
Multi-Video Browsing and Summarization

Kevin Dale1 Eli Shechtman2 Shai Avidan3 Hanspeter Pfister1

1Harvard University
{kdale,pfister}@seas.harvard.edu

2Adobe Systems, Inc.
elishe@adobe.com

3Tel-Aviv University
avidan@eng.tau.ac.il

Abstract

We propose a method for browsing multiple videos with
a common theme, such as the result of a search query on
a video sharing website, or videos of an event covered by
multiple cameras. Given the collection of videos we first
align each video with all others. This pairwise video align-
ment forms the basis of a novel browsing interface, termed
the Browsing Companion. It is used to play a primary video
and, in addition as thumbnails, other video clips that are
temporally synchronized with it. The user can, at any time,
click on one of the thumbnails to make it the primary. We
also show that video alignment can be used for other ap-
plications such as automatic highlight detection and multi-
video summarization.

1. Introduction
We are drowning in video. The amount of online video

is growing at such a rapid pace that browsing and search-
ing it is becoming an increasingly frustrating task. At the
same time we are able to easily capture videos with cell
phones and other portable devices any time we like. What
is required are new approaches to summarize video in intel-
ligent ways for faster browsing.

Here we focus on the case of a small collection of multi-
ple videos with a common theme. This case arises naturally
in a number of scenarios–results from a search query on
YouTube, an event covered by multiple cameras, a collec-
tion of clips from a single camera or smart phone taken at
an event, a set of episodes of a TV show, or multiple takes
of the same shot on a film set.

In a pre-processing stage we align all pairs of videos to
each other. This is essentially a search operation that sug-
gests, for every frame in one video (the primary video),
similar frames in each of the other videos (the secondary
videos). At run-time, the user watches a primary video
in a novel user interface we term the Browsing Compan-
ion, that also displays thumbnails from these aligned secon-
daries (see Fig. 1). As a result, the user has access to similar
content at all times, and can switch videos instantaneously,
e.g., to get a better angle of a particular event or to watch
similar events.

Figure 1: The Browsing Companion with a number of
videos from a YouTube search query of “Usain Bolt”. As
the user is watching the race coming to the finish line, she
can easily switch to finishes in other videos.

In this way, the Browsing Companion exposes similar-
ities across videos in a simple way that allows users to
quickly and efficiently find content of interest, and by paral-
lelizing, to some degree, what would otherwise be a tedious,
serial process of exploring the collection, video by video.
We do not expect users to absorb all video streams simul-
taneously. Rather, dynamic secondary thumbnails provide
constantly-updated links to content similar to the primary,
so that, when something of interest is found in the primary
window via typical video navigation controls, the user can
jump to related content from a secondary window. Put an-
other way, with the effort to find something of interest in
a single video, the Browser can locate multiple instances
across multiple videos, automatically and instantaneously.

For example, by finding one monologue in a collection
of Conan OBrien episodes, the user has immediate access
to other monologues and can navigate freely among them.
With the same setup, a different user can immediately hone
in on interview footage, and another, on musical perfor-
mances. Alternatively, consider Usain Bolt, who famously
slowed down right before the finish line during the 100m
final at the 2008 Olympics. Has he slowed down like this

1



in the past? Instead of searching through each YouTube
clip, one at a time, a user can find multiple race finishes si-
multaneously, and even scrub across the finish line with the
playhead slider.

Video alignment provides useful information for other
applications. The key observation we make is that now it
is possible to determine, for each frame, how it relates to
the rest of the entire video collection, not just its own or the
secondary video. This is an important distinction, because
now we can ask questions such as: “Find me a highlight that
is unique within each video, but common across videos”, or
“Generate a summary of the entire video set”.

Our methods for browsing and summarization are in-
tended to augment large-scale video search. For example,
consider YouTube’s search, or its recommendation system,
which provides easy access to videos that are potentially
similar to the current video. Here similarity is only ex-
ploited at the granularity of the video, and the user still must
scan each query result or related video in turn to find rele-
vant content. Alternatively, consider Video Google [Sivic
and Zisserman 2003], a method for video search which first
requires shot boundary detection to split the video(s) into
discrete clips, as well as an explicit example query from the
user, and involves static image previews of search results.
As such, it’s not well-suited to browsing unedited video
with no shot boundaries or exploratory browsing when the
contents of the collection are unknown and a query can’t be
formulated a priori.

