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Abstract

This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume
visualization. Modern techniques in this field have brought about a sea change in how interactive visualization
and analysis of giga-, tera-, and petabytes of volume data can be enabled on GPUs. In addition to combining the
parallel processing power of GPUs with out-of-core methods and data streaming, a major enabler for interactivity
is making both the computational and the visualization effort proportional to the amount and resolution of data that
is actually visible on screen, i.e., “output-sensitive” algorithms and system designs. This leads to recent output-
sensitive approaches that are “ray-guided,” “visualization-driven,” or “display-aware.” In this survey, we focus on
these characteristics and propose a new categorization of GPU-based large-scale volume visualization techniques
based on the notions of actual output-resolution visibility and the current working set of volume bricks—the
current subset of data that is minimally required to produce an output image of the desired display resolution. For
our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques
that we do not discuss in detail but that can be used in conjunction with what we discuss in this survey.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—I.3.3 [Computer Graphics]: Picture/Image Generation—Display algorithms

1. Introduction

Visualizing volumetric data plays a crucial role in scien-
tific visualization and is an important tool in many domain
sciences such as medicine, biology and the life sciences,
physics, and engineering. The developments in GPU tech-
nology over the last two decades, and the resulting vast par-
allel processing power, have enabled compute-intensive op-
erations such as ray-casting of large volumes at interactive
rates. However, in order to deal with the ever-increasing res-
olution and size of today’s volume data, it is crucial to use
highly scalable visualization algorithms, data structures, and
architectures in order to circumvent the restrictions imposed
by the limited amount of on-board GPU memory.

Recent advances in high-resolution image and volume ac-
quisition, as well as computational advances in simulation,
have led to an explosion of the amount of data that must be
visualized and analyzed. For example, high-throughput elec-
tron microscopy can produce volumes of scanned brain tis-
sue at a rate above 10-40 megapixels per second [BLK∗11],
with a pixel resolution of 3-5 nm. Such an acquisition pro-
cess produces almost a terabyte of raw data per day. For
the next couple of years it is predicted that new multi-
beam electron microscopes will further increase the data ac-
quisition rate by two orders of magnitude [Hel13, ML13].

This trend of acquiring and computing more and more data
at a rapidly increasing pace (“Big Data”) will continue in
the future [BCH12]. This naturally poses significant chal-
lenges to interactive visualization and analysis. For exam-
ple, many established algorithms and frameworks for vol-
ume visualization do not scale well beyond a few giga-
bytes, and this problem cannot easily be solved by simply
adding more computing power or disk space. These chal-
lenges require research on novel techniques for data visual-
ization, processing, storage, and I/O that scale to extreme-
scale data [MWY∗09, AAM∗11, BCH12].

Today’s GPUs are very powerful parallel processors that
enable performing compute-intensive operations such as
ray-casting at interactive rates. However, the memory sizes
available to GPUs are not increasing at the same rate as
the amount of raw data. In recent years, several GPU-based
methods have been developed that employ out-of-core meth-
ods and data streaming to enable the interactive visualiza-
tion of giga-, tera-, and petabytes of volume data. The cru-
cial property that enables these methods to scale to extreme-
scale data is their output-sensitivity, i.e., that they make both
the computational and the visualization effort proportional
to the amount of data that is actually visible on screen (i.e.,
the output), instead of being proportional to the full amount
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of input data. In graphics, the focus of most early work on
output-sensitive algorithms was visibility determination of
geometry (e.g., [SO92, GKM93, ZMHH97]).

An early work in output-sensitive visualization on GPUs
was dealing with 3D line integral convolution (LIC) volumes
of flow fields [FW08]. In the context of large-scale volume
visualization, output-sensitive approaches are often referred
to as being ray-guided (e.g., [CNLE09, Eng11, FSK13]) or
visualization-driven (e.g., [HBJP12, BHAA∗13]). These are
the two terms that we will use most in this survey.

