Abstract Shade Trees

Morgan McGuire
Brown University

George Stathis

Shade Tree

application]

heightMap <ﬂ
bumpScale <
bumpBias <

normalMap <
envMap
etaRatio

tangent to object|
space

to4Component

toWorldSpace

to3Component

normalize

pixel color

Harvard Extension School

I:

Shriram Krishnamurthi
Brown University

Hanspeter Pfister
MERL

Abstract Shade Tree

Parallax Height

Normal Map

v v
\4
| Fresnel |

| Cube Map I | | | Cube Map I
|

vy J
[

Modulate

| Modulate I

Figure 1: A conventional Shade Tree (left) for a “Bumpy Gladsader. The equivalent Abstract Shade Tree (Jighsimper; the
compiler automatically handles vector basis coniegrsnormalization, and parameter linkage. Outlimebbles mark underlyir
features (clockwise from top): parallax mappindgraetion, and refraction. Note that the Fresnelntecros-cuts two features.

Abstract.

As GPU-powered special effects in games become more 1.

sophisticated, it becomes harder to create and geae#fect
interaction using the fairly primitive GPU shadif@nguages.
This difficulty also introduces a workflow problemrtists design
effects, but only programmers can implement andrfate the
main renderer with them. This paper borrows curigeas from
the programming language community to improve thedsr
authoring process.

We introduceabstract shade tree®r compactly expressing
shaders. We implemented a visual programming feot-tool
for creating such trees and a back-end tool calledeaver that
transforms them into executable OpenGL Shading Lagg
source code. Like previous visual tools for shgategramming,
ours represents core operations called atomsasddes. Unlike
previous tools, it abstracts the parameter conmestbetween
atoms. This dramatically simplifies the user's vigthe tree and
ensures that users cannot create a shader with d@pmes.
Because the specific connections are abstract,tanls allow
special effect creators (artists) and atom cregmsgrammers)
to develop and modify their products independencadh other
for efficient workflow.

We further abstract shader authoring with contréts
visualizing and manipulating whole features likeadbws and
bump-mapping. The potentially interleaved and @mping
nodes of a feature are encircled in the front-ewodltb show their
cross-cutting relationship to the rest of the tree.

Introduction

Modern GPUs manifest another turn of lvan SutherafiWheel
of Reincarnation,” where general-purpose and speeth
hardware alternate as the best implementation tdoon
Unfortunately, 3D graphics and other media APlsehawot kept
pace with the move to general-purpose graphics egsurs.
Current APIs for GPU programming avoid layering,uing the
application logic very close to the hardware. Thgbkasis is on
time-to-market, not on robustness, and exposingdvee
peculiarities is seen as a competitive advantagth tve notable
exception of Sh [McCool02], current shading langsdor
GPUs (e.g., GLSL) lack language mechanisms formswation,
modularity, and abstraction. This makes it verydiarcreate and
maintain long GPU programs. Because GPUs are intigre
digital signal processors with long pipelines, n@ack, and
unusual performance limitations on random accesseimory, it
is likely that they will remain difficult to progma by hand.

The lack of abstraction also makes it difficult fartists to
create new graphics effects without learning hovprtmgram. It
leads to a close coupling between programmers eigisa The
artist tells the programmer what the effect shoblel, the
programmer writes the shader, the artist changes
requirements, the programmer revises the code, @tce a
special effect is created, it is practically imgbksto re-use it
within the framework of another shader without dabgal
additional coding. This stifles productivity anckativity.

th

One way to address this problem is to look for pthe

representations of shader programs. Cook [1984¢dutced the
notion of modular shading components wilade trees. He
describes a system in which basic shading blocki$e(tatoms)
are nodes linked by edges representing variablecale
shaders have one output (the pixel color) and niapyts, the
root of the tree represents the output and theskeare the input.

Shade trees weren't originally intended for visual
programming. In fact, Cook’s shaders were authasedode and
converted to trees as a post-process for compiladram and
Whitted [1990] invert this paradigm with Building Id&&k
Shaders. Their visual programming tool represertaders
directly as directed acyclic graphs (DAGs), which assentially
Cook's trees extended with side effects and conflymths.
Although they are DAGs, we continue to refer tougisshader
representations dseesin deference to the original work.

Implementations of this idea have since been ale&te
today's GPUs and hardware programming
[BorauO4][Unreal06]. Figure 1 (left) shows an exdnphader
for “bumpy glass” that combines the rendering affexf parallax
mapping, Fresnel reflection, and Fresnel refractiorhe
immediate advantage over source code is that shigbs
encourage experimentation and are more approachgbten-
programmers [Abram90]. Programmers implement aatiprof
carefully optimized atoms, which non-programmersbine to
build shaders. A visual editor with preview capties$ offers the
advantage that artists can experiment without wstdeding the
inner workings of the atoms.

Figure 1 also demonstrates some of the drawbacksade
trees. Although this example uses a simple shaither, tree
appears complicated and visually cluttered. The &feo contains
atoms that an artist might not
TangentToObjectSpa@ndExtendToHomogeneousVectMost
importantly, there is the potential for type misoies between
input and output arguments of atoms. When theyéhiced the
first visual shade tree editor, Abram and Whitt&é890] noted:

“One problem with [the Building Block] graphical ating
language is the potential for type mis-matching.”

In fact, this problem extends beyond storage types
interface mismatches between atoms, e.g., assumspliie "the
light vector has unit length" or "RGB values are-pmultiplied
by the alpha channel.” It is almost impossible floe user to
ensure that the types are correct when the progi@gnitool
conceals those types.

