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Abstract. 
As GPU-powered special effects in games become more 
sophisticated, it becomes harder to create and manage effect 
interaction using the fairly primitive GPU shading languages. 
This difficulty also introduces a workflow problem: artists design 
effects, but only programmers can implement and interface the 
main renderer with them. This paper borrows current ideas from 
the programming language community to improve the shader 
authoring process. 

We introduce abstract shade trees for compactly expressing 
shaders. We implemented a visual programming front-end tool 
for creating such trees and a back-end tool called a weaver that 
transforms them into executable OpenGL Shading Language 
source code. Like previous visual tools for shader programming, 
ours represents core operations called atoms as tree nodes. Unlike 
previous tools, it abstracts the parameter connections between 
atoms. This dramatically simplifies the user's view of the tree and 
ensures that users cannot create a shader with type errors. 
Because the specific connections are abstract, our tools allow 
special effect creators (artists) and atom creators (programmers) 
to develop and modify their products independent of each other 
for efficient workflow.  

We further abstract shader authoring with controls for 
visualizing and manipulating whole features like shadows and 
bump-mapping. The potentially interleaved and overlapping 
nodes of a feature are encircled in the front-end tool to show their 
cross-cutting relationship to the rest of the tree.  

1. Introduction 
Modern GPUs manifest another turn of Ivan Sutherland’s “Wheel 
of Reincarnation,” where general-purpose and specialized 
hardware alternate as the best implementation technology. 
Unfortunately, 3D graphics and other media APIs have not kept 
pace with the move to general-purpose graphics processors. 
Current APIs for GPU programming avoid layering, moving the 
application logic very close to the hardware. The emphasis is on 
time-to-market, not on robustness, and exposing hardware 
peculiarities is seen as a competitive advantage. With the notable 
exception of Sh [McCool02], current shading languages for 
GPUs (e.g., GLSL) lack language mechanisms for encapsulation, 
modularity, and abstraction. This makes it very hard to create and 
maintain long GPU programs. Because GPUs are inherently 
digital signal processors with long pipelines, no stack, and 
unusual performance limitations on random access to memory, it 
is likely that they will remain difficult to program by hand. 

The lack of abstraction also makes it difficult for artists to 
create new graphics effects without learning how to program. It 
leads to a close coupling between programmers and artists: The 
artist tells the programmer what the effect should be, the 
programmer writes the shader, the artist changes the 
requirements, the programmer revises the code, etc. Once a 
special effect is created, it is practically impossible to re-use it 
within the framework of another shader without substantial 
additional coding. This stifles productivity and creativity. 

One way to address this problem is to look for other 
representations of shader programs. Cook [1984] introduced the 
notion of modular shading components with shade trees. He 
describes a system in which basic shading blocks (called atoms) 
are nodes linked by edges representing variables. Because 
shaders have one output (the pixel color) and many inputs, the 
root of the tree represents the output and the leaves are the input. 
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Figure 1: A conventional Shade Tree (left) for a “Bumpy Glass” shader. The equivalent Abstract Shade Tree (right) is simpler; the 
compiler automatically handles vector basis conversion, normalization, and parameter linkage. Outline bubbles mark underlying 
features (clockwise from top): parallax mapping, refraction, and refraction. Note that the Fresnel term cross-cuts two features.  
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Shade trees weren’t originally intended for visual 
programming. In fact, Cook’s shaders were authored as code and 
converted to trees as a post-process for compilation. Abram and 
Whitted [1990] invert this paradigm with Building Block 
Shaders. Their visual programming tool represents shaders 
directly as directed acyclic graphs (DAGs), which are essentially 
Cook's trees extended with side effects and confluent paths. 
Although they are DAGs, we continue to refer to visual shader 
representations as trees in deference to the original work. 

Implementations of this idea have since been created for 
today's GPUs and hardware programming languages 
[Borau04][Unreal06]. Figure 1 (left) shows an example shader 
for “bumpy glass” that combines the rendering effects of parallax 
mapping, Fresnel reflection, and Fresnel refraction. The 
immediate advantage over source code is that shade trees 
encourage experimentation and are more approachable by non-
programmers [Abram90]. Programmers implement a library of 
carefully optimized atoms, which non-programmers combine to 
build shaders. A visual editor with preview capabilities offers the 
advantage that artists can experiment without understanding the 
inner workings of the atoms. 

Figure 1 also demonstrates some of the drawbacks of shade 
trees. Although this example uses a simple shader, the tree 
appears complicated and visually cluttered. The tree also contains 
atoms that an artist might not understand, like 
TangentToObjectSpace and ExtendToHomogeneousVector. Most 
importantly, there is the potential for type mismatches between 
input and output arguments of atoms. When they introduced the 
first visual shade tree editor, Abram and Whitted [1990] noted:  

 
“One problem with [the Building Block] graphical shading 
language is the potential for type mis-matching.”  
 
In fact, this problem extends beyond storage types to 

interface mismatches between atoms, e.g., assumptions like "the 
light vector has unit length" or "RGB values are pre-multiplied 
by the alpha channel." It is almost impossible for the user to 
ensure that the types are correct when the programming tool 
conceals those types. 

In this paper we introduce abstract shade trees (AShT)for 
pixel shaders. Of course, many of the same ideas can be applied 
to vertex shaders (and other programmable units, e.g., the 
geometry shaders in DirectX 10). 