We use the term visualization-driven in a more general
and inclusive way, i.e., these methods are not necessarily
bound to ray-casting (which is implied by “ray-guided”),
and they can encompass all computation and processing of
data in addition to rendering. In principle, the visual out-
put can “drive” the entire visualization pipeline—including
on-demand processing of data—all the way back to the
raw data acquisition stage [HBJP12,BHAA∗13]. This would
then yield a fully visualization-driven pipeline. However, to
a large extent these terms can be used interchangeably.

Another set of output-sensitive techniques are display-
aware multi-resolution approaches (e.g., [JST∗10, JJY∗11,
HSB∗12]). The main focus of these techniques is usually
output-sensitive computation (such as image processing)
rather than visualization, although they are also guided by
the actual display resolution and therefore the visual output.

Ray-guided and visualization-driven visualization tech-
niques are clearly inspired by earlier approaches for oc-
clusion culling (e.g., [ZMHH97, LMK03]) and level of de-
tail (e.g., [LHJ99, WWH∗00]). However, they have a much
stronger emphasis on leveraging actual output-resolution
visibility for data management, caching, and streaming—in
addition to the traditional goals of faster rendering and anti-
aliasing. Very importantly, actual visibility is determined on-
the-fly during visualization, directly on the GPU.

1.1. Survey Scope

This survey focuses on major scalability properties of vol-
ume visualization techniques, reviews earlier GPU vol-
ume renderers, and then discusses modern ray-guided and
visualization-driven approaches and how they relate to and
extend the standard visualization pipeline (see Figure 1).
Large-scale GPU volume rendering can be seen as being
in the intersection of volume visualization and high perfor-
mance computing. General introductions to these two topics
are given in books on real-time volume graphics [EHK∗06]
and high performance visualization [BCH12], respectively.

We mostly focus on techniques for stand-alone worksta-
tions with standard graphics hardware. We see the other
core topics of high performance visualization (i.e., paral-
lel rendering on CPU/GPU clusters, distributed visualization
frameworks, and remote rendering) as an orthogonal set of

techniques that can be used in combination with modern ray-
guided, visualization-driven, and display-aware techniques
as discussed here. Therefore, for more details on parallel vi-
sualization we refer the reader to previous surveys in this
area [Wit98,BSS00,ZSJ∗05]. Nonetheless, where parallel or
distributed rendering methods do directly relate to our course
of discussion we have added them to our exposition.

We focus on volume rendering of regular grids and mostly
review methods for scalar data and a single time step. How-
ever, the principles of the discussed scalable methods are
general enough that they also apply to multi-variate, multi-
modal, or time series data. For a more in-depth discussion
of the visualization and visual analysis of multi-faceted sci-
entific data we refer the reader to a recent comprehensive
survey [KH13]. Other related recent surveys can be found
on the topics of compression for GPU-based volume render-
ing [RGG∗13], and massive model visualization [KMS∗06].

1.2. Survey Structure

This survey gives an overview of the current state of the
art in large-scale GPU volume visualization. Starting from
the standard visualization pipeline in Section 2, we discuss
required modifications and extensions to this pipeline to
achieve scalability with respect to data size (see Figure 1).

We continue by examining general scalability issues and
how they relate to and are used in volume visualization
(Section 3). This includes scalable data structures as well
as data layout and compression for efficient data access on
disk (Section 3.1). Next, we discuss different approaches
for partitioning data and/or work to achieve scalable per-
formance, from potentially in-core domain decomposition to
out-of-core approaches (Section 3.2), before describing dif-
ferent ways to reduce the computational load, focusing on
on-demand processing, streaming, and in-situ visualization
approaches (Section 3.3).

Section 4 discusses recent advances in large-scale volume
rendering in depth, starting with a review of traditional GPU
volume rendering techniques and their limitations.

We focus on the characteristics of recent ray-guided,
visualization-driven, and display-aware techniques (Sec-
tion 4.1). To reflect and emphasize these recent advances,
we propose a new categorization of GPU-based large-scale
volume visualization techniques (Table 3) based on the no-
tion of the active working set—the current subset of data
that is minimally required to produce an output image of the
desired display resolution.