In this paper we introducabstract shade trees (AShT)for
pixel shaders. Of course, many of the same ideadeaapplied
to vertex shaders (and other programmable unitg, é¢he
geometry shaders in DirectX 10).

Figure 1(right) shows the abstract shade tree dopoevious
example. This tree is visually uncluttered and onbntains
atoms that are meaningful to the user. To avoié gpd interface
mismatches we implement parameter matching witloraatic
type coercions. This allows us to abstract all petars between
two atoms into a single data connection. The bubslerounding
sub-graphs indicate the boundaries of the feattinas were
combined to create the graph.

We build a system for abstract shade trees thatistsnof a
visual programming tool and weaver program that translates
the abstract shade tree into OpenGL Shading Lamg(@pSL)
code. The weaver determines how to connect parasristeveen
atoms. It automatically introduces new atoms ifite graph in
cases where there is no output that exactly matehes input.

Automatic parameter matching by the weaver is gimary
contribution. Because of it, abstract shade tre¢only simplify
shader authoring but also allow a programmer tmgban atom
interface without affecting the artist using thadra. This in turn
allows complete separation between the roles afraromers and
artists and asynchronous workflow. Automatic matghialso

languages

understand, like

guarantees that the output is legal and corregpgd code, which
solves the type mismatch problem noted by Abram\&@hdted.

We also introduce the notion of feature-based @mogning
to GPU shader development. Artists can easily ektand
combine previously completed effects (features) seho
boundaries are displayed in the editor.

2. Related Work

2.1. ShadeTrees

Cook’'s [1984] Shade Trees first introduced the omdi of
shading languages, uniform shading parameters, randular
shading components. Abram and Whitted's [1990] dod
Block Shaders (BBS) was the first visual prograngniool for
shaders. Others have since created implementasionifar to
BBS for today’'s GPUs and hardware programming laggs
[BorauO4][Unreal06]. These all mapne-to-one traditional
programming elements like variables and functioasvisual
elements. Thus, while making programming more aggrable,
they still retain the complexity of source code.

We extend the previous work by abstracting programgm
elements, solving the type mismatch problem, aritbdiucing
feature abstractions.

2.2. Shader Compilers

Efficient compilation of shading language code tdPWG
assembler is an active area of research and bayensicope of
this paper. We instead focus on producing reasenaigh-level
code from still higher-level abstractions. Nonetiss| we briefly
review compiler work as it is the natural compiatitarget for
our weaver.

McCool et. al's Shader Algebra [2004] extends th®fr
language [2002] withconnect and combine operations on
primitives. These allow shaders to be optimizedabgompiler
and manipulated by a programmer without knowledfehe
primitives. The connect operator requires the numtype, and
storage classifier (and implicitly, the semantiofarguments to
agree. Therefore the output of the weaver providiesl input for
McCool et al.’s optimizing compilers.

Many hand-written shaders are short in part because
impractical to write large shaders by hand in téslashading
languages. By simplifying the process of creatimgmplex
shaders, abstract shade trees naturally raise tbkelem of
creating shaders too large for resource-limited &PWhe
solution is to follow our tree compilation with aanitioning
compiler. Chan et. al's [2002] compiler naturalits fwithin our
framework—their system partitions trees into sulsrdeat
execute in a single rendering pass.

The Brook language [Buck04] extends the C langisaginat
it can be efficiently compiled for streaming proaas like GPUs
for non-graphics tasks. This is not directly redate our work;
however, we note that the purely functional stylpr@gramming
that is enforced by our system has been long rtotéé ideal for
compilation on parallel processors.

Like our work, Pellacini's [2005] recent shader glification
system manipulates the structure of shaders in -kbna
manner. Neither compiler is fully aware of the mtteof the
manipulated code andould introduce a transformation that
destroys the underlying rendering effect. Yet inhboases one
can perform useful work despite the potential pitf®Our
transformations go beyond single expressions andst mu
synthesize the glue code between them. To reduocesén this
synthesis, we extend the type system with stroegerantics and
require that the weaver preserve this semantic tgfety.

Parallax Height]

Normal Map
> r //
Cube Map 7 A=x
S 7 g
o

Figure 2: Creating an Abstract Shade Tree in our GUI.

2.3. Feature-Based Programming

In the software engineering literature, the téeature refers to a
user-identifiable attribute of a system, which grd might be
willing to pay for [Turner99]. It is therefore nat to consider a
rendering effect like shadows to be a feature. Rihim of
programs as collections of features is not new: ithea is
inherent in Parnas' [1972] seminal paper on modyjand in
Dijkstra's [1976] book on programming, where thetela
discusses the “separation of concerns.”

More recently, there has been significant actieitybuilding
programming languages—particularly module systemsttha
enable programmers to explicitly represent a systdeatures
[Batory92, Kiczales97, Batory04]. In these langsageach
module describes some feature, and module compositi
corresponds to building a system that consisthes$d features.
(We adopt the term ‘weaver’ from one of these laggs, known
as aspect-oriented programming [Kiczales97].) Bseadlient
requirements tend to be in terms of features, tlsgstems can
more easily be reconfigured to accommodate evolving
requirements. Indeed, it is now routine to talk wba product
line of programs that can be built from a collectiorfezftures, by
analogy to manufacturing. Software product linegehlang been
popular in the telecommunications industry, and a@w
increasingly popular in application software [Clene®2]. Our
tool offers a pre-created library of effects aslvaslthe ability to
create new ones from atoms, so a library of effeietines a
product line of shaders.

3. System and Workflow Overview

Our system comprises a GUI tree-editor on the feortt (Figure
2) and a back-end that compiles tree§LSL shaders. It leverages
existing tools (e.g., ATl RenderMonkey) to provideal-time
execution and preview of the shaders. We assunileraryl of
hand-optimized primitives and pre-created effestsvailable.