Figure 1(right) shows the abstract shade tree for our previous 
example. This tree is visually uncluttered and only contains 
atoms that are meaningful to the user. To avoid type and interface 
mismatches we implement parameter matching with automatic 
type coercions. This allows us to abstract all parameters between 
two atoms into a single data connection. The bubbles surrounding 
sub-graphs indicate the boundaries of the features that were 
combined to create the graph. 

We build a system for abstract shade trees that consists of a 
visual programming tool and a weaver program that translates 
the abstract shade tree into OpenGL Shading Language (GLSL) 
code. The weaver determines how to connect parameters between 
atoms. It automatically introduces new atoms into the graph in 
cases where there is no output that exactly matches each input.  

Automatic parameter matching by the weaver is our primary 
contribution. Because of it, abstract shade trees not only simplify 
shader authoring but also allow a programmer to change an atom 
interface without affecting the artist using that atom. This in turn 
allows complete separation between the roles of programmers and 
artists and asynchronous workflow. Automatic matching also 

guarantees that the output is legal and correctly typed code, which 
solves the type mismatch problem noted by Abram and Whitted. 

We also introduce the notion of feature-based programming 
to GPU shader development. Artists can easily extend and 
combine previously completed effects (features) whose 
boundaries are displayed in the editor.  

2. Related Work 

2.1. Shade Trees 
Cook’s [1984] Shade Trees first introduced the notions of 
shading languages, uniform shading parameters, and modular 
shading components. Abram and Whitted’s [1990] Building 
Block Shaders (BBS) was the first visual programming tool for 
shaders. Others have since created implementations similar to 
BBS for today’s GPUs and hardware programming languages 
[Borau04][Unreal06]. These all map one-to-one traditional 
programming elements like variables and functions to visual 
elements. Thus, while making programming more approachable, 
they still retain the complexity of source code.  

We extend the previous work by abstracting programming 
elements, solving the type mismatch problem, and introducing 
feature abstractions. 

2.2. Shader Compilers 
Efficient compilation of shading language code to GPU 
assembler is an active area of research and beyond the scope of 
this paper. We instead focus on producing reasonable high-level 
code from still higher-level abstractions. Nonetheless, we briefly 
review compiler work as it is the natural compilation target for 
our weaver. 

McCool et. al’s Shader Algebra [2004] extends their Sh 
language [2002] with connect and combine operations on 
primitives. These allow shaders to be optimized by a compiler 
and manipulated by a programmer without knowledge of the 
primitives. The connect operator requires the number, type, and 
storage classifier (and implicitly, the semantics) of arguments to 
agree. Therefore the output of the weaver provides ideal input for 
McCool et al.’s optimizing compilers. 

Many hand-written shaders are short in part because it is 
impractical to write large shaders by hand in today’s shading 
languages. By simplifying the process of creating complex 
shaders, abstract shade trees naturally raise the problem of 
creating shaders too large for resource-limited GPUs. The 
solution is to follow our tree compilation with a partitioning 
compiler. Chan et. al’s [2002] compiler naturally fits within our 
framework—their system partitions trees into subtrees that 
execute in a single rendering pass.   

The Brook language [Buck04] extends the C language so that 
it can be efficiently compiled for streaming processors like GPUs 
for non-graphics tasks. This is not directly related to our work; 
however, we note that the purely functional style of programming 
that is enforced by our system has been long noted to be ideal for 
compilation on parallel processors. 

Like our work, Pellacini’s [2005] recent shader simplification 
system manipulates the structure of shaders in semi-blind 
manner. Neither compiler is fully aware of the intent of the 
manipulated code and could introduce a transformation that 
destroys the underlying rendering effect. Yet in both cases one 
can perform useful work despite the potential pitfall. Our 
transformations go beyond single expressions and must 
synthesize the glue code between them.  To reduce errors in this 
synthesis, we extend the type system with stronger semantics and 
require that the weaver preserve this semantic type safety. 



2.3. Feature-Based Programming 
In the software engineering literature, the term feature refers to a 
user-identifiable attribute of a system, which a client might be 
willing to pay for [Turner99]. It is therefore natural to consider a 
rendering effect like shadows to be a feature. Thinking of 
programs as collections of features is not new: the idea is 
inherent in Parnas' [1972] seminal paper on modularity, and in 
Dijkstra's [1976] book on programming, where the latter 
discusses the “separation of concerns.” 

More recently, there has been significant activity on building 
programming languages—particularly module systems—that 
enable programmers to explicitly represent a system's features 
[Batory92, Kiczales97, Batory04]. In these languages, each 
module describes some feature, and module composition 
corresponds to building a system that consists of these features. 
(We adopt the term ‘weaver’ from one of these languages, known 
as aspect-oriented programming [Kiczales97].) Because client 
requirements tend to be in terms of features, these systems can 
more easily be reconfigured to accommodate evolving 
requirements. Indeed, it is now routine to talk about a product 
line of programs that can be built from a collection of features, by 
analogy to manufacturing. Software product lines have long been 
popular in the telecommunications industry, and are now 
increasingly popular in application software [Clements02]. Our 
tool offers a pre-created library of effects as well as the ability to 
create new ones from atoms, so a library of effects defines a 
product line of shaders. 

