendering 

•  Tera-CVR [Engel, 2011] 

•  Teravoxel volume rendering with dynamic transfer functions 

• Virtual texturing instead of tree traversal 
•  Petascale volume exploration of microscopy streams [Hadwiger et al., 2012] 

•  Visualization-driven pipeline, including data construction 

•  ImageVis3D [Fogal et al., 2013] 

•  Analysis of different settings (brick size, �) 



Examples 



Early ‘Ray-Guided’ Octree Ray-Casting (1) 

Data structure: 
• Octree with ropes  

•  Pointers to 8 children, 6 neighbors 
and volume data 

•  Active subtree stored in  
spatial index structure and  
texture pool on GPU 

Working set determination: Interleaved occlusion 
queries 

Volume representation:  Octree 
Rendering:  GPU octree traversal 

[Gobbetti et al., The Visual Computer, 2008] 
A single-pass GPU ray casting framework for 
interactive out-of-core rendering of massive 
volumetric datasets 



Early ‘Ray-Guided’ Octree Ray-Casting (2) 

Rendering: 
• Stackless GPU octree traversal (rope tree) 
 

Culling: 
• Culling on CPU (global transfer function, iso-value, view frustum) 

•  Only nodes that were marked as visible in previous rendering pass refined 

•  Occlusion queries to check bounding box of node against depth of last sample 
during raycasting 

Working set determination: Interleaved occlusion 
queries 

Volume representation:  Octree 
Rendering:  GPU octree traversal 

[Gobbetti et al., The Visual Computer, 2008] 
A single-pass GPU ray casting framework for 
interactive out-of-core rendering of massive 
volumetric datasets 



Ray-Guided Octree Ray-Casting (1) 
Data structure: 
• N3 tree + multi-resolution volume 
• Subtree stored on GPU in node/brick pool 

•  Node: 1 pointer to children, 1 pointer to volume 
brick 

•  Children stored together in node pool 

Working set determination: Ray-guided 
Volume representation:  Octree 
Rendering:  GPU octree traversal 

[Crassin et al., ACM SIGGRAPH i3D, 2009] 
GigaVoxels: Ray-Guided Streaming for 
Efficient and Detailed Voxel Rendering 



Ray-Guided Octree Ray-Casting (2) 
Rendering: 
•  Stackless GPU octree traversal (Kd-restart) 
•  3 mipmap levels for correct filtering 
•  Missing data substituted by lower-res data 

Culling: 
•  Multiple render targets write out data usage  

•  Exploits temporal and spatial coherence 

Working set determination: Ray-guided 
Volume representation:  Octree 
Rendering:  GPU octree traversal 

[Crassin et al., ACM SIGGRAPH i3D, 2009] 
GigaVoxels: Ray-Guided Streaming for 
Efficient and Detailed Voxel Rendering 



Ray-Guided Multi-Level Pagetable Ray-Casting (1) 

Data structure: 
• On-the-fly reconstruction of bricks 
• Stored on disk in 2D multi-resolution grid  

(supports highly anisotropic data) 
• Multi-level multi-resolution page table on GPU 
• Larger bricks for disk access, smaller bricks 

for rendering 

Working set determination: Ray-guided 
Volume representation:  Multi-resolution grid 
Rendering:  Multi-level virtual texture ray-casting 

[Hadwiger et al., IEEE SciVis 2009] 
Interactive Volume Exploration of Petascale Micro- 
scopy Data Streams Using a Visualization-Driven 
Virtual Memory Approach 



Ray-Guided Multi-Level Pagetable Ray-Casting (2) 

Rendering: 
• Multi-level virtual texture ray-casting 
•  LOD chosen per individual sample 
• Data reconstruction triggered by ray-caster 
Culling: 
• GPU hash table to report missing blocks 

•  Exploits temporal and spatial coherence 

Working set determination: Ray-guided 
Volume representation:  Multi-resolution grid 
Rendering:  Multi-level virtual texture ray-casting 

[Hadwiger et al., IEEE SciVis 2009] 
Interactive Volume Exploration of Petascale Micro- 
scopy Data Streams Using a Visualization-Driven 
Virtual Memory Approach 



Ray-Guided Multi-Level Pagetable  
Ray-Casting - Analysis 

Implementation differences: 
•  Lock-free hash table, pagetable lookup only per brick 

•  Fallback for multi-pass rendering 

Analysis: 

•  Many detailed performance numbers (see paper) 

•  Working set size: typically lower than GPU memory 

•  Brick size: larger on disk (>= 643), smaller for rendering (163, 323) 

Working set determination: Ray-guided 
Volume representation:  Multi-resolution grid 
Rendering:  (Multi-level) virtual texture ray-casting 

[Fogal et al., IEEE LDAV 2013] 
An Analysis of Scalable GPU-Based 
Ray-Guided Volume Rendering 



Conclusion 



Conclusion (1) 
• Many volumes larger than GPU memory 

•  Determine, manage, and render working set of visible bricks efficiently 

Data Processing Visualization 

Image 

Filtering Data  
Pre-Processing Mapping Rendering 



Conclusion (2) 
• Traditional approaches 

•  Limited scalability 
• Visibility determination on CPU 
• Often had to use multi-pass approaches 

• Modern approaches 
• High scalability (output sensitive) 
• Visibility determination (working set) on GPU 
• Dynamic traversal of multi-resolution structures on GPU 



Conclusion (3) 

• Orthogonal approaches 
• Parallel and distributed visualization 
• Clusters, in-situ setups, client/server systems 

• Future challenges 
• Web-based visualization 
• Raw data storage 
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