To create a shader, an artist uses a drag-anditeface to
place multiple existing effects in a common workspahese effects
appear as sub-graphs of named atoms connecteddwsaEach
effect is surrounded by a colored boundary. Théstathen
interconnects the effects by adding additionalvesrtm form a single
abstract shade tree. It is also possible for tiist do insert and
remove individual atoms.

The tree is abstract because arrows represent a data
dependency, not individual parameter mappings Etvwatoms.
As shown in Figure 1(right), when instances of dencommon
to two features are combined into a single node, rindered
feature boundaries correctly overlap.

Pressing the “preview” button executes the weawdrich
follows the algorithm described in Section 5. Thigorithm
works backwards through the tree from the shadgruba pixel

color) to the inputs, producing GLSL code. Its @mntask is
replacing each abstract arrow with pairs of inpot autput
parameters for the atoms it connects. In many cadese
parameters do not naturally correspond and the evemwst
inject substantial code to correct the problem. Thgut code
resembles that produced when implementing a sHaygldérand,
which shows that we have removed the tedium of ehad
production while preserving the creative aspects.

Two asynchronous editing cycles exist in the wankfl
around our system. A programmer continually optesizhe
atoms and introduces new atoms and sample effatdsthe
system. Meanwhile, the artist edits abstract shests. Because
the connections in the tree are abstract, the pnagier may
frequently change not only the implementation ofha but also
the API, i.e., the number and type of argumentsthaut
requiring the artist to update the abstract sheste t

4. Atom Definitions

Atoms are defined by a declaration, a set of dglaital function
definitions, and a body. They are hand-coded anidhagged in an
extension to GLSL that includes atom declaratiam$ semantic
types. Atom declarations describe the number, name type of
inputs and outputs of a block of code. They diffem traditional
shading function declarations in two ways. Firsgre may be
multiple output arguments. Second, no lexical sdemplied to
the definition. Instead, free variables must belieitly declared
as global parameters. These globals also servenés to the
weaver during parameter matching. The declarationiag is a
structured comment so atoms are backwards compatiGiLSL.

It is common practice in the games industry to sgqaesvery
possible cycle from graphics routines. Programnoarsmonly
examine the assembly produced by both shading antl C
compilers. To support this scrutiny, the weaver sprees
whitespace, variable names, and documentation coisnfiem
atom bodies. This helps the programmer trace flieetesf a code
change on the abstract shade tree, the weaver's Glitput, and
the GLSL compiler’'s assembly output.

Many atoms, like the one in Listing 1, are simplySk
standard library routines wrapped by a declarat@fien those
standard library routines are intrinsics that mareatly to a
hardware feature.

/1" START CubeMappi ng

/1Y @mniform environment Map: TEX3D
/1! @aram cubeTexCoord: VEC3__W VEC _

/1Y @aram cubeMap: TEX3D = envi r onnent Map
/1" @eturn out Col or: VEC3 RGB

o
c
=
g
=l
"
—-
®
x
=
S
@
e
=3
2
o
c
=3
@
5
i
o
c|
=3
@
=
®
x
5
<l
£

/1" END CubeMappi ng

Listing 1: Sample atom code for cube mapping.

In the atom syntdx param declares an input parameter and
return declares an output parameter. Atom declarationsats®
include two kinds of immutablglobal parameters. A uniform
parameter is passed from the application to thieeesthader. It is
uniform over a series of rendering callsvArying parameter is
passed from the vertex shader. It is interpolattevéen vertices
by the hardware. Global parameters have two rteaddition to
declaring inputs passed outside the call chainy thay also
appear as default values to satisfy a specific tigauameter if
the weaver is unable to find an appropriate oupguameter from
a connected node. For example, in Listing 1 aimdronmentMap
is not explicitly used by the atom body. Howevers ideclared as

! The actual atom syntax in our implementation isenerbose, containing
documentation comments and other non-semanticsfield

a global and listed as the default for match ferdibeMapinput
parameter. It will be used only if no other nodeducing a
TEX3Dis connected to the node with tBabeMappingatom.

We require all global names to be unique acrosss#éteof
atoms. That is, if two atoms declare #evironmentMaglobal
parameter, it must have precisely identical sernatypes in
each. In this example, in every case where an @mvient map is
provided as a parameter, it also must be naen@ttonmentMap.
This is not an unreasonable requirement—after hise are
global variables. Since the shader APIs already dicthsd t
globals must be synchronized with hand-written esershader
and application code, it is not especially burdemsdo require
programmers to also synchronize globals betweemsats well.
GLSL supports limited records called structs andbgl
functions, which can be declared in the same maaseglobals
and have the same unigueness constraint.

4.1. Semantic Types

We introducesemantic types, which are so specific that two
variables with precisely the same type are likedynantically
interchangeable. Some examples appear to theaighe colons
in the annotations of Listing 1.

Regular GLSL types are merely C-style storage fipeciwith
little value as abstractions. For example, a ca@D location, and

a row of a 33 matrix have the same type, which is also indist-

inguishable from an array of three floating-pointmbers. Another
extreme is a possible choice for a type systemyevtypes are so
specific and abstracted that each value has its tgper e.g, the
integers ‘7' and ‘8’ might have separate typessThiter extreme
is unreasonable because types are sets of vatuas, al-singleton
type implementation eliminates the power of theetygystem.
However, we find it advantageous to extend GLSLataols this

extreme in order to encapsulate graphics concéyetstlgl into the

type system. Just as many languages assign difféypas to

natural (unsigned) numbers and integers, we typetorse
differently based on several mathematically meduolngroperties.