Contributions. Novel aspects of the Browsing Compan-
ion include (1) concurrent preview of temporally aligned
videos, which exposes similarities across multiple videos in
a simple way; (2) continuous query-by-example, whereby
the current frame of the primary video serves as an ever-
updating search query, and the aligned secondaries, corre-
sponding real-time results; and (3) dynamic hyperlinks for
video, where these clickable secondary videos provide links
among related video content analagous to hyperlinks in text
documents. Additionally, alignment allows for new modes
of video summarization, particularly (4) our ‘unique-within,
common-across’ video highlight criteria.

2. Related Work
Video search has been actively investigated in recent

years. For example, in Video Google [19] the video is first
indexed and then the user can pick an object/face and get
pointers to other locations in the video with the same ob-
ject. This is suitable for well structured objects (with many
features) but is not ideal for general scenes. The addition of
temporal information was later suggested by [10], but with
an eye towards action recognition.

We, on the other hand, consider search in the context of
browsing. Much existing work on video browsing is limited
to domain-specific applications [23] or focuses on brows-
ing static keyframes extracted after explicit shot boundary

detection [2, 13]. Our approach is broadly applicable to
many different types of video, and we do not assume that
the video is organized in shots, nor do we attempt to detect
shot boundaries.

There are two prevailing approaches to video summa-
rization: key-frame abstraction and video skimming. In
key-frame abstraction, the video is reduced to a collec-
tion of key frames that capture the most “important” as-
pect of the video [8, 9, 1]. Video skimming, in its differ-
ent forms, creates a single or multiple short video clips out
of the original video using multiple cues such as video, au-
dio, and captions [22, 15]. Related methods for adaptive
fast-forward [14, 6] adjust the video’s framerate adaptively
based on content for quick previewing. Other work uses
explicit shot boundary detection as a basis for generating
user-controlled skimming summaries [7]. Summarization
may involve additional highlight detection, which is avail-
able in several commercial products. A leading approach in
this field is to extract visual and possibly audio cues, and
to apply an HMM to detect sports highlights [26] or un-
usual events [27]. Many of these existing summarization
methods apply straightforwardly to the multi-video case.
However, as we will show, multi-video analysis with our
all-pairs alignment method reveals information about a col-
lection that cannot be extracted from single-video methods
alone.

There has also been some work on spatially and tem-
porally aligning two videos, both for sequences captured
simultaneously [5, 24] and for those captured at different
times [17, 25]. Others have utilized pairwise video align-
ment inspired by methods in genomics for duplicate video
detection [4]. These methods are concerned with two videos
of the same scene or action, or two possible duplicates, and
do not consider the case of multiple heterogeneous videos
of similar content that must be aligned, as we do here. Our
alignment is most similar to the use of Dynamic Time Warp-
ing (DTW) for speech alignment in audio [16].

There has also been much work in video analytics on
analysis, detection and retrieval in large video collections.
The focus in this body of work is exemplified by the
TRECVID Video Retrieval Evaluation program [21]. Our
work differs from the TRECVID program and from similar
work in video analytics in that we do not assume a pre-
defined set of topics to learn or search for, or a query video
per-se.

3. Multi-Video Browsing
Multi-Video Browsing consists of three ingredients. A

method for temporally synchronizing a pair of video se-
quences, a frame similarity measure, and a browsing inter-
face that makes use of the alignment information. Fig. 1
gives an example of the Browsing Companion interface.
The main window plays the video selected by the user, the
thumbnails play footage from other videos that are synchro-



time

primary

secondary

aligned
secondary

DCBA

HGFE

H’EEG E F’

Figure 2: Overview of video alignment. Given a primary
and secondary video, the process generates a concatena-
tion of clips from the secondary video that, when played
alongside the primary, shows similar content. Here color
encodes appearance. Clips in the aligned secondary can
be reordered (G), duplicated (E), and abbreviated (F’) with
respect to the original secondary. The output may also con-
tain a best guess (H’) when there are no good matches for
portions of the primary (D).
nized with the primary video. The user can make any of the
secondaries the primary with a click of the mouse, or set the
audio focus to any secondary window to preview that clip
with sound. The key to the interface is that the secondaries
are properly synchronized to the primary through our video
alignment process.