3. System and Workflow Overview 
Our system comprises a GUI tree-editor on the front-end (Figure 
2) and a back-end that compiles trees to GLSL shaders. It leverages 
existing tools (e.g., ATI RenderMonkey) to provide real-time 
execution and preview of the shaders. We assume a library of 
hand-optimized primitives and pre-created effects is available.  

To create a shader, an artist uses a drag-and-drop interface to 
place multiple existing effects in a common workspace. These effects 
appear as sub-graphs of named atoms connected by arrows. Each 
effect is surrounded by a colored boundary. The artist then 
interconnects the effects by adding additional arrows to form a single 
abstract shade tree. It is also possible for the artist to insert and 
remove individual atoms.  

The tree is abstract because arrows represent a data 
dependency, not individual parameter mappings between atoms. 
As shown in Figure 1(right), when instances of a node common 
to two features are combined into a single node, the rendered 
feature boundaries correctly overlap. 

Pressing the “preview” button executes the weaver, which 
follows the algorithm described in Section 5. This algorithm 
works backwards through the tree from the shader output (a pixel 

color) to the inputs, producing GLSL code. Its primary task is 
replacing each abstract arrow with pairs of input and output 
parameters for the atoms it connects. In many cases, those 
parameters do not naturally correspond and the weaver must 
inject substantial code to correct the problem. The output code 
resembles that produced when implementing a shader by hand, 
which shows that we have removed the tedium of shader 
production while preserving the creative aspects. 

Two asynchronous editing cycles exist in the workflow 
around our system. A programmer continually optimizes the 
atoms and introduces new atoms and sample effects into the 
system. Meanwhile, the artist edits abstract shade trees. Because 
the connections in the tree are abstract, the programmer may 
frequently change not only the implementation of atoms but also 
the API, i.e., the number and type of arguments, without 
requiring the artist to update the abstract shade tree. 

4. Atom Definitions 
Atoms are defined by a declaration, a set of struct/global function 
definitions, and a body. They are hand-coded and optimized in an 
extension to GLSL that includes atom declarations and semantic 
types. Atom declarations describe the number, name, and type of 
inputs and outputs of a block of code. They differ from traditional 
shading function declarations in two ways. First, there may be 
multiple output arguments. Second, no lexical scope is applied to 
the definition. Instead, free variables must be explicitly declared 
as global parameters. These globals also serve as hints to the 
weaver during parameter matching. The declaration syntax is a 
structured comment so atoms are backwards compatible to GLSL. 

It is common practice in the games industry to squeeze every 
possible cycle from graphics routines. Programmers commonly 
examine the assembly produced by both shading and C++ 
compilers. To support this scrutiny, the weaver preserves 
whitespace, variable names, and documentation comments from 
atom bodies. This helps the programmer trace the effect of a code 
change on the abstract shade tree, the weaver’s GLSL output, and 
the GLSL compiler’s assembly output. 

Many atoms, like the one in Listing 1, are simply GLSL 
standard library routines wrapped by a declaration. Often those 
standard library routines are intrinsics that map directly to a 
hardware feature.  

 
//! START CubeMapping 
//! @uniform environmentMap:TEX3D 
//! @param cubeTexCoord:VEC3__W_VEC__ 
//! @param cubeMap:TEX3D = environmentMap 
//! @return outColor:VEC3_____RGB_ 

outColor = textureCube(cubeMap, cubeTexCoord); 

//! END CubeMapping 
 

Listing 1: Sample atom code for cube mapping. 
 

In the atom syntax1, param declares an input parameter and 
return declares an output parameter. Atom declarations may also 
include two kinds of immutable global parameters. A uniform 
parameter is passed from the application to the entire shader. It is 
uniform over a series of rendering calls. A varying parameter is 
passed from the vertex shader. It is interpolated between vertices 
by the hardware. Global parameters have two roles. In addition to 
declaring inputs passed outside the call chain, they may also 
appear as default values to satisfy a specific input parameter if 
the weaver is unable to find an appropriate output parameter from 
a connected node. For example, in Listing 1, the environmentMap 
is not explicitly used by the atom body. However, it is declared as 

                                                                 
1 The actual atom syntax in our implementation is more verbose, containing 
documentation comments and other non-semantic fields. 

 
Figure 2: Creating an Abstract Shade Tree in our GUI. 



a global and listed as the default for match for the cubeMap input 
parameter. It will be used only if no other node producing a 
TEX3D is connected to the node with the CubeMapping atom.  

We require all global names to be unique across the set of 
atoms. That is, if two atoms declare the environmentMap global 
parameter, it must have precisely identical semantic types in 
each. In this example, in every case where an environment map is 
provided as a parameter, it also must be named environmentMap. 
This is not an unreasonable requirement—after all, these are 
global variables. Since the shader APIs already dictate that 
globals must be synchronized with hand-written vertex shader 
and application code, it is not especially burdensome to require 
programmers to also synchronize globals between atoms as well. 
GLSL supports limited records called structs and global 
functions, which can be declared in the same manner as globals 
and have the same uniqueness constraint. 

4.1. Semantic Types 
We introduce semantic types, which are so specific that two 
variables with precisely the same type are likely semantically 
interchangeable. Some examples appear to the right of the colons 
in the annotations of Listing 1. 