We discuss methods for determining the working set, i.e.,
culling (Section 4.2), GPU data structures for storing the
working set (Section 4.3), and the actual ray-casting meth-
ods for rendering the working set (Section 4.4).

Finally, we review the major challenges and current limi-
tations and give an outlook on future trends and open prob-
lems in large-scale GPU volume visualization (Section 5).
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Figure 1: The visualization pipeline for large-scale visualization. Data are generated on the left (either through acquisi-
tion/measurement or through computation/simulation) and then pass through a sequence of stages that culminate in the desired
output image. The related high-level aspects with respect to scalability of interactive volume rendering are highlighted in the
bottom row. A ray-guided or visualization-driven approach can drive earlier pipeline stages so that only what is required by
(visible in) the output image is actually loaded or computed. In a fully visualization-driven pipeline, this approach can be
carried through from rendering (determining visibility) on the right all the way back to data acquisition/simulation on the left.

2. Fundamentals

We first introduce a few basic concepts and give a conceptual
overview of the visualization pipeline with respect to large-
scale volume visualization.

2.1. Basic Concepts

Large-scale visualization. In the context of this survey,
large-scale visualization deals with volume data that do not
completely fit into memory. In our case, the most important
memory type is GPU on-board memory, but scalability must
be achieved throughout the entire memory hierarchy. Most
importantly, large-scale volume data cannot be handled di-
rectly by volume visualization techniques that assume that
the entire volume is resident in memory in one piece.

Bethel et al. [BCH12] (Chapter 2) define large data based
on three criteria: They are too big to be processed: (1) in
their entirety, (2) all at one time, and (3) exceed the avail-
able memory. Scalable visualization methods and architec-
tures tackle either one or a combination of these criteria.

Scalability. In contrast to parallel/distributed visualization,
where a major focus is on strong vs. weak scaling [CPA∗10],
we define scalability in terms of output-sensitivity [SO92].
Our focus are algorithms, approaches, and architectures that
scale to large data by making the computation and visual-
ization effort proportional to both the visible data on screen
and the actual screen resolution. If the required size of the
working set of data is independent of the original data size,
we say that an approach is scalable in this sense.

Scalability issues. Based on the notion of large data, the
main scalability issues for volume rendering deal with ques-
tions on how to represent data, how to split up the work
and/or data to make it more tractable, and how to reduce the
amount of work and/or data that has to be handled. Table 1

lists these main issues and the general methods that are used
in large-scale visualization to handle them.

Acceleration techniques vs. data size. A common source of
confusion when discussing techniques for scalable volume
rendering is the real goal of a specific optimization tech-
nique. While many of the techniques discussed in this sur-
vey were originally proposed as performance optimizations,
they can also be adapted to handle large data sizes. A well-
known example of this are octrees. While octrees are often
used in geometry rendering to speed up view frustum culling
(via hierarchical/recursive culling), an important goal of us-
ing octrees in volume rendering is to enable adaptive level
of detail [WWH∗00], in addition to enabling empty space
skipping. This “dual” purpose of many scalable data struc-
tures and algorithms is an important issue to keep in mind.

Output-sensitive algorithms. The original focus of output-
sensitive algorithms [SO92] was making their running time
dependent on the size of the output instead of the size of
the input. While this scalability in terms of running time is
of course also important in our context, for the work that
we discuss here, it is even more important to consider the
dependence on output “data size” vs. input data size, using
the concept of the working set as described above.