Video alignment. An HMM is a statistical model of
a Markov process with unobserved state. The unobserved
variables are related to their neighbors with a transition
probability matrix, and to a sequence of observed variables.
In the context of video alignment, we model the output
video frames as unobserved random variables that are sam-
pled from a long input video with some transition proba-
bilities to jump from one frame to another. Intuitively this
means that the frame will have high probability to follow its
natural consecutive neighbor from the long video, but also a
small probability for an abrupt transition to a different frame
(a “cut”).

Output video frames should also be similar to the frames
of a reference video (the observed variables) to obtain good
alignment. HMMs can be used both for learning the model
parameters and for doing inference on new examples. For
video alignment we fix the transition matrix and the similar-
ities to the reference sequence to obtain some desired align-
ment properties. We perform inference using the Viterbi al-
gorithm, a variant of dynamic programming, to find the best
alignment between the two video sequences (see Fig. 2).

Formally, let X = X1, · · · , Xn and Y = Y1, · · · , Ym
denote two video sequences (primary X and secondary Y ,
respectively) that we wish to align. We will treat Y as the
states of the HMM andX as the observations. An alignment
of X and Y is a sequence of states (elements of Y ), S =
S1, · · · , Sn. Our goal is to find the sequence S∗ that best
explains the observed sequence X:

S∗ = argmax
S

Pr(S1)

n∏
t=2

Pr(St|St−1)
n∏
t=1

Pr(Xt|St).

(1)

We define observation probabilities based on frame simi-
larity, where Pr(Xt|St) ∝ f(Xt, St) for some similarity
function f . We discuss frame similarity measures in more
detail below . Initial probabilities Pr(St) are uniform. Tran-
sition probabilities are controlled by a single parameter s
such that the probability of frame Yi following Yi−1 is s
times as likely as any other frame. The normalized transi-
tion probabilities are given as

Pr(St|St−1) =
{ s

s+m−1 (St − St−1) mod m = 1,
1

s+m−1 otherwise
(2)

for s in [1,∞).
Intuitively, the parameter s provides control over the

number of cuts in the output; a cut occurs when two consec-
utive frames in the output were taken from non-consecutive
positions in the input secondary. When s = 1, the output se-
quence is determined solely by frame similarity, and the re-
sult is often choppy and unpleasant to watch. When s =∞,
the result is a continuous loop of consecutive frames, start-
ing at some offset; this results in a poor alignment unless the
original timing of the two videos matches very closely. A
value inbetween these two extremes produces a good align-
ment, balancing frame similarity and temporal continuity.
A value of s = 6 works well for a variety of data sets and
is used on all examples in the paper. However the appropri-
ate value for s can vary depending on the structure of the
video; for example, for highly edited video with frequent
cuts, a lower, more permissive value of s may produce bet-
ter results. While the video alignment process operates on
frames, the result can be seen as a concatenation of clips
from the secondary video, with cuts occurring at clip bound-
aries (see Fig. 2). For efficiency, we compute the alignment
at every kth frame instead of every frame; k = 10 for the
examples shown here.

We define the quality of an alignment as the average
frame similarity score between frames in the input sequence
X and the corresponding frames in the aligned result S.
This score is then used to rank the order in which we display
the secondary videos in the Browsing Companion.

Frame similarity measure. The HMM combines a
frame-to-frame similarity measure with temporal continu-
ity. We use a combination of three frame-to-frame similar-
ity measures:

1. Bag-of-words: Each frame is represented as a his-
togram of quantized SIFT [12] features, or visual words.
We extract SIFT features over a regular grid and quantize
to a vocabulary of visual words. We compute vocabularies
for each collection using median shift clustering [18] with a
radius r = 0.5; for the data sets here, this generates vocab-
ularies of approximately 5000 visual words.

2. Spatial pyramid matching: We also use a small visual
word vocabulary and spatial pyramid matching [11]. As
opposed to the bag-of-words model, this approach retains



coarse spatial information about the visual words found in
the image. We use a 50-word vocabulary and a 4-level
square grid, with levels of width 1, 2, 4, and 8.