Regular GLSL types are merely C-style storage specifiers with 
little value as abstractions. For example, a color, a 3D location, and 
a row of a 3×3 matrix have the same type, which is also indist-
inguishable from an array of three floating-point numbers. Another 
extreme is a possible choice for a type system, where types are so 
specific and abstracted that each value has its own type; e.g, the 
integers ‘7’ and ‘8’ might have separate types. This latter extreme 
is unreasonable because types are sets of values, so an all-singleton 
type implementation eliminates the power of the type system. 
However, we find it advantageous to extend GLSL towards this 
extreme in order to encapsulate graphics concepts directly into the 
type system. Just as many languages assign different types to 
natural (unsigned) numbers and integers, we type vectors 
differently based on several mathematically meaningful properties. 
For example, in the case of vector length, we recognize two 
important values: unit and arbitrary. This allows the system to 
distinguish normalized vectors within the type system. 

We use a convention where the name of a vector is the 
concatenation of a series of short codes for each semantic 
property. The properties and codes for vectors are: 
 

Dimension:  {2, 3, 4, _ } 
 

Length:  {U: Unit, _ } 
 

Basis:   {T: tangent, O: object, W: world, S: screen space, _ }  
 

Interpretation:  
{RGB: color, TEX: texture coordinate,  
NOR: surface normal (covector), VEC: direction,  
PNT: point, ___ } 

 

Precision:  {F: float32, I: int32, B: Boolean, _ } 
 

The underbar is a wildcard for supporting polymorphic types, 
for example, vec4__ is a four-component vector in any basis. 
These can also be viewed as type unions, e.g., “vec4__ = vec4_O 
∪∪∪∪ vec4_W ∪∪∪∪ vec4_T ∪∪∪∪ vec4_S.” We created the whole list of 
properties based on distinctions we found meaningful and expect 
that more properties will be added in the future to help further 
distinguish semantics. 

The type and naming scheme extends naturally to matrices, 
scalars, and textures. Semantic types can be made legal GLSL 
code by inserting a series of macros mapping them to storage 
classes, e.g. ���� ��� � ��	
�
�
��
 � ���	

. 

A compiler uses a type system in order to verify the 
correctness of programs. The weaver instead applies the type 
system as a set of rules for steering code generation creation—
that is, generation is governed by the constraint that the output 
must be correctly typed. We define and use traditional typing 
rules on our semantic types, e.g., 
  

if v has type VEC3___T____  
then (ObjectToTangentSpace * v)  

      has type VEC3___O____ 
 

except that we apply these rules backward when seeking to 
coerce expression types. Thus the above rule would not be 
applied to type-check the product expression but instead to find a 
coercion of v from VEC3___T____ to VEC3___O____.  Section 5.4 
describes how this coercion search occurs. 

We wish to note that the extremely narrow application 
domain of shading languages is what makes this type system 
reasonable; these special-case typing rules and highly specified 
types probably cannot be generalized to other domains or general 
purpose languages. 

5. Weaving Algorithm 
We chose to implement the weaver as a pre-processor, 

without a full parser. This allows the weaver to preserve 
whitespace and comments within the atom bodies and allows 
atom bodies with partial statements, e.g.,“ if (dot(N,V) > 0) { ”. 
Because the weaver doesn’t parse the atom code, it can operate 
on a variety of shading language syntaxes (GLSL, HLSL, Cg), 
provided all atoms are implemented in the same language. This 
design decision also leads to a straightforward implementation in 
Java, which provides regular expressions and many other string 
manipulation routines.  

We now detail the four steps of the weaving algorithm. 

5.1. αααα-Rename Variables 
Because the atoms are implemented individually, it is likely that 
some variable names are shared between them. In some cases this 
is because an output of one atom becomes the input of another 
and it really is the same variable. In other cases the same name is 
used for distinct variables that cannot be combined. 

The weaver first creates a unique code body for each node. 
From this point forward there are no atoms bodies, only node 
bodies. Where two nodes use the same atom, two copies of that 
atom body are created. The weaver then assigns each node in the 
tree a unique ID. It iterates over all input and output parameter 
declarations (but not global declarations) of all nodes, seeking 
variable name conflicts where the same name is used in two 
different node bodies. Once all conflicts have been detected, the 
weaver renames all variables within node bodies that conflict by 
appending the unique node ID to the original name, e.g. 
surfaceNormal → surfaceNormal_0001. We include the original 
variable name to preserve readability of the output. This process 
is a common compiler operation called α-renaming. 
 Employing α-renaming is overly conservative because it 
destroys parameter linkage between nodes. However, this is not a 
problem because subsequent weaver steps ensure correct linkage, 
independent of parameter names. 

Renaming only affects parameters that appear in the atom 
declaration. We avoid atom-local variable name conflicts by the 
convention of wrapping atom bodies with a local scope “{…}”. 



5.2. Topologically Sort Nodes 
The weaver creates a new terminal node accepting a single input 
for the pixel color and a directed edge into this node from any 
node with no output (there is typically only one such node). 

In the abstract tree DAG, edges represent the data 
dependencies between atoms. Without destroying the tree 
structure, the weaver assigns a topological ordering to the graph 
nodes based on these dependencies. The new node appears last in 
the topological ordering. 