For example, in the case of vectiength we recognize two
important values: unit and arbitrary. This allowe tsystem to
distinguish normalized vectors within the type eyst

We use a convention where the name of a vectohas t

concatenation of a series of short codes for eamhastic
property. The properties and codes for vectors are:

Dimension: {2,3,4,_}
Length: {U: Unit, _}
Basis: {T: tangent, O: object, W: world, S: screen spacg,

I nter pretation:
{RGB: color, TEX: texture coordinate,
NOR: surface normal (covector), VEC: direction,
PNT: point, ___ }

Precision: {F: float32, I: int32, B: Boolean, _}
The underbar is a wildcard for supporting polymacghipes,

for example,vec4 __ is a four-component vector in any basis.

These can also be viewed as type unions, ezgc4* = vecd_O
O vecd_WO vecd_TO vecd_S We created the whole list of
properties based on distinctions we found meaniragfd expect
that more properties will be added in the futureh&dp further
distinguish semantics.

The type and naming scheme extends naturally teiceat
scalars, and textures. Semantic types can be neggé GLSL
code by inserting a series of macros mapping therstdrage
classes, e.@tdefine VEC3_U_W_NOR_F vec3.

A compiler uses a type system in order to verife th
correctness of programs. The weaver instead apfiestype
system as a set of rules for steering code genarateation—
that is, generation is governed by the constrdiat the output
must be correctly typed. We define and use traditiotyping
rules on our semantic types, e.g.,

if vhastypeVEC3_ T
then (ObjectToTangentSpace * v)
hastypeVEC3__ O

except that we apply these rules backward whenirsgpeto

coerce expression types. Thus the above rule woold be
applied to type-check the product expression batead to find a
coercion ofv fromVEC3__ T toVEC3__O___ .Section 5.4
describes how this coercion search occurs.

We wish to note that thextremely narrow application
domain of shading languages is what makes this system
reasonable; these special-case typing rules artdyhgpecified
types probably cannot be generalized to other dusnai general
purpose languages.

5. Weaving Algorithm

We chose to implement the weaver as a pre-progessor

without a full parser. This allows the weaver toegmrve
whitespace and comments within the atom bodies almivs
atom bodies with partial statements, e.df.(dot(N,V) > 0) {".
Because the weaver doesn’t parse the atom codanibperate
on a variety of shading language syntaxes (GLSLSHLCQ),
provided all atoms are implemented in the sameuage. This
design decision also leads to a straightforwardémpntation in
Java, which provides regular expressions and mamsr string
manipulation routines.
We now detail the four steps of the weaving aldonit

5.1. a-RenameVariables

Because the atoms are implemented individuallig likely that
some variable names are shared between them. ke cases this
is because an output of one atom becomes the ofpanother
and it really is the same variable. In other cdkessame name is
used for distinct variables that cannot be comhined

The weaver first creates a unique code body foh emde.
From this point forward there are no atoms bodady node
bodies. Where two nodes use the same atom, twesabithat
atom body are created. The weaver then assignsneatghin the
tree a unique ID. It iterates over all input andpoti parameter
declarations (but not global declarations) of albes, seeking
variable name conflicts where the same name is usesvo
different node bodies. Once all conflicts have bdetected, the
weaver renames all variables within node bodies abaflict by
appending the uniqgue node ID to the original narae.
surfaceNormal - surfaceNormal_0001 We include the original
variable name to preserve readability of the outphts process
is @ common compiler operation called¢enaming.

Employing a-renaming is overly conservative because
destroys parameter linkage between nodes. Howghisiis not a
problem because subsequent weaver steps ensueetdorkage,
independent of parameter names.

Renaming only affects parameters that appear inatben
declaration. We avoid atom-local variable name lctsfby the
convention of wrapping atom bodies with a localpY{...}".

it

5.2. Topologically Sort Nodes

The weaver creates a new terminal node acceptsiggée input
for the pixel color and a directed edge into thigle from any
node with no output (there is typically only onelsunode).

In the abstract tree DAG, edges represent the data
dependencies between atoms. Without destroying ttiee
structure, the weaver assigns a topological ordetonthe graph
nodes based on these dependencies. The new nogkrsipgst in
the topological ordering.

5.3. Match Inputsto Outputs

We now come to the core of the algorithm. The weawegins
with the terminal node at the bottom and workshgghade tree
in reverse topological order to the inputs at the t

For each node, the weaver matches each input pimatoe
an output parameter from a parent node. Two pammebatch
only if both have precisely the same semantic tgpg. semantic
types are specific enough that there is rarelyriepematch. The
weaver therefore seeks an output anccoarcion that will
transform the output type to the input type. Tbercion search
proceeds as follows. Consider the implicitercion tree in
Figure 3 where the root is the type of the inputapeeter for
which a corresponding output is being sought (ribg this is
unrelated to the shade tree). The leaves are ihestef the
available outputs from nodes higher up the absshatle tree.
The edges are coercions (i.e., typing rules rubars) and the
internal nodes are the types of intermediate egrs produced
during a series of coercion operations. The tréefiisite because
of cycles: one may reach world space from tangpate by the
two-step coerciontangent — object — world, but also byany
coercion of the formangent- object - tangent- object... - world.

Of course, we never want to apply such a complitate
coercion path when a better alternative exists. @ofion of
‘better’ includes both the length of a coercionhpahd the time
cost of traversing each edge. The cost of eachcimreedge is
based on the anticipated cycle count for execttiad) operation
at run-time. For example, transforming a pre-noizeal world-
space light vector to object space by a matrix ipligation may
be faster than normalizing an existing but non-whiect-space
light vector. The type rules in our system are itotal order
based on this anticipated time cost. The childrea coercion
tree node are arranged from left to right accordingthe
increasing cost of each rule. The tree is implb@tause it is
created as it is traversed; the rules are appliedli without an
awareness of the output that will be their eventigstination.

