
Abstract Shade Trees
Morgan McGuire George Stathis Hanspeter Pfister Shriram Krishnamurthi
Brown University Harvard Extension School MERL Brown University

Abstract.
As GPU-powered special effects in games become more
sophisticated, it becomes harder to create and manage effect
interaction using the fairly primitive GPU shading languages.
This difficulty also introduces a workflow problem: artists design
effects, but only programmers can implement and interface the
main renderer with them. This paper borrows current ideas from
the programming language community to improve the shader
authoring process.

We introduce abstract shade trees for compactly expressing
shaders. We implemented a visual programming front-end tool
for creating such trees and a back-end tool called a weaver that
transforms them into executable OpenGL Shading Language
source code. Like previous visual tools for shader programming,
ours represents core operations called atoms as tree nodes. Unlike
previous tools, it abstracts the parameter connections between
atoms. This dramatically simplifies the user's view of the tree and
ensures that users cannot create a shader with type errors.
Because the specific connections are abstract, our tools allow
special effect creators (artists) and atom creators (programmers)
to develop and modify their products independent of each other
for efficient workflow.

We further abstract shader authoring with controls for
visualizing and manipulating whole features like shadows and
bump-mapping. The potentially interleaved and overlapping
nodes of a feature are encircled in the front-end tool to show their
cross-cutting relationship to the rest of the tree.

1. Introduction
Modern GPUs manifest another turn of Ivan Sutherland’s “Wheel
of Reincarnation,” where general-purpose and specialized
hardware alternate as the best implementation technology.
Unfortunately, 3D graphics and other media APIs have not kept
pace with the move to general-purpose graphics processors.
Current APIs for GPU programming avoid layering, moving the
application logic very close to the hardware. The emphasis is on
time-to-market, not on robustness, and exposing hardware
peculiarities is seen as a competitive advantage. With the notable
exception of Sh [McCool02], current shading languages for
GPUs (e.g., GLSL) lack language mechanisms for encapsulation,
modularity, and abstraction. This makes it very hard to create and
maintain long GPU programs. Because GPUs are inherently
digital signal processors with long pipelines, no stack, and
unusual performance limitations on random access to memory, it
is likely that they will remain difficult to program by hand.

The lack of abstraction also makes it difficult for artists to
create new graphics effects without learning how to program. It
leads to a close coupling between programmers and artists: The
artist tells the programmer what the effect should be, the
programmer writes the shader, the artist changes the
requirements, the programmer revises the code, etc. Once a
special effect is created, it is practically impossible to re-use it
within the framework of another shader without substantial
additional coding. This stifles productivity and creativity.

One way to address this problem is to look for other
representations of shader programs. Cook [1984] introduced the
notion of modular shading components with shade trees. He
describes a system in which basic shading blocks (called atoms)
are nodes linked by edges representing variables. Because
shaders have one output (the pixel color) and many inputs, the
root of the tree represents the output and the leaves are the input.

Shade Tree Abstract Shade Tree

Figure 1: A conventional Shade Tree (left) for a “Bumpy Glass” shader. The equivalent Abstract Shade Tree (right) is simpler; the
compiler automatically handles vector basis conversion, normalization, and parameter linkage. Outline bubbles mark underlying
features (clockwise from top): parallax mapping, refraction, and refraction. Note that the Fresnel term cross-cuts two features.

 Parallax Height

Normal Map

Reflect

Fresnel

Refract

Cube Map

Modulate Modulate

1 – x

+

Cube Map

Shade trees weren’t originally intended for visual
programming. In fact, Cook’s shaders were authored as code and
converted to trees as a post-process for compilation. Abram and
Whitted [1990] invert this paradigm with Building Block
Shaders. Their visual programming tool represents shaders
directly as directed acyclic graphs (DAGs), which are essentially
Cook's trees extended with side effects and confluent paths.
Although they are DAGs, we continue to refer to visual shader
representations as trees in deference to the original work.

Implementations of this idea have since been created for
today's GPUs and hardware programming languages
[Borau04][Unreal06]. Figure 1 (left) shows an example shader
for “bumpy glass” that combines the rendering effects of parallax
mapping, Fresnel reflection, and Fresnel refraction. The
immediate advantage over source code is that shade trees
encourage experimentation and are more approachable by non-
programmers [Abram90]. Programmers implement a library of
carefully optimized atoms, which non-programmers combine to
build shaders. A visual editor with preview capabilities offers the
advantage that artists can experiment without understanding the
inner workings of the atoms.

Figure 1 also demonstrates some of the drawbacks of shade
trees. Although this example uses a simple shader, the tree
appears complicated and visually cluttered. The tree also contains
atoms that an artist might not understand, like
TangentToObjectSpace and ExtendToHomogeneousVector. Most
importantly, there is the potential for type mismatches between
input and output arguments of atoms. When they introduced the
first visual shade tree editor, Abram and Whitted [1990] noted:

“One problem with [the Building Block] graphical shading
language is the potential for type mis-matching.”

In fact, this problem extends beyond storage types to

interface mismatches between atoms, e.g., assumptions like "the
light vector has unit length" or "RGB values are pre-multiplied
by the alpha channel." It is almost impossible for the user to
ensure that the types are correct when the programming tool
conceals those types.

In this paper we introduce abstract shade trees (AShT)for
pixel shaders. Of course, many of the same ideas can be applied
to vertex shaders (and other programmable units, e.g., the
geometry shaders in DirectX 10).