5.3. Match Inputs to Outputs 
We now come to the core of the algorithm. The weaver begins 
with the terminal node at the bottom and works up the shade tree 
in reverse topological order to the inputs at the top. 

For each node, the weaver matches each input parameter to 
an output parameter from a parent node. Two parameters match 
only if both have precisely the same semantic type. Our semantic 
types are specific enough that there is rarely a perfect match. The 
weaver therefore seeks an output and a coercion that will 
transform the output type to the input type.  The coercion search 
proceeds as follows. Consider the implicit coercion tree in 
Figure 3 where the root is the type of the input parameter for 
which a corresponding output is being sought (note that this is 
unrelated to the shade tree). The leaves are the types of the 
available outputs from nodes higher up the abstract shade tree. 
The edges are coercions (i.e., typing rules run backwards) and the 
internal nodes are the types of intermediate expressions produced 
during a series of coercion operations. The tree is infinite because 
of cycles: one may reach world space from tangent space by the 
two-step coercion tangent → object → world, but also by any 
coercion of the form tangent→ object → tangent → object …→ world. 

Of course, we never want to apply such a complicated 
coercion path when a better alternative exists. Our notion of 
‘better’ includes both the length of a coercion path and the time 
cost of traversing each edge. The cost of each coercion edge is 
based on the anticipated cycle count for executing that operation 
at run-time. For example, transforming a pre-normalized world-
space light vector to object space by a matrix multiplication may 
be faster than normalizing an existing but non-unit object-space 
light vector. The type rules in our system are in a total order 
based on this anticipated time cost. The children of a coercion 
tree node are arranged from left to right according to the 
increasing cost of each rule. The tree is implicit because it is 
created as it is traversed; the rules are applied blindly without an 
awareness of the output that will be their eventual destination.  

The search for a viable coercion begins at the root of the 
coercion tree and proceeds downwards breadth-first, left-to-right. 
It terminates when the first type node is encountered that matches 
one of the available output types, or when depth seven is reached. 
Any value around seven is a reasonable cutoff; the key idea is to 
allow enough coercions for the anticipated worst case, which is 
from an arbitrary tangent-space 3-vector to a normalized, 
swizzled, screen-space 4-vector. Because we have ordered the 
rules based on cost, the first condition indicates that we have 
found the best coercion to some output. Regardless of total 
performance cost, we consider a short coercion path better than a 
long one because it is likely semantically closer and therefore 
probably what the user intended.  

The second termination condition indicates that there is likely 
no meaningful coercion available from an output parameter, 
possibly because  we  have  reached a  root of the  abstract shade 

tree. In this case, the weaver then searches the original atom 
declaration for a default global to link that parameter against. If 

that search fails to find a match, the weaver introduces a new 
global uniform parameter of the matching type. The matching 
process is guaranteed to succeed. 

When a match has been made for an input, any needed 
coercions are inserted back into the shade tree. Edges of the 
coercion tree become new nodes in the (now slightly less 
abstract) shade tree. The weaver then proceeds to the next input 
variable. Because the shade tree has been modified, any intermediate 
coercion product becomes available to match future inputs, as does 
any newly introduced uniform. This is necessary to avoid creating 
redundant coercions and globals. When all inputs of one node have 
been matched, the weaver proceeds to the next-higher node in the 
topological ordering. 

5.4   Concatenate Node Bodies 
To form the shader code, the weaver concatenates all global 
parameter declarations, struct declarations, and the node bodies in 
topological order wrapped by “void main(void) {…}”. 

Since we preserved variable names, the uniform parameters 
will have meaningful names. This makes it possible to map them 
to GUI elements in IDEs such as RenderMonkey or FX 
Composer for interactive adjustment. 

Finally, the weaver inserts a series of #define macros that 
map all semantic types used in the shader to legal GLSL storage 
classes. The output shader can be run from any OpenGL program 
or shader preview tool. 

6. GUI Implementation 
Our GUI tree editor, shown in Figure 2 with a 3D scene in the 
RenderMonkey, is implemented as a plug-in to the Eclipse IDE. 
This allows programmers to easily move between atom editing in 
a traditional code editor and experimentation with those atoms in 
the abstract shade tree editor. Eclipse provides automatic layout 
and rendering of graphs, simplifying the implementation.  

We render the feature outlines to off-screen bitmaps and then 
composite them over the tree. Each feature outline is rendered 
with a variation on [Raskar99] as follows: Clear the off-screen 
bitmap to transparent. For each node in the feature (note that a 
node may belong to multiple features, like Fresnel in Figure 1), 
render a colored, solid, rounded rectangle f pixels larger than the 
node itself, where f is a unique small integer for each feature. The 
varying radii keep adjacent features outlines from overlapping. 
Likewise, render a thickened line segment for each arrow 
between two nodes in the feature. Finally, clear the interior by 
rendering the same shape with an f – 2 radius and a transparent 
fill color, and composite the resulting outline over the graph. 
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Figure 3: Sample coercion tree mapping the possible paths 
through the type rules for coercing a tangent space normal to an 
eye-space normal. Many possible paths are not explored because 
the all-left branch leads to a successful coercion. 