3. Color histogram: Finally, we compute a coarse 4 ×
10× 10 L*a*b* color histogram for each frame.

For each of the three measures, frame similarity is deter-
mined by cosine similarity between histograms. We use a
convex combination of these three scores as our final frame
similarity measure. We found that weights of {0.4, 0.4, 0.2}
for bag-of-words, spatial pyramid, and color histogram sim-
ilarities, respectively, perform well across a variety of dif-
ferent data sets; we use these weights for all results in the
paper.

There are clearly many other frame similarity measures,
such as motion cues, face detection, or sound that could be
used. However, in this work we focused solely on image ap-
pearance based measures and leave multi-modal frame sim-
ilarity features for future research.

4. Automatic Multi-Video Summaries
In addition to user-assisted browsing, video alignment

also provides useful information to automatically create a
summary of the video collection subject to some relevance
score. For example, the user might want to create a sum-
mary video that is representative of the entire video collec-
tion, or he might want to generate a highlight summary that
covers just the highlights. In fact, as we will show later, the
user can also guide the process by supplying key-frames
that guide the system how to create the summary.

In all cases, we first define a relevance measure for each
frame that relates the frame to the entire video set, and then
use HMM to generate a summary video (composed of sev-
eral clips) that maximize (or minimize) this measure.

Relevance measures. We illustrate these relevance mea-
sures on the problem of automatic highlight detection. One
approach would be to say that unique frames are highlights.
Therefore, all we have to do is find unique frames (or clips)
within each video as is done, for example, by [3]. But the
highlights generated this way are with respect to each video,
and not with respect to the entire video collection. Trying to
overcome this limitation by concatenating all input videos
into one long video and then detecting highlights might pro-
duce undesirable results. For example, in the case of the
Usain Bolt data set, the race is clearly the highlight, but it
appears once in every video and hence will appear multi-
ple times in a concatenated video and therefor will not be
selected as a highlight.

We propose an alternative definition: A highlight is
footage that is unique within each video, but common across
all videos (see Fig. 4). This way we obtain highlights that
are determined by the entire video collection.

Our goal now is to define a highlight score (h-score) that
measures how good is a particular frame as a highlight. And
since the highlight must be unique within its own video and

time

video 1

video 2

video 3

video 4

Figure 4: Overview of highlight detection. Highlights, by
definition, are rare events. However, in this example if we
consider video 1 alone, there is no clear way to distin-
guish between the red and yellow clips as the best highlight.
Only by considering the collection of videos can we robustly
identify relevant unique clips; these highlight clips are rare
within each video but common across all videos. In this ex-
ample, the yellow content occurs only once in any video,
but it occurs in all videos. In this way, multi-video analysis
exposes information not available to existing single-video
summarization methods.

common across multiple videos we need to define two ad-
ditional scores that will help us compute the h-score: A rep-
resentative score (r-score) that measures how common is a
frame across the video set, and a uniqueness score (u-score)
that measures how unique is a frame within its own video.

Representative score. The representative score (r-score)
measures how well a particular frame represents the video
collection. But, what does it mean for a frame to represent
the video collection well? Intuitively, we would like that
this frame of a particular video will be similar to frames in
other videos. If a frame has a high r-score then we say that it
is a representative frame (because we found good matching
frames for it in other videos).

Formally, let Xi
t denote frame t in the ith video and Si,jt ,

frame t in the output of the alignment between primary i
and secondary j. The r-score for frame t in video i is:

rit =
1

v − 1

∑
j∈[1,v]\i

f(Xi
t , S

i,j
t ). (3)

This is simply the per-frame average appearance similarity
score between frames in video i and corresponding frames
from all other videos in the set.

Uniqueness score. Our score for uniqueness follows
common methods for identifying the uniqueness of near-
est neighbors as the ratio of the distances between a query
point and its first and second nearest neighbors [12]. A ra-
tio of 1 occurs when the two neighbors are equidistant from
the query point. When the second nearest neighbor is much
further away, this ratio becomes very small, indicating the
uniqueness of the first neighbor with respect to the rest of
the data set.