Figure 1(right) shows the abstract shade tree for our previous
example. This tree is visually uncluttered and only contains
atoms that are meaningful to the user. To avoid type and interface
mismatches we implement parameter matching with automatic
type coercions. This allows us to abstract all parameters between
two atoms into a single data connection. The bubbles surrounding
sub-graphs indicate the boundaries of the features that were
combined to create the graph.

We build a system for abstract shade trees that consists of a
visual programming tool and a weaver program that translates
the abstract shade tree into OpenGL Shading Language (GLSL)
code. The weaver determines how to connect parameters between
atoms. It automatically introduces new atoms into the graph in
cases where there is no output that exactly matches each input.

Automatic parameter matching by the weaver is our primary
contribution. Because of it, abstract shade trees not only simplify
shader authoring but also allow a programmer to change an atom
interface without affecting the artist using that atom. This in turn
allows complete separation between the roles of programmers and
artists and asynchronous workflow. Automatic matching also

guarantees that the output is legal and correctly typed code, which
solves the type mismatch problem noted by Abram and Whitted.

We also introduce the notion of feature-based programming
to GPU shader development. Artists can easily extend and
combine previously completed effects (features) whose
boundaries are displayed in the editor.

2. Related Work

2.1. Shade Trees
Cook’s [1984] Shade Trees first introduced the notions of
shading languages, uniform shading parameters, and modular
shading components. Abram and Whitted’s [1990] Building
Block Shaders (BBS) was the first visual programming tool for
shaders. Others have since created implementations similar to
BBS for today’s GPUs and hardware programming languages
[Borau04][Unreal06]. These all map one-to-one traditional
programming elements like variables and functions to visual
elements. Thus, while making programming more approachable,
they still retain the complexity of source code.

We extend the previous work by abstracting programming
elements, solving the type mismatch problem, and introducing
feature abstractions.

2.2. Shader Compilers
Efficient compilation of shading language code to GPU
assembler is an active area of research and beyond the scope of
this paper. We instead focus on producing reasonable high-level
code from still higher-level abstractions. Nonetheless, we briefly
review compiler work as it is the natural compilation target for
our weaver.

McCool et. al’s Shader Algebra [2004] extends their Sh
language [2002] with connect and combine operations on
primitives. These allow shaders to be optimized by a compiler
and manipulated by a programmer without knowledge of the
primitives. The connect operator requires the number, type, and
storage classifier (and implicitly, the semantics) of arguments to
agree. Therefore the output of the weaver provides ideal input for
McCool et al.’s optimizing compilers.

Many hand-written shaders are short in part because it is
impractical to write large shaders by hand in today’s shading
languages. By simplifying the process of creating complex
shaders, abstract shade trees naturally raise the problem of
creating shaders too large for resource-limited GPUs. The
solution is to follow our tree compilation with a partitioning
compiler. Chan et. al’s [2002] compiler naturally fits within our
framework—their system partitions trees into subtrees that
execute in a single rendering pass.

The Brook language [Buck04] extends the C language so that
it can be efficiently compiled for streaming processors like GPUs
for non-graphics tasks. This is not directly related to our work;
however, we note that the purely functional style of programming
that is enforced by our system has been long noted to be ideal for
compilation on parallel processors.

Like our work, Pellacini’s [2005] recent shader simplification
system manipulates the structure of shaders in semi-blind
manner. Neither compiler is fully aware of the intent of the
manipulated code and could introduce a transformation that
destroys the underlying rendering effect. Yet in both cases one
can perform useful work despite the potential pitfall. Our
transformations go beyond single expressions and must
synthesize the glue code between them. To reduce errors in this
synthesis, we extend the type system with stronger semantics and
require that the weaver preserve this semantic type safety.

2.3. Feature-Based Programming
In the software engineering literature, the term feature refers to a
user-identifiable attribute of a system, which a client might be
willing to pay for [Turner99]. It is therefore natural to consider a
rendering effect like shadows to be a feature. Thinking of
programs as collections of features is not new: the idea is
inherent in Parnas' [1972] seminal paper on modularity, and in
Dijkstra's [1976] book on programming, where the latter
discusses the “separation of concerns.”

More recently, there has been significant activity on building
programming languages—particularly module systems—that
enable programmers to explicitly represent a system's features
[Batory92, Kiczales97, Batory04]. In these languages, each
module describes some feature, and module composition
corresponds to building a system that consists of these features.
(We adopt the term ‘weaver’ from one of these languages, known
as aspect-oriented programming [Kiczales97].) Because client
requirements tend to be in terms of features, these systems can
more easily be reconfigured to accommodate evolving
requirements. Indeed, it is now routine to talk about a product
line of programs that can be built from a collection of features, by
analogy to manufacturing. Software product lines have long been
popular in the telecommunications industry, and are now
increasingly popular in application software [Clements02]. Our
tool offers a pre-created library of effects as well as the ability to
create new ones from atoms, so a library of effects defines a
product line of shaders.

3. System and Workflow Overview
Our system comprises a GUI tree-editor on the front-end (Figure
2) and a back-end that compiles trees to GLSL shaders. It leverages
existing tools (e.g., ATI RenderMonkey) to provide real-time
execution and preview of the shaders. We assume a library of
hand-optimized primitives and pre-created effects is available.