The search for a viable coercion begins at the odathe
coercion tree and proceeds downwards breadth4géfsto-right.
It terminates when the first type node is encowatéhat matches
one of the available output types, or when deptiersés reached.
Any value around seven is a reasonable cutoffkéyeidea is to
allow enough coercions for the anticipated worsecavhich is
from an arbitrary tangent-space 3-vector to a nbzed
swizzled, screen-space 4-vector. Because we halereat the
rules based on cost, the first condition indicatest we have
found the best coercion to some output. Regardidstotal
performance cost, we consider a short coercion Ipater than a
long one because it is likely semantically closed d@herefore
probably what the user intended.

The second termination condition indicates thatehe likely
no meaningful coercion available from an outputapaater,
possibly because we have reached a root oabstract shade
tree. In this case, the weaver then searches tigenar atom
declaration for a default global to link that paser against. If

that search fails to find a match, the weaver thices a new
global uniform parameter of the matching tyddée matching
process is guaranteed to succeed.

When a match has been made for an input, any needed
coercions are inserted back into the shade trege€af the
coercion tree become new nodes in the (now slighahs
abstract) shade tree. The weaver then proceede toext input
variable. Because the shade tree has been modifigdntermediate
coercion product becomes available to match fuhpets, as does
any newly introduced uniform. This is necessanavoid creating
redundant coercions and globals. When all inpuisnef node have
been matched, the weaver proceeds to the nexthigle in the
topological ordering.

5.4 Concatenate Node Bodies

To form the shader code, the weaver concatenateglcddal
parameter declarations, struct declarations, aadntide bodies in
topological order wrapped bydid main(void) {...}

Since we preserved variable names, the uniformnpeters
will have meaningful names. This makes it possiblenap them
to GUI elements in IDEs such as RenderMonkey or FX
Composer for interactive adjustment.

Finally, the weaver inserts a series #ifefine macros that
map all semantic types used in the shader to IB4SIL storage
classes. The output shader can be run from any@pprogram
or shader preview tool.

6. GUI Implementation

Our GUI tree editor, shown in Figure 2 with a 3[rse in the
RenderMonkey, is implemented as a plug-in to thipEe IDE.
This allows programmers to easily move between aditing in
a traditional code editor and experimentation \lithse atoms in
the abstract shade tree editor. Eclipse providésnaatic layout
and rendering of graphs, simplifying the impleménta

We render the feature outlines to off-screen bisrepd then
composite them over the tree. Each feature outnendered
with a variation on [Raskar99] as follows: Cleae tbff-screen
bitmap to transparent. For each node in the fegnote that a
node may belong to multiple features, likeesnelin Figure 1),
render a colored, solid, rounded rectarfgbixels larger than the
node itself, wheréis a unique small integer for each feature. The
varying radii keep adjacent features outlines froverlapping.
Likewise, render a thickened line segment for eactow
between two nodes in the feature. Finally, clear ititerior by
rendering the same shape withfan 2 radius and a transparent
fill color, and composite the resulting outline otiee graph.

[vEca T NOR |
[)
NormalTangentToObjectSpace b Y
[vVEca o NOR |
NormalObjectToworldSpace NormalObjectToTangentSpace
[veca wnor | [veca T NOR]
NormalWorldToEyeSpace NormalTangentToObjectSpace
NormalWorldToObjectSpace
[veca ENorR || veca onNor | [veca o NOR |
b
o’ . .

Figure 3: Sample coercion tree mapping the possible paths
through the type rules for coercing a tangent spagenal to an
eye-space normal. Many possible paths are not eghlbecause
the all-left branch leads to a successful coercion.

7. Resaults

Figures 4-7 show abstract shade trees created owitlsystem.
Each figure displays the actual tree as it appieatise authoring
system (left) and the GLSL shader produced by thaver for
that tree (right), superimposed over an image of oject

rendered with that shader. The GLSL output in #slt figures
is color-coded. Light lines of code correspondttnes that have
been inlined. Dim lines correspond to parameteikalie,

coercions, and type macros inferred by the weaver.

Figure 4 is the bumpy glass shader we consider&iure 1.
The full code is given in the Appendix to give anse of the
weaver's output. In allowing non-programmers toeetifvely
create shaders, we have not diminished the impoetaof
programmers on a team but instead focused their Mbte that
most of the output code in the Appendix is necgsdart
uninteresting because it is boilerplate and linkagveen atoms.
This is also true in the other examples. Becausewhaver
assumes the duty of generating the necessary “gbogle,
programmers concentrate on creating and optimizatgm
bodies, which is the interesting part of their rtiat requires
graphics, programming, and mathematical expertise.

The underlying features/effects described in thgtions are
clearly visible in the tree diagrams. Even a noogpagmmer can
see the interaction between features and maniptiiata easily.
In Figures 4 and 7 the features share central natiese they
overlap. To create these, the user dropped theaatepfatures
into the workspace, which created duplicate noddg user then
explicitly combined those common nodes.

7.1. Performance

The result figures demonstrate that shader cre&ieasy in our
system, that the weaver can produce correct GL8le,cand that
the abstract shade tree is both more compact asidret
understand than a traditional tree or code. Themgeed shaders
are efficient; all examples run at hundreds of fiarper second
on a laptop with a Radeon 9700 Mobile GPU.