Ray-guided and visualization-driven architectures. In
line with the concepts outlined above, these types of archi-
tectures focus most of all on data management (processing,
streaming, caching) rather than only on rendering. While
ray-casting intrinsically could be called “ray-guided,” this
by itself is not very meaningful. The difference to stan-
dard ray-casting first arises from how and which data are
streamed into GPU memory, i.e., ray-guided streaming of
volume data [CNLE09]. Again considering the working set,
a ray-guided approach determines the working set of volume
bricks via ray-casting. That is, the working set comprises the
bricks that are intersected during ray traversal. It is common
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scalability issues scalable methods section
data multi-res. data structures Sec. 3.1.2

representation data layout, compression Sec. 3.1.3
work/data in-core/out-of-core Sec. 3.2.2

partitioning parallel/distributed Sec. 3.2.3
pre-processing Sec. 3.3.1

work/data on-demand processing Sec. 3.3.2
reduction streaming Sec. 3.3.3

in-situ visualization Sec. 3.3.4
query-based visualization Sec. 3.3.5

Table 1: Scalability considerations in large-scale volume
visualization. Scalability issues, the corresponding methods
to tackle them, and where they are covered in this survey.

to determine the desired level of detail, i.e., the (locally) re-
quired volume resolution, during ray-casting as well.

In this way, data streaming is guided by the actual vis-
ibility of data in the output image. This is in contrast to
the approximate/conservative visibility obtained by all com-
mon occlusion culling approaches. As described in the intro-
duction, visualization-driven architectures generalize these
concepts further to ultimately drive the entire visualization
pipeline by actual on-screen visibility [HBJP12,BHAA∗13].

2.2. Large-Scale Visualization Pipeline

A common abstraction used by visualization frameworks is
the visualization pipeline [Mor13]. In essence, the visualiza-
tion pipeline is a data flow network where nodes or mod-
ules are connected in a directed graph that depicts the data
flow throughout the system (see Figure 1). After data ac-
quisition or generation through computation/simulation, the
first stage usually consists of some kind of data processing,
which can include many sub-tasks from data pre-processing
(e.g., computing a multi-resolution representation) to filter-
ing. The second half of the pipeline comprises the actual vi-
sualization, including visualization mapping and rendering.

For large-scale rendering, all the stages in this pipeline
have to be scalable (i.e., in our context: output-sensitive), or
they will become the bottleneck for the entire application.
The bottom part of Figure 1 shows the main techniques em-
ployed by state-of-the-art visualization-driven pipelines to
achieve this scalability: Multi-resolution and compact data
representations, on-demand processing based on the visible
subset currently in view, acceleration data (e.g., for faster ray
traversal or empty space skipping), and ray-guided rendering
with dynamic ray traversal.

Table 1 gives an overview of the most important scalabil-
ity aspects of large-scale visualization frameworks that we
will use later. Actual scalability also depends on how dy-
namically and accurately the working set is determined, how
volumes are represented, and how ray traversal is performed.
We discuss individual visualization methods in Section 4.

3. Basic Scalability Techniques

This section introduces the main considerations and tech-
niques for designing scalable volume visualization archi-
tectures in general terms. In real-world applications, these
strategies for handling and rendering large data often have
to be combined to achieve interactive performance and high-
quality images.

For future ultra-scale visualization and exa-scale comput-
ing [ALN∗08,SBH∗08,MWY∗09,AAM∗11,Mor12] it is es-
sential that each step of the visualization pipeline is fully
scalable.

3.1. Data Representation and Storage

Efficient data representation is a key requirement for scal-
able volume rendering. Scalable data structures should be
compact in memory (and disk storage), while still being ef-
ficient to use and modify. Table 2 lists common related data
structures and their scalability aspects. Additional GPU rep-
resentations of these data structures, as they are used for ren-
dering, are discussed in Section 4.4.

3.1.1. Bricking

Bricking is an object space decomposition method that sub-
divides the volume into smaller, box-shaped sub-volumes,
or bricks. Commonly, all bricks have the same size in vox-
els (e.g., 323 or 2563 voxels per brick). Volumes that are not
a multiple of the basic brick size are padded accordingly.
Bricking facilitates out-of-core approaches because individ-
ual bricks can be loaded and rendered as required, without
having to load/stream the volume in its entirety.