In our case, the alignment performed in the previous



video 1 video 3 video 4 video 7 video 8 video 10

time

video 1 video 2 video 3 video 7 video 8

Highlight summary video

Representative summary video
video 9

Figure 3: Automatic summary video generation. Both top and bottom rows show frames extracted from two one minute
summary videos automatically generated from the Bolt data set using different scores. In each example, the labels above
indicate the corresponding frames’ source video. (Top) Optimizing the representative score produces a result that is self-
consistent and captures Usain Bolt in different settings. These frames accurately describe the most common content of the
data set. (Bottom) Optimizing the highlight score finds footage that is unique within each video, but common across all videos.
These results are also consistent with one another and depict highlight race footage. While both groups are self-consistent,
there are no hard constraints that require them to be so, e.g., by encouraging high similarity scores among frames. This is a
property of the data set that is illuminated by our approach.

section for browsing gives, for every primary frame, a
best match, or nearest neighbor, in each of the secondary
videos. To compute a second nearest neighbor, or second
best match, we run the alignment procedure a second time,
ignoring the best match from the previous alignment.

Specifically, we run the video alignment procedure. This
breaks the secondary video into clips that are organized to
best explain the primary video. This gives us a match be-
tween each frame in the primary and a frame in the sec-
ondary. And since each frame in the secondary belongs to a
clip, induced by the alignment, we now have an assignment
of each frame in the primary to a clip in the secondary. Now
we repeat the alignment procedure again, only this time for
each frame in the primary we disallow all frames in the clip
(in the secondary) associated with it. This forces the al-
gorithm on the next iteration to find the second best match
in the secondary video. If we had instead disallowed only
single frames instead of entire clips, the second best match
would likely be one frame before or after the initial match.

To compute a robust uniqueness score for frame t in
video j, we first find the primary video and correspond-
ing frame within that video (i∗, τ∗) to which frame (j, t)
is aligned with the highest similarity score,

i∗, τ∗ = argmax
i,τ |Si,jτ =Xjt

f(Xi
τ , S

i,j
τ ) (4)

While we’re interested in the degree of uniqueness of a
frame with respect to its source video, which is a property
that is independent of the rest of the data set, we still need
a degree of robustness to ensure that the frame (j, t) has at
least some relevance to the rest of the data set. A high value
for the max of Eq. 4 indicates that frame (j, t) occurs at
least once elsewhere in the collection.

Now we use (i∗, τ∗) as a query frame and compute the
ratio of best and second best matches. Let S and S′ denote
our initial and alternate alignments. The uniqueness score
utj of frame t in video j is simply the ratio of similarity
scores between (i∗, τ∗) and (j, t), and between (i∗, τ∗) its
second best match in S′:

ujt =
f(Xi∗

τ∗ , S
i∗,j
τ∗ )

f(Xi∗
τ∗ , S

′i∗,j
τ∗ )

. (5)

Highlight score. The highlight score (h-score) measures
how unique is a frame within its own video (u-score) and
how representative it is, that is how common it is across
videos (r-score). We found that taking a linear combination
of the r-score and u-score gives good results. Specifically,
we define the h-score hit, as

hit = αuit + (1− α)rit (6)

While the parameter α allows fine control over the relative
contributions of the two scores, we found a value of α = 0.5
to work consistently well.

Generating Video Summaries. Once the relevance
measure has been established, we apply the Viterbi algo-
rithm to an unnormalized HMM to obtain a video summary
of a user-specified length. The Viterbi algorithm, which is
a variant of Dynamic Programming, generates a video (that
might consist of a sequence of clips) that maximizes the rel-
evance score we selected. Without it, we would select the
frames with the highest score, but such a video will have
many cuts that will lead to a very choppy and unpleasant
viewing experience. The Viterbi algorithm, on the other
hand, will properly trade smoothness (i.e., minimizing num-
ber of cuts in the output video) against maximizing the rel-
evance score.



time

25s 15s 15s 25s

ou
tp

ut
in

pu
t

Figure 5: User-guided summaries. The original data consists of an 18 minute video of a museum tour, where each exhibit
was visited multiple times. Here the user can quickly generate a summary by selecting a number of key frames (4 in this
case) and their duration (top). The system, in response, will find the best set of clips that match the requested keyframes
and their durations. Observe that the system can choose multiple clips to fit a particular keyframe, or use one clip to match
two consecutive keyframes. The output of this process is a 80 second summary of the original 18 minute video, generated
according to the user specification (extracted frames, bottom). The user can quickly and easily change parameters to generate
alternative summaries.