To compare the performance of the generated codwrid
written code, we hand-wrote an optimized GLSL shddethe
effects in the bumpy glass shader. The manual imgigation
contained only 58 lines of GLSL code compared ®wleaver's
188 lines, which are shown in the appendix. Howeter weaver
generates a lot of comment and variable name |lmkagrhead.

When both shaders are compiled to hardware assenithly
NVIDIA’'s Cg compiler, the weaver’s implementatiomrtains
51 instructions and the manual implementation dnatad6
instructions. Shading every pixel at %B12, the weaver's
implementation achieves 240 fps and the manualemehtation
achieves 245 fps. At 102768, both render at 50 fps. We
conclude that the weaver produces code comparabléhet
written by an experienced shader programmer.

7.2. Limitations

Our system always produces a legal, type-safe anogr
However, there are three ways that program canfatito meet
expectations. The first is that it allows creatioihshaders that
exceed the instruction and register count limits toflay’s
hardware. See Chan et. al [2002] for a multi-pasgtion.

Second, the weaver can produce less efficient tbde a
programmer in cases where a whole-program optiinizais
appropriateg.g, moving all lighting from world space to object
space to avoid repeated per-pixel transformatidms.perform
such an optimizatiorthe compiler would have to both understand

Rarallax Height

R
o

T———

: ¥ '7" t' A *‘ * W

N A5 B s .

Figure 5: Parallax mapping, texture mapping, and Phong
illumination on a teapot.

Figure 6: Anisotropic sp-)ecular reflection with isotropic dise
reflection on the wings of a butterfly.

Figure 7: Projective light, shadow map, and Phong illuminatio

Note the interlacing of features.

spatial transformations at not just a semanticdsubperational
level, and have control over not only the shadilgprthm but
also the host C++ program into which it is integdatThis is
interesting future work but significantly beyondethcope of our
semantic type approach.

The third case, semantic errors, is the most estarg. We
invited laypeople (non-programmers, non-artistsexperiment
with effect creation. After we explained the Ul apdmitives
they were generally able to produce shaders, whkonsider a
great success compared to current tools. Howeway had
difficulty choosing between similar primitives withifferent
types, which often led to inefficient semantic tygmercions for
the desired effects. When the tool failed to predine effect that
the user expected, it was usually because two noslssved
input from the same output when they should hamn lebstinct
(e.g., imagine botModulatenodes linked to inputin Figure 1).
This occurs when the user fails to add sufficieapehdency
arrows and when the dependency is implicit in daloariable.
Like the excessive transformations, missing depecids are a
user error that would likely not occur with reatists; a follow-
up user study will measure the experiences ofachartists.

Incorrect linkage of two primitives to the same lgib
variable only occurs when the common semantic typehe
primitives is too general. Here, fault lies withetiprogrammer
who created the primitives and not the artist @ wWeaver. The
programmer must tread a delicate line, howeveregyfhat are
too specific will never match exactly and require mooercions,
but types that are too general produce incorrectastics. On
one hand, it is a drawback of our system that progners must
spend a lot of thought and time tailoring the ifgtee types. On
the other hand, we argue that interface semantieseractly
where programmers should think hard! We automagditikage,
boilerplate, and coercion precisely so that prognans can focus
on design, which requires human input.

8. FutureWork

Our cost ranking of coercions is based on instoactiount and
intuition. A natural step is to use an actual cyctaint. The
challenge here is that the true time cost of a GRpdration
depends on the instructions surrounding it, cathte,sand the
instruction scheduler.

On the programming language side, we envision &mnsion
to parameterized types like C++ templates, whicluld/@nable
more specific function types than our polymorphisfor
example, we assign the addition operator the tygme xVvEC___
- VEC__, YetVEC_<T>xVEC_<T> . VEC_<T>is more specific.

A formal semantics, type system, and proofs for gystem
will serve as a good case study for the literatomedomain-
specific languages and feature-based programming.

9. Conclusions

We addressed the problem originally noted by Abrand
Whitted by making type mismatches in shaders inptessWe
also enable shader creation by users who do nat éese
knowledge of types, programming concepts like \deis, or the
vector math used to implement algorithms insideatioens.

We presented a new system for authoring complex GPU

programs through automatic combination of primitsieading
functions. In doing so, we extended GLSL with seticartypes
specific to computer graphics in a backwards-coibfgamanner.
We anticipate that GLSL (like assembly language @nbefore
it) will increasingly be produced as the outputaofiigher order
tool. We will propose to the OpenGL architecturaliew board

that semantic types be considered for the langstagedard, for
use by both programmers and other tools like ours.

Our system uses many heuristics to infer parantietieage.
Even with our strong semantic types, it is a natooacern that
the heuristics can produce a legal program withasgim errors.
Fortunately, in graphics a semantic error is eadilggnosed
because the image produced is incorrect. The tnteraditing
context of our Eclipse plug-in and RenderMonkeywi the
shader author to correct the shade tree until dsiretl result is
achieved. We speculate that our methodology iscpjate for
similar domains like image- and audio-filter desigbut
inappropriate for general purpose programming theks easy
feedback and a small set of semantic types.

Our system extends previous work, allowing non-
programmers to more easily create more complexesbatt also
visualizes shaders easy-to-understand block diegrafhe
advantage of abstract shade trees over hand-ctdel@érs or the
one-to-one visual editors will only increase adha@re becomes
ever more capable and the desired shaders
commensurately in complexity. It literally took gnéeconds to
create each of the abstract shade trees for oult régures;
implementing similar shaders by hand in GLSL toskhours of
coding and debugging for each shader. These slead@enples
contain about four effects each. Now consider GBfuke future
that are able to render ten or twenty interactifigces in real-
time. Under today’s workflow, an artist might aslprgrammer
to hand code a different effect combination forrgwabject in a
scene. That will not be feasible when each shadatams
thousands of lines of code. Our tool solves thaaririg problem
by making it not only possible for artists to cee#ttese shaders
themselves but also making the process easy anyladabé.