7. Results 
Figures 4-7 show abstract shade trees created with our system. 
Each figure displays the actual tree as it appears in the authoring 
system (left) and the GLSL shader produced by the weaver for 
that tree (right), superimposed over an image of an object 
rendered with that shader. The GLSL output in the result figures 
is color-coded. Light lines of code correspond to atoms that have 
been inlined. Dim lines correspond to parameter linkage, 
coercions, and type macros inferred by the weaver. 
 Figure 4 is the bumpy glass shader we considered in Figure 1. 
The full code is given in the Appendix to give a sense of the 
weaver’s output. In allowing non-programmers to effectively 
create shaders, we have not diminished the importance of 
programmers on a team but instead focused their role. Note that 
most of the output code in the Appendix is necessary but 
uninteresting because it is boilerplate and linkage between atoms. 
This is also true in the other examples. Because the weaver 
assumes the duty of generating the necessary “glue” code, 
programmers concentrate on creating and optimizing atom 
bodies, which is the interesting part of their role that requires 
graphics, programming, and mathematical expertise.  
 The underlying features/effects described in the captions are 
clearly visible in the tree diagrams. Even a non-programmer can 
see the interaction between features and manipulate them easily. 
In Figures 4 and 7 the features share central nodes where they 
overlap. To create these, the user dropped the separate features 
into the workspace, which created duplicate nodes.  The user then 
explicitly combined those common nodes.  

7.1. Performance 
The result figures demonstrate that shader creation is easy in our 
system, that the weaver can produce correct GLSL code, and that 
the abstract shade tree is both more compact and easier to 
understand than a traditional tree or code. The generated shaders 
are efficient; all examples run at hundreds of frames per second 
on a laptop with a Radeon 9700 Mobile GPU. 

To compare the performance of the generated code to hand 
written code, we hand-wrote an optimized GLSL shader for the 
effects in the bumpy glass shader. The manual implementation 
contained only 58 lines of GLSL code compared to the weaver’s 
188 lines, which are shown in the appendix. However, the weaver 
generates a lot of comment and variable name linkage overhead. 

When both shaders are compiled to hardware assembly with 
NVIDIA’s Cg compiler, the weaver’s implementation contains 
51 instructions and the manual implementation contains 46 
instructions. Shading every pixel at 512×512, the weaver’s 
implementation achieves 240 fps and the manual implementation 
achieves 245 fps. At 1024×768, both render at 50 fps. We 
conclude that the weaver produces code comparable to that 
written by an experienced shader programmer. 

7.2. Limitations 
Our system always produces a legal, type-safe program. 
However, there are three ways that program can still fail to meet 
expectations. The first is that it allows creation of shaders that 
exceed the instruction and register count limits of today’s 
hardware. See Chan et. al [2002] for a multi-pass solution. 
 Second, the weaver can produce less efficient code than a 
programmer in cases where a whole-program optimization is 
appropriate, e.g., moving all lighting from world space to object 
space to avoid repeated per-pixel transformations. To perform 
such an optimization, the compiler would have to both understand  
 

 
Figure 4: Bumpy glass. 

 

 
Figure 5: Parallax mapping, texture mapping, and Phong 

illumination on a teapot. 
 

 
Figure 6: Anisotropic specular reflection with isotropic diffuse 

reflection on the wings of a butterfly. 
 

 
Figure 7: Projective light, shadow map, and Phong illumination. 

Note the interlacing of features. 
 

  



spatial transformations at not just a semantic but an operational 
level, and have control over not only the shading algorithm but 
also the host C++ program into which it is integrated. This is 
interesting future work but significantly beyond the scope of our 
semantic type approach. 
 The third case, semantic errors, is the most interesting. We 
invited laypeople (non-programmers, non-artists) to experiment 
with effect creation. After we explained the UI and primitives 
they were generally able to produce shaders, which we consider a 
great success compared to current tools. However, they had 
difficulty choosing between similar primitives with different 
types, which often led to inefficient semantic type coercions for 
the desired effects. When the tool failed to produce the effect that 
the user expected, it was usually because two nodes received 
input from the same output when they should have been distinct 
(e.g., imagine both Modulate nodes linked to input x in Figure 1).  
This occurs when the user fails to add sufficient dependency 
arrows and when the dependency is implicit in a global variable. 
Like the excessive transformations, missing dependencies are a 
user error that would likely not occur with real artists; a follow-
up user study will measure the experiences of trained artists.  

Incorrect linkage of two primitives to the same global 
variable only occurs when the common semantic type of the 
primitives is too general. Here, fault lies with the programmer 
who created the primitives and not the artist or the weaver. The 
programmer must tread a delicate line, however: types that are 
too specific will never match exactly and require more coercions, 
but types that are too general produce incorrect semantics. On 
one hand, it is a drawback of our system that programmers must 
spend a lot of thought and time tailoring the interface types. On 
the other hand, we argue that interface semantics are exactly 
where programmers should think hard! We automate the linkage, 
boilerplate, and coercion precisely so that programmers can focus 
on design, which requires human input. 

8. Future Work 
Our cost ranking of coercions is based on instruction count and 
intuition. A natural step is to use an actual cycle count. The 
challenge here is that the true time cost of a GPU operation 
depends on the instructions surrounding it, cache state, and the 
instruction scheduler. 