Bricked data usually require special handling of brick
boundaries. Operations where neighboring voxels are re-
quired (e.g., GPU texture filtering, gradients) usually return
incorrect results at brick boundaries, because the neighbor-
ing voxels are not readily available. The correct voxels can
be fetched from the neighboring bricks [Lju06a], which is
costly. More commonly, so-called ghost voxels [ILC10] are
employed, which are duplicated voxels at the brick bound-
aries that enable straightforward, correct filtering. The use of
ghost voxels is the standard approach in most bricked ray-
casters [BHWB07, FK10]. Ghost voxels are usually stored
with each brick on disk, but they can also be computed on-
the-fly in a streaming fashion [ILC10].

The recent OpenGL extension for virtual texturing
(GL_ARB_sparse_texture) includes hardware support
for texture filtering across brick boundaries and thus allevi-
ates the need for ghost voxels.

Choosing the optimal brick size depends on several crite-
ria and has been studied in the literature [HBJP12, FSK13].
Small bricks support fine-grained culling, which results in
smaller working sets. However, the ghost voxel overhead
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Data Structure Acceleration Out-of-Core Multi-Resolution
mipmaps no [except level of detail] clipmaps [TMJ98] yes
octrees / kd-trees hierarchical traversal/culling working set (subtree) yes
uniform grids/bricking (linear) culling of bricks working set (bricks from grid) no
hierarchical grids/bricking (hierarchical) culling of bricks working set (bricks from hierarchy) yes

Table 2: Scalable data structures for volume visualization. Our categorization is based on their support for acceleration
(skipping, culling), out-of-core processing/rendering, and support for multi-resolution rendering (i.e., adaptive level of detail).

grows for smaller bricks, and the total number of bricks in-
creases as well. The latter makes a multi-pass rendering ap-
proach where each brick is rendered individually infeasible.

Typically, traditional multi-pass out-of-core volume ren-
derers use relatively large bricks (e.g., 1283 or 2563) to re-
duce the number of required render passes. In contrast, mod-
ern single-pass ray-casters use smaller bricks (e.g., 323), or
a hybrid approach where small bricks are used for render-
ing and larger bricks are used for storage on disk [HBJP12,
FSK13]. For 2D data acquisition modalities such as mi-
croscopy, hybrid 2D/3D tiling/bricking strategies have also
been employed successfully, for example via on-demand
computation of 3D bricks from pre-computed 2D mipmap
tiles during visualization [HBJP12, BHAA∗13].

3.1.2. Multi-Resolution Hierarchies

One of the main benefits of multi-resolution hierarchies for
rendering large data is that they allow sampling the data from
a resolution level that is adapted to the current screen reso-
lution or desired level of detail. This reduces the amount of
data to be accessed and also avoids aliasing artifacts due to
undersampling.

Trees (octrees, kd-trees). Octrees [WWH∗00, Kno06] and
kd-trees [FCS∗10] are very common 3D multi-resolution
data structures for direct volume rendering. They allow
efficient traversal and directly support hierarchical empty
space skipping. Traditional tree-based volume renderers em-
ploy a multi-pass rendering approach where one brick (one
tree node) is rendered per rendering pass. Despite the hi-
erarchical nature of these data structures, many early ap-
proaches assume that the entire volume fits into mem-
ory [LHJ99, WWH∗00, BNS01]. Modern GPU approaches
support traversing octrees directly on the GPU [GMG08,
CNLE09, CN09, RTW13], which is usually accomplished
via standard traversal algorithms from the ray-tracing litera-
ture [AW87, FS05, HSHH07, PGS∗07, HL09].

In recent years, sparse voxel octrees (SVOs) have gained a
lot of attention in the graphics and gaming industry [LK10a,
LK10b]. Several methods for rendering large and complex
voxelized 3D models use SVO data structures for efficient
rendering [GM05, R0̈9, HN12, Mus13].

Mipmaps are a standard multi-resolution pyramid repre-
sentation that is very common in texture mapping [Wil83].

Mipmaps are supported by virtually all GPU texture units.
Clipmaps [TMJ98] are virtualized mipmaps of arbitrary size.
They assume a moving window (like in terrain rendering)
that looks at a small sub-rectangle of the data and use a
toroidal updating scheme for texels in the current view.