To create a shader, an artist uses a drag-and-drop interface to
place multiple existing effects in a common workspace. These effects
appear as sub-graphs of named atoms connected by arrows. Each
effect is surrounded by a colored boundary. The artist then
interconnects the effects by adding additional arrows to form a single
abstract shade tree. It is also possible for the artist to insert and
remove individual atoms.

The tree is abstract because arrows represent a data
dependency, not individual parameter mappings between atoms.
As shown in Figure 1(right), when instances of a node common
to two features are combined into a single node, the rendered
feature boundaries correctly overlap.

Pressing the “preview” button executes the weaver, which
follows the algorithm described in Section 5. This algorithm
works backwards through the tree from the shader output (a pixel

color) to the inputs, producing GLSL code. Its primary task is
replacing each abstract arrow with pairs of input and output
parameters for the atoms it connects. In many cases, those
parameters do not naturally correspond and the weaver must
inject substantial code to correct the problem. The output code
resembles that produced when implementing a shader by hand,
which shows that we have removed the tedium of shader
production while preserving the creative aspects.

Two asynchronous editing cycles exist in the workflow
around our system. A programmer continually optimizes the
atoms and introduces new atoms and sample effects into the
system. Meanwhile, the artist edits abstract shade trees. Because
the connections in the tree are abstract, the programmer may
frequently change not only the implementation of atoms but also
the API, i.e., the number and type of arguments, without
requiring the artist to update the abstract shade tree.

4. Atom Definitions
Atoms are defined by a declaration, a set of struct/global function
definitions, and a body. They are hand-coded and optimized in an
extension to GLSL that includes atom declarations and semantic
types. Atom declarations describe the number, name, and type of
inputs and outputs of a block of code. They differ from traditional
shading function declarations in two ways. First, there may be
multiple output arguments. Second, no lexical scope is applied to
the definition. Instead, free variables must be explicitly declared
as global parameters. These globals also serve as hints to the
weaver during parameter matching. The declaration syntax is a
structured comment so atoms are backwards compatible to GLSL.

It is common practice in the games industry to squeeze every
possible cycle from graphics routines. Programmers commonly
examine the assembly produced by both shading and C++
compilers. To support this scrutiny, the weaver preserves
whitespace, variable names, and documentation comments from
atom bodies. This helps the programmer trace the effect of a code
change on the abstract shade tree, the weaver’s GLSL output, and
the GLSL compiler’s assembly output.

Many atoms, like the one in Listing 1, are simply GLSL
standard library routines wrapped by a declaration. Often those
standard library routines are intrinsics that map directly to a
hardware feature.

//! START CubeMapping
//! @uniform environmentMap:TEX3D
//! @param cubeTexCoord:VEC3__W_VEC__
//! @param cubeMap:TEX3D = environmentMap
//! @return outColor:VEC3_____RGB_

outColor = textureCube(cubeMap, cubeTexCoord);

//! END CubeMapping

Listing 1: Sample atom code for cube mapping.

In the atom syntax1, param declares an input parameter and
return declares an output parameter. Atom declarations may also
include two kinds of immutable global parameters. A uniform
parameter is passed from the application to the entire shader. It is
uniform over a series of rendering calls. A varying parameter is
passed from the vertex shader. It is interpolated between vertices
by the hardware. Global parameters have two roles. In addition to
declaring inputs passed outside the call chain, they may also
appear as default values to satisfy a specific input parameter if
the weaver is unable to find an appropriate output parameter from
a connected node. For example, in Listing 1, the environmentMap
is not explicitly used by the atom body. However, it is declared as

1 The actual atom syntax in our implementation is more verbose, containing
documentation comments and other non-semantic fields.

Figure 2: Creating an Abstract Shade Tree in our GUI.

a global and listed as the default for match for the cubeMap input
parameter. It will be used only if no other node producing a
TEX3D is connected to the node with the CubeMapping atom.

We require all global names to be unique across the set of
atoms. That is, if two atoms declare the environmentMap global
parameter, it must have precisely identical semantic types in
each. In this example, in every case where an environment map is
provided as a parameter, it also must be named environmentMap.
This is not an unreasonable requirement—after all, these are
global variables. Since the shader APIs already dictate that
globals must be synchronized with hand-written vertex shader
and application code, it is not especially burdensome to require
programmers to also synchronize globals between atoms as well.
GLSL supports limited records called structs and global
functions, which can be declared in the same manner as globals
and have the same uniqueness constraint.

4.1. Semantic Types
We introduce semantic types, which are so specific that two
variables with precisely the same type are likely semantically
interchangeable. Some examples appear to the right of the colons
in the annotations of Listing 1.

Regular GLSL types are merely C-style storage specifiers with
little value as abstractions. For example, a color, a 3D location, and
a row of a 3×3 matrix have the same type, which is also indist-
inguishable from an array of three floating-point numbers. Another
extreme is a possible choice for a type system, where types are so
specific and abstracted that each value has its own type; e.g, the
integers ‘7’ and ‘8’ might have separate types. This latter extreme
is unreasonable because types are sets of values, so an all-singleton
type implementation eliminates the power of the type system.
However, we find it advantageous to extend GLSL towards this
extreme in order to encapsulate graphics concepts directly into the
type system. Just as many languages assign different types to
natural (unsigned) numbers and integers, we type vectors
differently based on several mathematically meaningful properties.
For example, in the case of vector length, we recognize two
important values: unit and arbitrary. This allows the system to
distinguish normalized vectors within the type system.