10. References

ABRAM G. D., WHITTED T. Building block shaders. Computer
Graphics, 24:4, 1990, pp 283—288.

BaTORY D., Feature-Oriented Programming and the {AHEAD}
Tool Suite, ICSE, 2004

BorRAUR., DomIK G., GETzF. An XML-based visual shading
language for vertex and fragment shaders, 3D tdobies for
the World Wide Web, in Proc. 3D Web Tech., 20048@p-97

BATORY D. AND O'MALLEY D., The Design and Implementation of
Hierarchical Software Systems with Reusable Compisne
TOSEM, 1992, 1:4, pp 355—398

Buck ., FOLEY T., HORND., SUGERMAN J., FATAHALIAN K.,
HousTONM., AND HANRAHAN P., Brook for GPUs: Stream
Computing on Graphics Hardware, ACM Trans. on Grap8:3,
2004, pp 777—784

CLEMENTSP. AND NORTHROPL., Software Product Lines: Practices
and Patterns, Addison-Wesley, 2002

CookR. L. Shade Tree$n Proc. Computer Graphics and
Interactive Techniques, July 1984, pp 223—231

CHAN E., NG R., &N, P., RRouDFOOTK., HANRAHAN, P. Efficient
Partitioning of Fragment Shaders for Multipass Reng on Pro-
grammable Graphics Hardware, Graphics Hardware, pp069—78

DuksTRAE. W., A Discipline of Programming, Prentice-Haf76

KiczALES G., LAMPING J., MENDHEKAR A., MAEDA C., LOPESC.
V., LOINGTIERJ.,AND IRWIN J., Aspect-Oriented Programming,
ECOOP, June 1997

McCooL M. D., QN Z., AND POPAT. S.Shader Metaprogramming.
Graphics Hardware, 2002. pp-5%68