Hierarchical grids with bricking. Another type of multi-
resolution pyramids are hierarchical grids where each reso-
lution level of the data is bricked individually. These grids
have become a powerful alternative to octrees in recent ray-
guided volume visualization approaches [HBJP12, FSK13].
The basic approach can be viewed as bricking each level of a
mipmap individually. However, more flexible systems do not
use hardware mipmaps and therefore allow varying down-
sampling ratios between resolution levels [HBJP12]—e.g.,
for anisotropic data—which is not possible with mipmaps.

Since there is no tree structure in such a grid type, no
tree traversal is necessary during rendering. Rather, the
entire grid hierarchy is viewed as a huge virtual address
space (a virtual texture), where any voxel corresponding
to data of any resolution can be accessed directly via ad-
dress translation from virtual to physical addresses [vW09,
BHL∗11, OVS12]. On GPUs, this address translation can
be performed via GPU “page tables,” which is also possi-
ble in a multi-level way for extremely large data [HBJP12]
(see Section 4.4.1). As in the case of bricking with uni-
form grids, interpolation between bricks has to be handled
carefully. Especially transitions between different resolu-
tion levels can introduce visual artifacts, and several meth-
ods have been introduced that deal with correct interpola-
tion [Lju06a, Lju06b, BHMF08].

Wavelet representations. Muraki [Mur93] first introduced
wavelet transforms for volume rendering. Subsequent meth-
ods such as Guthe et al. [GGSe∗02, GS04] compute a hier-
archical wavelet representation in a pre-process and decom-
press the bricks required for rendering

Other representations. Younesy et al. [YMC06] have pro-
posed improving the visual quality of multi-resolution vol-
ume rendering by approximating the voxel data distribution
by its mean and variance at each level of detail. The recently
introduced sparse pdf maps represent the data distribu-
tion more accurately, allowing for the accurate, anti-aliased
evaluation of non-linear image operators on gigapixel im-
ages [HSB∗12]. The corresponding data structure is very
similar to standard mipmaps in terms of storage and access.
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3.1.3. Data Layout and Compression

Data layout. To efficiently access data on disk, data lay-
out and access are often optimized. In general, reading
small bits of data at randomly scattered positions is a lot
more inefficient than reading larger chunks in a continu-
ous layout. Therefore, locality-preserving data access pat-
terns such as space filling curves, e.g., Morton (z-) or-
der [Mor66] are often used in time-critical visualization
frameworks [SSJ∗11]. A nice feature of the Morton/z-order
curve is that by adjusting the sampling stride along the curve,
samples can be restricted to certain resolution levels. Pas-
cucci and Frank [PF02] describe a system for progressive
data access that streams in missing data points for higher
resolutions. With the most recent solid state drives (SSDs),
however, trade-offs might be different in practice [FSK13].

Data compression. Another major related field is data com-
pression, for disk storage as well as for the later stages of
the visualization pipeline. We refer to the recent compre-
hensive survey by Rodriguez et al. [RGG∗13] for an in-
depth discussion of the literature on volume compression
and compression-domain volume rendering.

3.2. Work/Data Partitioning

A crucial technique for handling large data is to partition or
decompose data into smaller parts (e.g., sub-volumes). This
is essentially a divide and conquer strategy, i.e., breaking
down the problem into several sub-problems until they be-
come easier to solve. Partitioning the data and/or work can
alleviate memory constraints, complexity, and allow paral-
lelization of the computational task. In the context of visual-
ization, this includes ideas like domain decomposition (i.e.,
object-space and image-space decompositions), but also en-
tails parallel and distributed visualization approaches.

3.2.1. Domain Decompositions

Object-space (data domain) decomposition is usu-
ally done by using bricking with or without a multi-
resolution representation, as described in Sections 3.1.1
and 3.1.2, respectively. Object-space decompositions are
view-independent and facilitate scalability with respect to
data size by storing and handling data subsets separately.