We use a convention where the name of a vector is the
concatenation of a series of short codes for each semantic
property. The properties and codes for vectors are:

Dimension: {2, 3, 4, _ }

Length: {U: Unit, _ }

Basis: {T: tangent, O: object, W: world, S: screen space, _ }

Interpretation:
{RGB: color, TEX: texture coordinate,
NOR: surface normal (covector), VEC: direction,
PNT: point, ___ }

Precision: {F: float32, I: int32, B: Boolean, _ }

The underbar is a wildcard for supporting polymorphic types,
for example, vec4__ is a four-component vector in any basis.
These can also be viewed as type unions, e.g., “vec4__ = vec4_O
∪∪∪∪ vec4_W ∪∪∪∪ vec4_T ∪∪∪∪ vec4_S.” We created the whole list of
properties based on distinctions we found meaningful and expect
that more properties will be added in the future to help further
distinguish semantics.

The type and naming scheme extends naturally to matrices,
scalars, and textures. Semantic types can be made legal GLSL
code by inserting a series of macros mapping them to storage
classes, e.g. ���� ��� � ��	
�
�
��
 � ���	

.

A compiler uses a type system in order to verify the
correctness of programs. The weaver instead applies the type
system as a set of rules for steering code generation creation—
that is, generation is governed by the constraint that the output
must be correctly typed. We define and use traditional typing
rules on our semantic types, e.g.,

if v has type VEC3___T____
then (ObjectToTangentSpace * v)

 has type VEC3___O____

except that we apply these rules backward when seeking to
coerce expression types. Thus the above rule would not be
applied to type-check the product expression but instead to find a
coercion of v from VEC3___T____ to VEC3___O____. Section 5.4
describes how this coercion search occurs.

We wish to note that the extremely narrow application
domain of shading languages is what makes this type system
reasonable; these special-case typing rules and highly specified
types probably cannot be generalized to other domains or general
purpose languages.

5. Weaving Algorithm
We chose to implement the weaver as a pre-processor,

without a full parser. This allows the weaver to preserve
whitespace and comments within the atom bodies and allows
atom bodies with partial statements, e.g.,“ if (dot(N,V) > 0) { ”.
Because the weaver doesn’t parse the atom code, it can operate
on a variety of shading language syntaxes (GLSL, HLSL, Cg),
provided all atoms are implemented in the same language. This
design decision also leads to a straightforward implementation in
Java, which provides regular expressions and many other string
manipulation routines.

We now detail the four steps of the weaving algorithm.

5.1. αααα-Rename Variables
Because the atoms are implemented individually, it is likely that
some variable names are shared between them. In some cases this
is because an output of one atom becomes the input of another
and it really is the same variable. In other cases the same name is
used for distinct variables that cannot be combined.

The weaver first creates a unique code body for each node.
From this point forward there are no atoms bodies, only node
bodies. Where two nodes use the same atom, two copies of that
atom body are created. The weaver then assigns each node in the
tree a unique ID. It iterates over all input and output parameter
declarations (but not global declarations) of all nodes, seeking
variable name conflicts where the same name is used in two
different node bodies. Once all conflicts have been detected, the
weaver renames all variables within node bodies that conflict by
appending the unique node ID to the original name, e.g.
surfaceNormal → surfaceNormal_0001. We include the original
variable name to preserve readability of the output. This process
is a common compiler operation called α-renaming.
 Employing α-renaming is overly conservative because it
destroys parameter linkage between nodes. However, this is not a
problem because subsequent weaver steps ensure correct linkage,
independent of parameter names.

Renaming only affects parameters that appear in the atom
declaration. We avoid atom-local variable name conflicts by the
convention of wrapping atom bodies with a local scope “{…}”.

5.2. Topologically Sort Nodes
The weaver creates a new terminal node accepting a single input
for the pixel color and a directed edge into this node from any
node with no output (there is typically only one such node).

In the abstract tree DAG, edges represent the data
dependencies between atoms. Without destroying the tree
structure, the weaver assigns a topological ordering to the graph
nodes based on these dependencies. The new node appears last in
the topological ordering.

5.3. Match Inputs to Outputs
We now come to the core of the algorithm. The weaver begins
with the terminal node at the bottom and works up the shade tree
in reverse topological order to the inputs at the top.

For each node, the weaver matches each input parameter to
an output parameter from a parent node. Two parameters match
only if both have precisely the same semantic type. Our semantic
types are specific enough that there is rarely a perfect match. The
weaver therefore seeks an output and a coercion that will
transform the output type to the input type. The coercion search
proceeds as follows. Consider the implicit coercion tree in
Figure 3 where the root is the type of the input parameter for
which a corresponding output is being sought (note that this is
unrelated to the shade tree). The leaves are the types of the
available outputs from nodes higher up the abstract shade tree.
The edges are coercions (i.e., typing rules run backwards) and the
internal nodes are the types of intermediate expressions produced
during a series of coercion operations. The tree is infinite because
of cycles: one may reach world space from tangent space by the
two-step coercion tangent → object → world, but also by any
coercion of the form tangent→ object → tangent → object …→ world.

Of course, we never want to apply such a complicated
coercion path when a better alternative exists. Our notion of
‘better’ includes both the length of a coercion path and the time
cost of traversing each edge. The cost of each coercion edge is
based on the anticipated cycle count for executing that operation
at run-time. For example, transforming a pre-normalized world-
space light vector to object space by a matrix multiplication may
be faster than normalizing an existing but non-unit object-space
light vector. The type rules in our system are in a total order
based on this anticipated time cost. The children of a coercion
tree node are arranged from left to right according to the
increasing cost of each rule. The tree is implicit because it is
created as it is traversed; the rules are applied blindly without an
awareness of the output that will be their eventual destination.