increase

75 FLOAT bunp=((texture2D(hei ght Tex, t exCoo) . a) + bunpBi as) *bunpScal e;
McCooLM. D., DuToITS., POPAT., CHAN B., MOULEK., 76 offsetCoo = bump * vec2(vVew t.x, vVewt.y) + texCoo;
. 77 TTT END Par al T axHei ght
Shader Algebra. ACM Trans. on Grap., 23:3, 2004,78F—795 78 bumpCoords = of f set Coo:
79
PARNAsS D. L., On the Criteria To Be Used in Decomposing B Il e b tah g, nor mal Mip
Systems Into Modules, CACM, vol 15, no 12, Dec 19%2 82 //! @eturn vNor t tangent space normal
83 vNor _t = texture2D(nor mal Map, vec2(bunpCoords. x,
1053—1058 84 bunpCoords.y)).xyz* 2.0-1.0;
i i . . . 85 /T END Nor mal Map
PeLLACINI F., User-configurable automatic shader simplifati 8 o ST = vhor i
ACM Trans. Graph., 24:3, 2005, pp 445—452 88 -
89 /1! START Nor mal Tangent ToObj ect Space
.. . 90 /1" @arans tan, bin, nor, nor3T
RAsSkAR R., COHEN M., Image Precision Silhouette Edges, 13D, 9 I A nor 3 o "
— 92 mat 3 mat Nor T20 = nat 3(tan, bin, nor);
1999’ pp 135—140 93 nor3_o = mat Nor T20* nor 3Tnp;
94 /T END Nor mal Tangent ToObj ect Space
TURNERC. R., FUGGETTAA., LAvAZZA L., WOLFA. L., A 95 nordTnp = veca(nor3 0,0.0).
; ; ; 96
Conceptual Basis for Feature Engineering, Jourh8lstems 97 /11 START Normal Obj ect Towr | dSpace
_ 98 /1! @arans mat Nor O2W nor 4Tnp
and Software, vol 49, no 1, Dec 1999, pp 3—15 SIS
. 100 nor4_w = mat Nor 2W nor 4Tnp;
Visual Material Editor, Unreal Engine 3 Whitepap€pic T0T—77TEND Nor mal Cbj ect Tover T dSpace
Corporation 2006 102 vNormal _w = nor4_w. xyz;
' 103
http://www.unrealtechnology.com/html/technology/Qeshtml 104 //! START Reflect
105 //! @arans vincom ng_w, vNormal _w
106 //! @eturn cooRefl w Wrld space reflected vector
H 107 cooRefl _w=normalize(reflect(vlncom ng_w, vNornal _w));
Appendlx . 108 /T END Reflect
GLSL code produced by the weaver from the absshatle tree in 108 etexco ot |
. . . . cubet exCoo = coo W,
Figure 1[Boxed Tines]are hand written node bodigSray linesare 111 -
comments carried through from atom declarationse Témaining 172)1 S0 00N c0 con cupenap
lines are parameter |inkage and coercions gene@tdﬂb weaver. 114 //! @eturn col or FronEvt col or from environnent nap
1 4define VEGE T NOR vec3 115 col or FronmEvt = textureCube(evnt CubeMap, cubetexCoo);
2 #define VEC3_ W vec3 ﬂg 77T END CubeMap
i zgg;: ﬂg zEg zzgﬁ 118 col or FronEvt _444161459=col or Fr onEvt ;
5 #defi ne VEC3 vec3 119 vTnp4 = col or FronEvt _444161459;
i 120
B e VERT_Texvers
8 #defi ne VECA vecd 122 //! @arans vlncom ng_w, vNor mal _w, f resBi as,
9 #define VEC2 X vec2 123 /1! @arans fresScal e, fresPower
10 #define VEG___T vec3 128 /1% Quiti-aspect
11 #defi ne TEXZB_Ea_nBI_ErZD 125 //! @eturn fresnel Ratio Fresnel ratio
12 #define MAT4 mat 4 126 fresnel Ratio = nmax(0.0, m n(1.0, fresBi as+fresScal e*
13 #defi ne vec3 127 pow(1. 0+ dot(nor mal i ze(vl ncom ng_w),
14 #defi ne O NOR vec3 128 nornal i ze(vNormal _w)), resPower)));
15 #def i ne vec3 129 777 END Fresnel
16 #define TEX4D sanpl er Cube 130
17 #define FLOAT fl oat 131 x = fresnel Ratio;
18 uni form FLOAT et aRati o; 132 factor = fresnel Ratio;
19 uni form FLOAT fresPower; 133
20 uni form FLOAT fresScal e; 134 //! START Modul ate
21 uni form FLOAT fresBi as; 135 //! @arans vTnp4, factor
22 uni f orm TEX4D evnt CubeMap; 136 //! @eturn nodQut put
23 varying VEC3___W ___ vilnconming_w, = * .
51 varying ONOR nor ; 137 m):ion put vTnp4*factor;
25 varyi ng fe) bi n: 138 77T END Modulate
26 varyi ng o tans %‘318 nmodQut put _1345567180=npdQut put ;
27 uni f or m MAT4 mat Nor C2W _ .
28 uniform TEX2D nor nal Map; %2% a = nodCut put _1345567180;
29 uni form FLOAT bunpScal e; <
30 uni f orm FLOAT bunpBi as; 143 /]! START Refract
f f . 144 //! @arans vincom ng_w, vNormal_w, etaRatio
31 uni form TEX2D hei ght Tex; |
32 varying VEC3 T vVew t: 145 /]! @eturn cooRefr_w Wrld space refracted vector
33 varyi ng VEC2 ™~ “TEX t exCoo- 146 //! @outine refract
4 - T ' 147 cooRefr_w = nornalize(refract(vlnconing_w, vNormal _w, |
35 //! STARTROUTI NE refract 148 /7T END Refract
36 vec3 refract(vec3 I, vec3 N, float etaRatio) { 149
37 float cosl=dot(-I, 150 cubetexCoo = cooRefr_w;
38 float cosT2=1.0-etaRati o*etaRatio*(1.0-cosl *cosl); 151
39 vec3 T = etaRatio*|+((etaRatio* 152 //! START CubeMap
40 cosl-sqrt(abs(cosT2)))*N); 153 //! @arams cubetexCoo, evntCubeMap
41 return T*vec3(cosT2>0.0); 154 //! @eturn colorFronkEvt color from environnent nap
42 155 col or FronEvt = textureCube(evnt CubeMap, cubetexCoo);
43 77T ENDROUTI NE refract 156 /T END CubeMap
44 . . . 157 col or FronEvt _314286916=col or Fr onEvt ;
ig voi d mai n(voi d) { 158 vTnp4 = col or FronEvt _314286916;
a; 159
47 b; 160 //! START 1-x
48 sum 161 //! @arams X
gg _ nodCut put _1010696501; 162 //! @eturn oneM nus
51 FLOAT oneM nus; 163 on‘eM nus = 1.0-x;
52 _RGB col or FronEvt _314286916; 164 /7T END 1-x
53 TEX cooRefr_w; %gg factor = oneM nus;
28 - VT4 167 //1 START Modul ate
56 " modout put _1345567180; 168 //! @arans vTnp4, factor
57 FLOAT fresnel Rati o; ' 169 //! @eturn nodQut put
58 VEC3 _TEX cubet exCoo 170 nodQutput = vTnp4*factor;
59 col or FromEvt _444161459; 171 /71 END Nodul ate
60 nor 3Tnp; 172 nmodQut put _1010696501=nodQut put ;
61 nor 3_o; 173 b = nmpdOQut put _1010696501;
62 nor 4Tnp; 174
63 nor4_w, 175 /1! START +
64 vNor mal _w; 176 //! @arans a,b
65 cooRefIfw,l 177 //! @eturn sum
gg ~NOR SL’ianCS_ords, 178 sum = a+b;
68 “TEX of f set Coo; 179 /7T END +
69 _ nodQut put ; 180
70 col or FronEvt ; ig]é gI)_Fr agCol or = sum
71
72 /1" START Par al | axHei ght
73 /1! @aranms texCoo,vVew_t, hei ght Tex, bunpBi as, bunpScal e
74 /1" @eturn offsetCoo parallax cords

Shade Tree Abstract Shade Tree

[vertex program | | application |

E» incoming heightMap <ﬂ
P view bumpScale <4

P normal bumpBias <
P tangent normalMap <
binormal envMap
texCoo etaRatio
fresnelBias

Parallax Height

=l

Normal Map
Y
|
T
1 Reﬂect Fresnel Refract
| ‘ « | —
SPN—— I Cube Map Cube Map I
|1anganl to ob|ecl| N A
A A A A
K 7 vy vV V
IMCampDnem reflect refract
Modulate Modula(e
s | — N\

to3Component

Figure 1 Revisited: A conventional Shade Tree (left) for a “Bumpy Gladsader, mocked up in the Visio drawing progr
The equivalent Abstract Shade Tree on the righhiactual screenshot from our shader authgnugin to the Eclipse ID

Parallax Height
s Tl Normalllap

Flgure8 Color result composites of Figures 4-7.