In a recent work [20], unnormalized HMMs have been
successfully used for classification; the authors acknowl-
edge that unnormalized HMMs can handle a larger class of
problems than standard HMMs. We take advantage of that
here for generating a summary, expressing the framework
as a variation of the HMM for video alignment.

Here we treat all frames in the collection as hidden states
Z1, · · · , Zm, where m is the total number of frames in all
videos. The output of the algorithm is a sequence of states,
S = S1, · · · , Sn, for a user-specified output length n. Since
there is no primary video to act as a guide, unary terms cor-
responding to observation probabilities are simply defined
by the score g(St), where g can be any of the relvance mea-
sures defined above. We have transition affinities (unnor-
malized probabilities) defined similarly to transition proba-
bilities in Eq. 2 to discourage cuts by penalizing transitions
to non-consecutive frames, specifically, for affinities a,

a(St, St−1) =


0 St ≤ St−1
s (St − St−1) = 1,

St, St−1 are from same video
1 otherwise.

(7)
Here we’ve added a monotonicity constraint that enforces
chronological order, which requires that the order of the
clips in the summary video respects their original order in
the input. Without it, the resulting video would just con-
tain the best frame(s) repeated for the duration of the output
video. Transitions from one frame to another that occurred
earlier in the input are disallowed; for such a transition the
affinity is zero. Transition affinities a are defined with the
same parameter s from Section 3 that controls the frequency
of cuts in the final result. The objective function we maxi-
mize here is given as

S∗ = argmax
S

n∏
t=1

g(St)

n∏
t=1

a(St, St−1), (8)

for user-specified output video length n.

Eq. 8 can be solved efficiently with the Viterbi algorithm.
Since we have a lot more frames to select from here than in
alignment, we subsample at a larger interval k than we use
for alignment. This allows us to efficiently summarize large
collections, with a tradeoff in accuracy (e.g., we may miss
very short highlights). The video summary will consist of a
number of clips, taken from different input videos, that give
the best trade-off between maximizing relevance score and
minimizing the number of cuts, and it can quickly inform
the user about the contents of the data set. Additionally,
video summaries can be used as a jump off point for explor-
ing the collection inside the browsing companion.

5. User-Guided Summaries
We can use similar methods to generate semi-automatic,

i.e., user-guided summaries. This alternative approach gives
the user some degree of control over the output. For exam-
ple, this is a convenient tool to quickly create a short sum-
mary of a long family video. The user simply selects a cou-
ple of key frames and their duration, which are treated as a
primary “video”. Then we can align the original, long video
to this primary video to obtain a user-assisted summary.

In this application, both the observations and hidden
states Z1, · · · , Zm correspond to frames in the data set.
The algorithm takes as input a sequence of (keyframe,
duration) pairs. A sequence of observations is first con-
structed from these pairs. For example, if the input
was (3, 2), (4, 1), (1, 2), the observed sequence would be
Z3, Z3, Z4, Z1, Z1. Each (keyframe, duration) pair pro-
duces a clip, or a number of clips, of the given duration
that will match the keyframe.

Let X = X1, · · · , Xn denote such a user-specificed ob-
served sequence of length n. Unary terms are defined by
appearance similarity between the corresponding keyframe
and output frame, f(Xt, St). The transition affinities are
defined similarly to those in Eq. 7 with one minor change–
at keyframe segment boundaries, we relax the monotonicity
constraint. This allows control over if, and when, certain



data set description # hh:mm:ss
bolt from YouTube, query “Usain Bolt” 11 00:30:15

conan The Tonight Show with Conan O’Brien 10 07:13:51
runway Project Runway: Season Five 28 10:46:07
chopper American Chopper: Season Six 15 06:30:33

hawaii travel videos on Hawaii 8 01:58:15
museum home video of a museum tour 1 00:18:27

Table 1: Description, number of videos, and total duration
for data sets used in the paper.

content is repeated, since chronological order will be en-
forced within segments but not across them. Affinities are
given as:

a(St, St−1) =


0 St ≤ St−1,

t− 1 not last in segment
s (St − St−1) = 1,

St, St−1 from same video
1 otherwise

(9)

6. Discussion
Implementation details. Each pairwise alignment of a

length n primary and length m secondary with the Viterbi
algorithm is O(nm2); in our implementation, this is as lit-
tle as 5 seconds for a pair from the Bolt data set, and as
much as 80 minutes for two full Conan episodes. As a re-
sult, it takes 15 minutes to align all the Bolt videos, and 120
hours for the Conan data. We use a cluster to parallelize
the process. Descriptor generation, done once per video,
is also performed on the cluster. The Browsing Compan-
ion is implemented in Adobe Flash; videos are assembled
and streamed interactively from a RTMP server based on a
sequence of secondary clip requests from the client.