The search for a viable coercion begins at the root of the
coercion tree and proceeds downwards breadth-first, left-to-right.
It terminates when the first type node is encountered that matches
one of the available output types, or when depth seven is reached.
Any value around seven is a reasonable cutoff; the key idea is to
allow enough coercions for the anticipated worst case, which is
from an arbitrary tangent-space 3-vector to a normalized,
swizzled, screen-space 4-vector. Because we have ordered the
rules based on cost, the first condition indicates that we have
found the best coercion to some output. Regardless of total
performance cost, we consider a short coercion path better than a
long one because it is likely semantically closer and therefore
probably what the user intended.

The second termination condition indicates that there is likely
no meaningful coercion available from an output parameter,
possibly because we have reached a root of the abstract shade

tree. In this case, the weaver then searches the original atom
declaration for a default global to link that parameter against. If

that search fails to find a match, the weaver introduces a new
global uniform parameter of the matching type. The matching
process is guaranteed to succeed.

When a match has been made for an input, any needed
coercions are inserted back into the shade tree. Edges of the
coercion tree become new nodes in the (now slightly less
abstract) shade tree. The weaver then proceeds to the next input
variable. Because the shade tree has been modified, any intermediate
coercion product becomes available to match future inputs, as does
any newly introduced uniform. This is necessary to avoid creating
redundant coercions and globals. When all inputs of one node have
been matched, the weaver proceeds to the next-higher node in the
topological ordering.

5.4 Concatenate Node Bodies
To form the shader code, the weaver concatenates all global
parameter declarations, struct declarations, and the node bodies in
topological order wrapped by “void main(void) {…}”.

Since we preserved variable names, the uniform parameters
will have meaningful names. This makes it possible to map them
to GUI elements in IDEs such as RenderMonkey or FX
Composer for interactive adjustment.

Finally, the weaver inserts a series of #define macros that
map all semantic types used in the shader to legal GLSL storage
classes. The output shader can be run from any OpenGL program
or shader preview tool.

6. GUI Implementation
Our GUI tree editor, shown in Figure 2 with a 3D scene in the
RenderMonkey, is implemented as a plug-in to the Eclipse IDE.
This allows programmers to easily move between atom editing in
a traditional code editor and experimentation with those atoms in
the abstract shade tree editor. Eclipse provides automatic layout
and rendering of graphs, simplifying the implementation.

We render the feature outlines to off-screen bitmaps and then
composite them over the tree. Each feature outline is rendered
with a variation on [Raskar99] as follows: Clear the off-screen
bitmap to transparent. For each node in the feature (note that a
node may belong to multiple features, like Fresnel in Figure 1),
render a colored, solid, rounded rectangle f pixels larger than the
node itself, where f is a unique small integer for each feature. The
varying radii keep adjacent features outlines from overlapping.
Likewise, render a thickened line segment for each arrow
between two nodes in the feature. Finally, clear the interior by
rendering the same shape with an f – 2 radius and a transparent
fill color, and composite the resulting outline over the graph.

VEC3___O_NOR

NormalWorldToEyeSpace

VEC3___W_NOR

NormalTangentToObjectSpace

VEC3___T_NOR

VEC3___O_NOR

VEC3___E_NOR

VEC3___T_NOR

VEC3___O_NOR

NormalObjectToTangentSpace NormalObjectToWorldSpace

NormalWorldToObjectSpace
NormalTangentToObjectSpace

Figure 3: Sample coercion tree mapping the possible paths
through the type rules for coercing a tangent space normal to an
eye-space normal. Many possible paths are not explored because
the all-left branch leads to a successful coercion.

7. Results
Figures 4-7 show abstract shade trees created with our system.
Each figure displays the actual tree as it appears in the authoring
system (left) and the GLSL shader produced by the weaver for
that tree (right), superimposed over an image of an object
rendered with that shader. The GLSL output in the result figures
is color-coded. Light lines of code correspond to atoms that have
been inlined. Dim lines correspond to parameter linkage,
coercions, and type macros inferred by the weaver.
 Figure 4 is the bumpy glass shader we considered in Figure 1.
The full code is given in the Appendix to give a sense of the
weaver’s output. In allowing non-programmers to effectively
create shaders, we have not diminished the importance of
programmers on a team but instead focused their role. Note that
most of the output code in the Appendix is necessary but
uninteresting because it is boilerplate and linkage between atoms.
This is also true in the other examples. Because the weaver
assumes the duty of generating the necessary “glue” code,
programmers concentrate on creating and optimizing atom
bodies, which is the interesting part of their role that requires
graphics, programming, and mathematical expertise.
 The underlying features/effects described in the captions are
clearly visible in the tree diagrams. Even a non-programmer can
see the interaction between features and manipulate them easily.
In Figures 4 and 7 the features share central nodes where they
overlap. To create these, the user dropped the separate features
into the workspace, which created duplicate nodes. The user then
explicitly combined those common nodes.

7.1. Performance
The result figures demonstrate that shader creation is easy in our
system, that the weaver can produce correct GLSL code, and that
the abstract shade tree is both more compact and easier to
understand than a traditional tree or code. The generated shaders
are efficient; all examples run at hundreds of frames per second
on a laptop with a Radeon 9700 Mobile GPU.