On the programming language side, we envision an extension 
to parameterized types like C++ templates, which would enable 
more specific function types than our polymorphism. For 
example, we assign the addition operator the type VEC___ × VEC___ 

→ VEC___, yet VEC_<T> × VEC_<T> → VEC_<T> is more specific. 
A formal semantics, type system, and proofs for our system 

will serve as a good case study for the literature on domain-
specific languages and feature-based programming. 

9. Conclusions 
We addressed the problem originally noted by Abram and 
Whitted by making type mismatches in shaders impossible. We 
also enable shader creation by users who do not even have 
knowledge of types, programming concepts like variables, or the 
vector math used to implement algorithms inside the atoms.   

We presented a new system for authoring complex GPU 
programs through automatic combination of primitive shading 
functions. In doing so, we extended GLSL with semantics types 
specific to computer graphics in a backwards-compatible manner. 
We anticipate that GLSL (like assembly language and C before 
it) will increasingly be produced as the output of a higher order 
tool. We will propose to the OpenGL architectural review board 

that semantic types be considered for the language standard, for 
use by both programmers and other tools like ours.  

Our system uses many heuristics to infer parameter linkage.  
Even with our strong semantic types, it is a natural concern that 
the heuristics can produce a legal program with semantic errors.  
Fortunately, in graphics a semantic error is easily diagnosed 
because the image produced is incorrect. The interative editing 
context of our Eclipse plug-in and RenderMonkey allows the 
shader author to correct the shade tree until the desired result is 
achieved. We speculate that our methodology is appropriate for 
similar domains like image- and audio-filter design, but 
inappropriate for general purpose programming that lacks easy 
feedback and a small set of semantic types. 
 Our system extends previous work, allowing non-
programmers to more easily create more complex shaders. It also 
visualizes shaders easy-to-understand block diagrams. The 
advantage of abstract shade trees over hand-coded shaders or the 
one-to-one visual editors will only increase as hardware becomes 
ever more capable and the desired shaders increase 
commensurately in complexity. It literally took only seconds to 
create each of the abstract shade trees for our result figures; 
implementing similar shaders by hand in GLSL took us hours of 
coding and debugging for each shader. These shader examples 
contain about four effects each. Now consider GPUs of the future 
that are able to render ten or twenty interacting effects in real-
time. Under today’s workflow, an artist might ask a programmer 
to hand code a different effect combination for every object in a 
scene. That will not be feasible when each shader contains 
thousands of lines of code. Our tool solves the authoring problem 
by making it not only possible for artists to create these shaders 
themselves but also making the process easy and enjoyable. 
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Appendix 
GLSL code produced by the weaver from the abstract shade tree in 
Figure 1. Boxed lines are hand written node bodies. Gray lines are 
comments carried through from atom declarations. The remaining 
lines are parameter linkage and coercions generated by the weaver. 
 

1   #define VEC3___T_NOR vec3 
2   #define VEC3___W_NOR vec3 
3   #define VEC4___W_NOR vec4 
4   #define VEC4_____NOR vec4 
5   #define VEC3_____NOR vec3 
6   #define VEC3_____TEX vec3 
7   #define VEC4_____RGB vec4 
8   #define VEC4________ vec4 
9   #define VEC2_____TEX vec2 
10   #define VEC3___T____ vec3 
11   #define TEX2D sampler2D 
12   #define MAT4 mat4 
13   #define VEC3___O____ vec3 
14   #define VEC3___O_NOR vec3 
15   #define VEC3___W____ vec3 
16   #define TEX4D samplerCube 
17   #define FLOAT float 
18   uniform FLOAT etaRatio; 
19   uniform FLOAT fresPower; 
20   uniform FLOAT fresScale; 
21   uniform FLOAT fresBias; 
22   uniform TEX4D evntCubeMap; 
23   varying VEC3___W____ vIncoming_w; 
24   varying VEC3___O_NOR nor; 
25   varying VEC3___O____ bin; 
26   varying VEC3___O____ tan; 
27   uniform MAT4 matNorO2W; 
28   uniform TEX2D normalMap; 
29   uniform FLOAT bumpScale; 
30   uniform FLOAT bumpBias; 
31   uniform TEX2D heightTex; 
32   varying VEC3___T____ vVew_t; 
33   varying VEC2_____TEX texCoo; 
34    
35   //! STARTROUTINE refract 
36   vec3 refract(vec3 I, vec3 N, float etaRatio) { 
37   float cosI=dot(-I,N); 
38   float cosT2=1.0-etaRatio*etaRatio*(1.0-cosI*cosI); 
39   vec3 T = etaRatio*I+((etaRatio* 
40     cosI-sqrt(abs(cosT2)))*N); 
41   return T*vec3(cosT2>0.0); 
42   } 
43   //! ENDROUTINE refract 
44    
45   void main(void) { 
46   VEC4________ a; 
47   VEC4________ b; 
48   VEC4________ sum; 
49   VEC4________ modOutput_1010696501; 
50   FLOAT x; 
51   FLOAT oneMinus; 
52   VEC4_____RGB colorFromEvt_314286916; 
53   VEC3_____TEX cooRefr_w; 
54   VEC4________ vTmp4; 
55   FLOAT factor; 
56   VEC4________ modOutput_1345567180; 
57   FLOAT fresnelRatio; 
58   VEC3_____TEX cubetexCoo; 
59   VEC4_____RGB colorFromEvt_444161459; 
60   VEC3_____NOR nor3Tmp; 
61   VEC3___O_NOR nor3_o; 
62   VEC4_____NOR nor4Tmp; 
63   VEC4___W_NOR nor4_w; 
64   VEC3___W_NOR vNormal_w; 
65   VEC3_____TEX cooRefl_w; 
66   VEC2_____TEX bumpCoords; 
67   VEC3___T_NOR vNor_t; 
68   VEC2_____TEX offsetCoo; 
69   VEC4________ modOutput; 
70   VEC4_____RGB colorFromEvt; 
71    
72   //! START ParallaxHeight 
73   //! @params texCoo,vVew_t,heightTex,bumpBias,bumpScale 
74   //! @return offsetCoo parallax cords 