Relevance scores are simple and very quick to generate.
Generating a video summary takesO(mn2), wherem is the
number of frames in the source video or video collection,
and n is the output video length. For the video summary
examples shown here (Fig. 3) we sub-sample at k = 10.
Generating a 1-minute video summary for the Bolt set takes
less than two minutes, and less than a minute for the Mu-
seum data. Generating the summary does not require as
much precision as alignment in terms of placing cuts for the
amateur user, nor does it require sub-second accuracy, so a
larger k can easily be used to generate good summaries for
larger data sets.

Results. Table 1 lists the data sets used in the paper,
which vary significantly in source, content, quality, and
size. In all cases, we’ve used the same frame descriptors
and system parameters. Alignment examples can be seen in
Figs. 6 and 1. Please see the companion video for screen
captures of the Browser. Fig. 3 shows a result for auto-
matic summary generation on the Bolt data set using both
the representative and highlight score. Fig. 5 shows the re-
sult of our user-assisted video summarization. For small
input data or for larger inputs sufficiently sub-sampled, our

Conan, standing

Conan, seated

Conan & guestguest

guest entrance

Andy Richter
performance

credits0

0.2

0.4

0.6

0.8

1

 

 
Our method (s=6)
Frame similarity only (s=1)

Best offset (s=  )
Random

Figure 7: Classification rates on the Conan O’Brien data
set using our method (purple), frame similarity only (teal),
best offset (yellow), and random assignment (brown) for
alignment. As can be seen, our method consistently out-
performs the other methods.

method can be used to quickly generate user-guided sum-
maries as part of an iterative editing process.

Alignment validation. In a simple experiment, we first
extracted frames from the Conan data set at 10 second inter-
vals, then used Amazon’s Mechanical Turk to obtain ground
truth class labels for all 2606 frames from among 8 classes.
We then performed leave-one-out cross validation, com-
paring known assignments for each frame against the con-
sensus classification among the (v − 1) aligned secondary
frames, where consensus is taken to be the mode.

We repeated the experiment with four different align-
ment methods, including random frame matching, align-
ment with frame similarity only (s = 1), alignment by find-
ing the single best offset (s =∞), and our method (s = 6).
Our method offers a nice trade-off between frame similarity
and continuity, where it produces far fewer cuts than frame
similarity alone, while matching content significantly better
than a simple offset (Fig. 7).

Some observations are in order. First, our method per-
forms the best, even better than the frame-similarity-only
measure. This is because our method benefits from larger
temporal support for identifying longer segments that leads
to more robust matching. However, this temporal support
respects transitions; we get smoothing from the HMM but
are still able to transition with precision in the alignment (as
is demonstrated in the accompanying video). Of particular
interest is the “credits” class; portions of the opening credits
vary from episode to episode, depending on, e.g., who the
guests are that night, but a lot of the credits stay the same;
this was enough for our method to correctly classify a much
larger percentage of the frames.

Limitations. Ours is a simple appearance model based
on similar-scene matching over the entire frame, using de-
scriptors that have been successfully applied to classifica-
tion and similar-scene matching. With this model, we focus
primarily on data sets with strong spatial structure, where
the foreground is highly correlated with the background and
camera view. This is a result of the similarity measure used
in our implementation and not of the browser or summa-



(a) conan (b) runway (c) chopper (d) hawaii

Figure 6: Some alignment examples. Please see the accompanying video for more results.

rization method, as this measure works best for whole-scene
matching, not foreground matching alone. Our approach is
orthogonal to choice of similarity measure, and in a produc-
tion setting, a user could simply specify which measure to
use for a particular task, choosing to browse or summarize
based on similarity of foreground object, face, or action, or
background, or a combination thereof.