To compare the performance of the generated code to hand
written code, we hand-wrote an optimized GLSL shader for the
effects in the bumpy glass shader. The manual implementation
contained only 58 lines of GLSL code compared to the weaver’s
188 lines, which are shown in the appendix. However, the weaver
generates a lot of comment and variable name linkage overhead.

When both shaders are compiled to hardware assembly with
NVIDIA’s Cg compiler, the weaver’s implementation contains
51 instructions and the manual implementation contains 46
instructions. Shading every pixel at 512×512, the weaver’s
implementation achieves 240 fps and the manual implementation
achieves 245 fps. At 1024×768, both render at 50 fps. We
conclude that the weaver produces code comparable to that
written by an experienced shader programmer.

7.2. Limitations
Our system always produces a legal, type-safe program.
However, there are three ways that program can still fail to meet
expectations. The first is that it allows creation of shaders that
exceed the instruction and register count limits of today’s
hardware. See Chan et. al [2002] for a multi-pass solution.
 Second, the weaver can produce less efficient code than a
programmer in cases where a whole-program optimization is
appropriate, e.g., moving all lighting from world space to object
space to avoid repeated per-pixel transformations. To perform
such an optimization, the compiler would have to both understand

Figure 4: Bumpy glass.

Figure 5: Parallax mapping, texture mapping, and Phong

illumination on a teapot.

Figure 6: Anisotropic specular reflection with isotropic diffuse

reflection on the wings of a butterfly.

Figure 7: Projective light, shadow map, and Phong illumination.

Note the interlacing of features.

spatial transformations at not just a semantic but an operational
level, and have control over not only the shading algorithm but
also the host C++ program into which it is integrated. This is
interesting future work but significantly beyond the scope of our
semantic type approach.
 The third case, semantic errors, is the most interesting. We
invited laypeople (non-programmers, non-artists) to experiment
with effect creation. After we explained the UI and primitives
they were generally able to produce shaders, which we consider a
great success compared to current tools. However, they had
difficulty choosing between similar primitives with different
types, which often led to inefficient semantic type coercions for
the desired effects. When the tool failed to produce the effect that
the user expected, it was usually because two nodes received
input from the same output when they should have been distinct
(e.g., imagine both Modulate nodes linked to input x in Figure 1).
This occurs when the user fails to add sufficient dependency
arrows and when the dependency is implicit in a global variable.
Like the excessive transformations, missing dependencies are a
user error that would likely not occur with real artists; a follow-
up user study will measure the experiences of trained artists.

Incorrect linkage of two primitives to the same global
variable only occurs when the common semantic type of the
primitives is too general. Here, fault lies with the programmer
who created the primitives and not the artist or the weaver. The
programmer must tread a delicate line, however: types that are
too specific will never match exactly and require more coercions,
but types that are too general produce incorrect semantics. On
one hand, it is a drawback of our system that programmers must
spend a lot of thought and time tailoring the interface types. On
the other hand, we argue that interface semantics are exactly
where programmers should think hard! We automate the linkage,
boilerplate, and coercion precisely so that programmers can focus
on design, which requires human input.

8. Future Work
Our cost ranking of coercions is based on instruction count and
intuition. A natural step is to use an actual cycle count. The
challenge here is that the true time cost of a GPU operation
depends on the instructions surrounding it, cache state, and the
instruction scheduler.

On the programming language side, we envision an extension
to parameterized types like C++ templates, which would enable
more specific function types than our polymorphism. For
example, we assign the addition operator the type VEC___ × VEC___

→ VEC___, yet VEC_<T> × VEC_<T> → VEC_<T> is more specific.
A formal semantics, type system, and proofs for our system

will serve as a good case study for the literature on domain-
specific languages and feature-based programming.

9. Conclusions
We addressed the problem originally noted by Abram and
Whitted by making type mismatches in shaders impossible. We
also enable shader creation by users who do not even have
knowledge of types, programming concepts like variables, or the
vector math used to implement algorithms inside the atoms.

We presented a new system for authoring complex GPU
programs through automatic combination of primitive shading
functions. In doing so, we extended GLSL with semantics types
specific to computer graphics in a backwards-compatible manner.
We anticipate that GLSL (like assembly language and C before
it) will increasingly be produced as the output of a higher order
tool. We will propose to the OpenGL architectural review board

that semantic types be considered for the language standard, for
use by both programmers and other tools like ours.

Our system uses many heuristics to infer parameter linkage.
Even with our strong semantic types, it is a natural concern that
the heuristics can produce a legal program with semantic errors.
Fortunately, in graphics a semantic error is easily diagnosed
because the image produced is incorrect. The interative editing
context of our Eclipse plug-in and RenderMonkey allows the
shader author to correct the shade tree until the desired result is
achieved. We speculate that our methodology is appropriate for
similar domains like image- and audio-filter design, but
inappropriate for general purpose programming that lacks easy
feedback and a small set of semantic types.
 Our system extends previous work, allowing non-
programmers to more easily create more complex shaders. It also
visualizes shaders easy-to-understand block diagrams. The
advantage of abstract shade trees over hand-coded shaders or the
one-to-one visual editors will only increase as hardware becomes
ever more capable and the desired shaders increase
commensurately in complexity. It literally took only seconds to
create each of the abstract shade trees for our result figures;
implementing similar shaders by hand in GLSL took us hours of
coding and debugging for each shader. These shader examples
contain about four effects each. Now consider GPUs of the future
that are able to render ten or twenty interacting effects in real-
time. Under today’s workflow, an artist might ask a programmer
to hand code a different effect combination for every object in a
scene. That will not be feasible when each shader contains
thousands of lines of code. Our tool solves the authoring problem
by making it not only possible for artists to create these shaders
themselves but also making the process easy and enjoyable.