75   FLOAT bump=((texture2D(heightTex,texCoo).a)+ bumpBias)*bumpScale; 
76   offsetCoo = bump * vec2(vVew_t.x, vVew_t.y) + texCoo; 
77   //! END ParallaxHeight 
78   bumpCoords = offsetCoo; 
79    
80   //! START NormalMap 
81   //! @params bumpCoords, normalMap 
82   //! @return vNor_t tangent space normal 
83   vNor_t = texture2D(normalMap,vec2(bumpCoords.x, 
84           bumpCoords.y)).xyz* 2.0-1.0; 
85   //! END NormalMap 
86    
87   nor3Tmp = vNor_t; 
88    
89   //! START NormalTangentToObjectSpace 
90   //! @params tan, bin, nor, nor3Tmp 
91   //! @return nor3_o 
92   mat3 matNorT2O = mat3(tan, bin, nor); 
93   nor3_o = matNorT2O*nor3Tmp; 
94   //! END NormalTangentToObjectSpace 
95   nor4Tmp = vec4(nor3_o,0.0); 
96    
97   //! START NormalObjectToWorldSpace 
98   //! @params matNorO2W, nor4Tmp 
99   //! @return nor4_w 
100   nor4_w = matNorO2W*nor4Tmp; 
101   //! END NormalObjectToWorldSpace 
102   vNormal_w = nor4_w.xyz; 
103    
104   //! START Reflect 
105   //! @params vIncoming_w, vNormal_w 
106   //! @return cooRefl_w World space reflected vector 
107   cooRefl_w=normalize(reflect(vIncoming_w,vNormal_w)); 
108   //! END Reflect 
109    
110   cubetexCoo = cooRefl_w; 
111    
112   //! START CubeMap 
113   //! @params cubetexCoo, evntCubeMap 
114   //! @return colorFromEvt color from environment map 
115   colorFromEvt = textureCube(evntCubeMap, cubetexCoo); 
116   //! END CubeMap 
117    
118   colorFromEvt_444161459=colorFromEvt; 
119   vTmp4 = colorFromEvt_444161459; 
120    
121   //! START Fresnel 
122   //! @params vIncoming_w,vNormal_w,fresBias, 
123   //! @params fresScale,fresPower 
124   //! @multi-aspect 
125   //! @return fresnelRatio Fresnel ratio 
126   fresnelRatio = max(0.0,min(1.0,fresBias+fresScale* 
127            pow(1.0+ dot(normalize(vIncoming_w),  
128            normalize(vNormal_w)), resPower))); 
129   //! END Fresnel 
130    
131   x = fresnelRatio; 
132   factor = fresnelRatio; 
133    
134   //! START Modulate 
135   //! @params vTmp4, factor 
136   //! @return modOutput 
137   modOutput = vTmp4*factor; 
138   //! END Modulate 
139   modOutput_1345567180=modOutput; 
140    
141   a = modOutput_1345567180; 
142    
143   //! START Refract 
144   //! @params vIncoming_w, vNormal_w, etaRatio 
145   //! @return cooRefr_w World space refracted vector 
146   //! @routine refract 
147   cooRefr_w = normalize(refract(vIncoming_w, vNormal_w, etaRatio)); 
148   //! END Refract 
149    
150   cubetexCoo = cooRefr_w; 
151    
152   //! START CubeMap 
153   //! @params cubetexCoo, evntCubeMap 
154   //! @return colorFromEvt color from environment map 
155   colorFromEvt = textureCube(evntCubeMap, cubetexCoo); 
156   //! END CubeMap 
157   colorFromEvt_314286916=colorFromEvt; 
158   vTmp4 = colorFromEvt_314286916; 
159    
160   //! START 1-x 
161   //! @params x 
162   //! @return oneMinus 
163   oneMinus = 1.0-x; 
164   //! END 1-x 
165   factor = oneMinus; 
166    
167   //! START Modulate 
168   //! @params vTmp4, factor 
169   //! @return modOutput 
170   modOutput = vTmp4*factor; 
171   //! END Modulate 
172   modOutput_1010696501=modOutput; 
173   b = modOutput_1010696501; 
174    
175   //! START + 
176   //! @params a,b 
177   //! @return sum 
178   sum = a+b; 
179   //! END + 
180    
181   gl_FragColor = sum; 
182   } 



 
Figure 8. Color result composites of Figures 4-7. 

 
Figure 1 Revisited: A conventional Shade Tree (left) for a “Bumpy Glass” shader, mocked up in the Visio drawing program. 
The equivalent Abstract Shade Tree on the right is an actual screenshot from our shader authoring plugin to the Eclipse IDE.