When browsing with a given primary video, irrelevant
content in secondary windows can appear for a number of
reasons. This will occur when the appearance model fails
to give high similarity scores to relevant content in other
videos, or when very short segments of the primary are ig-
nored in favor of smoothness in the HMM. It will also occur
when there is no similar content in the collection. Addition-
ally, we only show a fixed set of aligned secondary videos
for a given primary; when there is locally relevant content
in a lower-ranked secondary video, it will not be shown.

Acknowledgements. The authors thank Lior Shapira for
providing source code and acknowledge support by the Na-
tional Science Foundation under Grant No. PHY-0835713.

References
[1] A. Aner and J. Kender. Video summaries through mosaic-

based shot and scene clustering. In Proc. ECCV, 2002. 2
[2] F. Arman, R. Depommier, A. Hsu, and M.-Y. Chiu. Content-

based browsing of video sequences. In Proc. ACM Multime-
dia, 1994. 2

[3] O. Boiman and M. Irani. Detecting irregularities in images
and in video. IJCV, 74(1):17–31, 2007. 4

[4] A. M. Brontein, M. M. Bronstein, and R. Kimmel. The video
genome, March 2010. arXiv:1003.5320v1. 2

[5] Y. Caspi and M. Irani. Spatio-temporal alignment of se-
quences. PAMI, 24(11):1409–1424, 2002. 2

[6] K.-Y. Cheng, S.-J. Luo, B.-Y. Chen, and H.-H. Chu. Smart-
player: User-centric video fast-forwarding. In Proc. CHI,
2009. 2

[7] S. H. Cooray, H. Bredin, L.-Q. Xu, and N. E. O’Connor. An
interactive and multi-level framework for summarising user
generated videos. In Proc. ACM Multimedia, 2009. 2

[8] F. Daufaux. Key frame selection to represent a video. In
Proc. ICIP, 2000. 2

[9] D. DeMenthon, V. Kobla, and D. Doermann. Video sum-
marization by curve simplification. Proc. ACM Multimedia,
1998. 2

[10] I. Laptev and P. Perez. Retrieving actions in movies. In Proc.
ICCV, 2007. 2

[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In Proc. CVPR, 2006. 3

[12] D. G. Lowe. Object recognition from local scale-invariant
features. In Proc. ICCV, 1999. 3, 4

[13] X. Mu. A content-based video browsing system based on
visual neighbor similarity. In Proc. JCDL, 2006. 2

[14] N. Petrovic, N. Jojic, and T. Huang. Adaptive video fast
forward. Multimedia Tools and Applications, 2005. 2

[15] Y. Pritch, A. Rav-Acha, and S. Peleg. Non-chronological
video synopsis and indexing. PAMI, 30(11):1971–1984,
2008. 2

[16] L. Rabiner and B.-H. Juang. Fundamentals of speech recog-
nition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1993. 2

[17] P. Sand and S. Teller. Video matching. ACM Trans. Graph.
(Proc. SIGGRAPH), 22(3), 2004. 2

[18] L. Shapira, S. Avidan, and A. Shamir. Mode-detection via
median-shift. In Proc. ICCV, 2009. 3

[19] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Proc. ICCV, 2003.
2

[20] A. Sloin and D. Burshtein. Support vector machine training
for improved hidden markov modeling. IEEE Trans. Signal
Processing, 56(1):172–188, 2008. 6

[21] A. F. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns
and TRECVID. In Proc. MIR, 2006. 2

[22] M. A. Smith and T. Kanade. Video skimming and charac-
terization through the combination of image and language
understanding techniques. In Proc. CVPR, 2001. 2

[23] D. Tjondronegoro, Y.-P. P. Chen, and B. Pham. Content-
based video indexing for sports applications using integrated
multi-modal approach. In Proc. ACM Multimedia, 2005. 2

[24] T. Tuytelaars and L. V. Gool. Synchronizing video se-
quences. In Proc. CVPR, 2004. 2

[25] Y. Ukrainitz and M. Irani. Aligning sequences and actions by
maximizing spacetime correlations. In Proc. ECCV, 2006. 2

[26] J. Wang, C. Xu, E. Chng, K. Wah, and Q. Tian. Automatic
replay generation for soccer video broadcasting. In Proc.
ACM Multimedia, 2004. 2

[27] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan.
Semi-supervised adapted HMMs for unusual event detection.
In Proc. CVPR, 2005. 2