10. References
ABRAM G. D., WHITTED T. Building block shaders. Computer
Graphics, 24:4, 1990, pp 283—288.

BATORY D., Feature-Oriented Programming and the {AHEAD}
Tool Suite, ICSE, 2004

BORAU R., DOMIK G., GOETZ F. An XML-based visual shading
language for vertex and fragment shaders, 3D technologies for
the World Wide Web, in Proc. 3D Web Tech., 2004, pp 87—97

BATORY D. AND O'MALLEY D., The Design and Implementation of
Hierarchical Software Systems with Reusable Components,
TOSEM, 1992, 1:4, pp 355—398

BUCK I., FOLEY T., HORN D., SUGERMAN J., FATAHALIAN K.,
HOUSTON M., AND HANRAHAN P., Brook for GPUs: Stream
Computing on Graphics Hardware, ACM Trans. on Graph., 23:3,
2004, pp 777—784

CLEMENTS P. AND NORTHROP L., Software Product Lines: Practices
and Patterns, Addison-Wesley, 2002

COOK R. L. Shade Trees. In Proc. Computer Graphics and
Interactive Techniques, July 1984, pp 223—231

CHAN E., NG R., SEN, P., PROUDFOOT K., HANRAHAN , P. Efficient
Partitioning of Fragment Shaders for Multipass Rendering on Pro-
grammable Graphics Hardware, Graphics Hardware, 2002, pp 69—78

DIJKSTRA E. W., A Discipline of Programming, Prentice-Hall, 1976

KICZALES G., LAMPING J., MENDHEKAR A., MAEDA C., LOPES C.
V., LOINGTIER J., AND IRWIN J., Aspect-Oriented Programming,
ECOOP, June 1997

MCCOOL M. D., QIN Z., AND POPA T. S. Shader Metaprogramming.
Graphics Hardware, 2002. pp 57—68

MCCOOL M. D., DU TOIT S., POPA T., CHAN B., MOULE K.,
Shader Algebra. ACM Trans. on Grap., 23:3, 2004, pp. 787—795

PARNAS D. L., On the Criteria To Be Used in Decomposing
Systems Into Modules, CACM, vol 15, no 12, Dec 1972, pp.
1053—1058

PELLACINI F., User-configurable automatic shader simplification,
ACM Trans. Graph., 24:3, 2005, pp 445—452

RASKAR R., COHEN M., Image Precision Silhouette Edges, I3D,
1999, pp 135—140

TURNER C. R., FUGGETTA A., LAVAZZA L., WOLF A. L., A
Conceptual Basis for Feature Engineering, Journal of Systems
and Software, vol 49, no 1, Dec 1999, pp 3—15

Visual Material Editor, Unreal Engine 3 Whitepaper, Epic
Corporation, 2006
http://www.unrealtechnology.com/html/technology/ue30.shtml

Appendix
GLSL code produced by the weaver from the abstract shade tree in
Figure 1. Boxed lines are hand written node bodies. Gray lines are
comments carried through from atom declarations. The remaining
lines are parameter linkage and coercions generated by the weaver.

1 #define VEC3___T_NOR vec3
2 #define VEC3___W_NOR vec3
3 #define VEC4___W_NOR vec4
4 #define VEC4_____NOR vec4
5 #define VEC3_____NOR vec3
6 #define VEC3_____TEX vec3
7 #define VEC4_____RGB vec4
8 #define VEC4________ vec4
9 #define VEC2_____TEX vec2
10 #define VEC3___T____ vec3
11 #define TEX2D sampler2D
12 #define MAT4 mat4
13 #define VEC3___O____ vec3
14 #define VEC3___O_NOR vec3
15 #define VEC3___W____ vec3
16 #define TEX4D samplerCube
17 #define FLOAT float
18 uniform FLOAT etaRatio;
19 uniform FLOAT fresPower;
20 uniform FLOAT fresScale;
21 uniform FLOAT fresBias;
22 uniform TEX4D evntCubeMap;
23 varying VEC3___W____ vIncoming_w;
24 varying VEC3___O_NOR nor;
25 varying VEC3___O____ bin;
26 varying VEC3___O____ tan;
27 uniform MAT4 matNorO2W;
28 uniform TEX2D normalMap;
29 uniform FLOAT bumpScale;
30 uniform FLOAT bumpBias;
31 uniform TEX2D heightTex;
32 varying VEC3___T____ vVew_t;
33 varying VEC2_____TEX texCoo;
34
35 //! STARTROUTINE refract
36 vec3 refract(vec3 I, vec3 N, float etaRatio) {
37 float cosI=dot(-I,N);
38 float cosT2=1.0-etaRatio*etaRatio*(1.0-cosI*cosI);
39 vec3 T = etaRatio*I+((etaRatio*
40 cosI-sqrt(abs(cosT2)))*N);
41 return T*vec3(cosT2>0.0);
42 }
43 //! ENDROUTINE refract
44
45 void main(void) {
46 VEC4________ a;
47 VEC4________ b;
48 VEC4________ sum;
49 VEC4________ modOutput_1010696501;
50 FLOAT x;
51 FLOAT oneMinus;
52 VEC4_____RGB colorFromEvt_314286916;
53 VEC3_____TEX cooRefr_w;
54 VEC4________ vTmp4;
55 FLOAT factor;
56 VEC4________ modOutput_1345567180;
57 FLOAT fresnelRatio;
58 VEC3_____TEX cubetexCoo;
59 VEC4_____RGB colorFromEvt_444161459;
60 VEC3_____NOR nor3Tmp;
61 VEC3___O_NOR nor3_o;
62 VEC4_____NOR nor4Tmp;
63 VEC4___W_NOR nor4_w;
64 VEC3___W_NOR vNormal_w;
65 VEC3_____TEX cooRefl_w;
66 VEC2_____TEX bumpCoords;
67 VEC3___T_NOR vNor_t;
68 VEC2_____TEX offsetCoo;
69 VEC4________ modOutput;
70 VEC4_____RGB colorFromEvt;
71
72 //! START ParallaxHeight
73 //! @params texCoo,vVew_t,heightTex,bumpBias,bumpScale
74 //! @return offsetCoo parallax cords

75 FLOAT bump=((texture2D(heightTex,texCoo).a)+ bumpBias)*bumpScale;
76 offsetCoo = bump * vec2(vVew_t.x, vVew_t.y) + texCoo;
77 //! END ParallaxHeight
78 bumpCoords = offsetCoo;
79
80 //! START NormalMap
81 //! @params bumpCoords, normalMap
82 //! @return vNor_t tangent space normal
83 vNor_t = texture2D(normalMap,vec2(bumpCoords.x,
84 bumpCoords.y)).xyz* 2.0-1.0;
85 //! END NormalMap
86
87 nor3Tmp = vNor_t;
88
89 //! START NormalTangentToObjectSpace
90 //! @params tan, bin, nor, nor3Tmp
91 //! @return nor3_o
92 mat3 matNorT2O = mat3(tan, bin, nor);
93 nor3_o = matNorT2O*nor3Tmp;
94 //! END NormalTangentToObjectSpace
95 nor4Tmp = vec4(nor3_o,0.0);
96
97 //! START NormalObjectToWorldSpace
98 //! @params matNorO2W, nor4Tmp
99 //! @return nor4_w
100 nor4_w = matNorO2W*nor4Tmp;
101 //! END NormalObjectToWorldSpace
102 vNormal_w = nor4_w.xyz;
103
104 //! START Reflect
105 //! @params vIncoming_w, vNormal_w
106 //! @return cooRefl_w World space reflected vector
107 cooRefl_w=normalize(reflect(vIncoming_w,vNormal_w));
108 //! END Reflect
109
110 cubetexCoo = cooRefl_w;
111
112 //! START CubeMap
113 //! @params cubetexCoo, evntCubeMap
114 //! @return colorFromEvt color from environment map
115 colorFromEvt = textureCube(evntCubeMap, cubetexCoo);
116 //! END CubeMap
117
118 colorFromEvt_444161459=colorFromEvt;
119 vTmp4 = colorFromEvt_444161459;
120
121 //! START Fresnel
122 //! @params vIncoming_w,vNormal_w,fresBias,
123 //! @params fresScale,fresPower
124 //! @multi-aspect
125 //! @return fresnelRatio Fresnel ratio
126 fresnelRatio = max(0.0,min(1.0,fresBias+fresScale*
127 pow(1.0+ dot(normalize(vIncoming_w),
128 normalize(vNormal_w)), resPower)));
129 //! END Fresnel
130
131 x = fresnelRatio;
132 factor = fresnelRatio;
133
134 //! START Modulate
135 //! @params vTmp4, factor
136 //! @return modOutput
137 modOutput = vTmp4*factor;
138 //! END Modulate
139 modOutput_1345567180=modOutput;
140
141 a = modOutput_1345567180;
142
143 //! START Refract
144 //! @params vIncoming_w, vNormal_w, etaRatio
145 //! @return cooRefr_w World space refracted vector
146 //! @routine refract
147 cooRefr_w = normalize(refract(vIncoming_w, vNormal_w, etaRatio));
148 //! END Refract
149
150 cubetexCoo = cooRefr_w;
151
152 //! START CubeMap
153 //! @params cubetexCoo, evntCubeMap
154 //! @return colorFromEvt color from environment map
155 colorFromEvt = textureCube(evntCubeMap, cubetexCoo);
156 //! END CubeMap
157 colorFromEvt_314286916=colorFromEvt;
158 vTmp4 = colorFromEvt_314286916;
159
160 //! START 1-x
161 //! @params x
162 //! @return oneMinus
163 oneMinus = 1.0-x;
164 //! END 1-x
165 factor = oneMinus;
166
167 //! START Modulate
168 //! @params vTmp4, factor
169 //! @return modOutput
170 modOutput = vTmp4*factor;
171 //! END Modulate
172 modOutput_1010696501=modOutput;
173 b = modOutput_1010696501;
174
175 //! START +
176 //! @params a,b
177 //! @return sum
178 sum = a+b;
179 //! END +
180
181 gl_FragColor = sum;
182 }

Figure 8. Color result composites of Figures 4-7.

Figure 1 Revisited: A conventional Shade Tree (left) for a “Bumpy Glass” shader, mocked up in the Visio drawing program.
The equivalent Abstract Shade Tree on the right is an actual screenshot from our shader authoring plugin to the Eclipse IDE.