Image-space (image domain) decomposition subdivides
the output image plane (the viewport) and renders the result-
ing image tiles independently. A basic example of this ap-
proach is ray-casting (which is an image-order approach),
where conceptually each pixel is processed independently.
In practice, several rays (e.g., a rectangular image tile) are
processed together in some sense. For example, rendering
each image tile in a single rendering pass, or assigning each
tile to a different rendering node. Another example is ren-
dering on a large display wall, where each individual screen
is assigned to a different rendering node.

3.2.2. Out-Of-Core Techniques

Unless when dealing with data that is small enough to fit into
memory (“in core”) in its entirety, one always has to parti-
tion the data and/or computation in a way that makes it pos-
sible to process subsets of the data independently. This en-
ables out-of-core processing and can be applied at all stages
of the visualization pipeline [SCC∗02, KMS∗06]. Different
levels of out-of-core processing exist, depending on where
the computation is performed and where the data is residing
(either on the GPU, CPU, hard-disk, or network storage).

Out-of-core methods include algorithms that focus
on accessing [PF02] and prefetching [CKS03] data,
creating on-the-fly ghost data for bricked representa-
tions [ILC10], and methods for computing multi-resolution
hierarchies [HBJP12] or other processing tasks such as
segmentation [FK05], PDE solvers [SSJ∗11], image reg-
istration and alignment [JST∗10], or level set computa-
tion [LKHW04].

Silva et al. [SCC∗02] give a comprehensive overview of
out-of-core methods for visualization and graphics.

3.2.3. Parallel and Distributed Rendering

High-performance visualization often depends on dis-
tributed approaches that split the rendering of a data set
between several nodes of a cluster. The difference can be
defined such that parallel visualization approaches run on
a single large parallel platform, whereas distributed ap-
proaches run on a heterogeneous network of computers.
Molnar et al. [MCE∗94] propose a classification of paral-
lel renderers into sort-first, sort-middle, and sort-last. In the
context of large data volume rendering, sort-last approaches
are very popular. In this context, this term refers to brick-
ing the data and making each node responsible for rendering
one or several bricks before final image compositing. In con-
trast, sort-first approaches subdivide the viewport and assign
render nodes to individual image tiles. Neumann [Neu94]
examines the communication costs for different parallel vol-
ume rendering algorithms.

Conceptually, all or any parts of the visualization pipeline
can be run as a distributed or parallel system. Recent de-
velopments in this field are promising trends towards exa-
scale visualization. However, covering the plethora of dis-
tributed and parallel volume visualization approaches is out
of scope of this survey. The interested reader is referred
to [Wit98,BSS00,ZSJ∗05] and [BCH12] (Chapter 3) for in-
depth surveys on this topic.

3.3. Work/Data Reduction

Reducing the amount of data that has to be processed or ren-
dered is a major strategy for dealing with large data. Tech-
niques for data reduction cover a broad scope, ranging from
multi-resolution data representations and sub-sampling to
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more advanced filtering and abstraction techniques. A dis-
tinction has to be made between data reduction for storage
(e.g., compression) that tries to reduce disk or in-memory
size, and data reduction for rendering. The latter encom-
passes visualization-driven and display-aware rendering ap-
proaches as well as more general methods such as on-
demand processing and query-based visualization.

3.3.1. Pre-Processing

Running computationally expensive or time-consuming
computations as a pre-process to compute acceleration meta-
data or pre-cache data can often dramatically reduce the
computation costs during rendering. Typical examples in-
clude pre-computing a multi-resolution hierarchy of the data
that is used to reduce the amount of data needed for ren-
dering. On the other hand, processing data interactively dur-
ing rendering can reduce the required disk space [BCH12]
(Chapter 9), and enables on-demand processing, which in
turn can reduce the amount of data that needs processing.

3.3.2. On-Demand Processing

On-demand strategies determine at run time which parts
of the data need to be processed, thereby eliminating pre-
processing times and limiting the amount of data that needs
to be handled. For example, ray-guided and visualization-
driven volume rendering systems only request volume bricks
to be loaded that are necessary for rendering the current
view [CNLE09, HBJP12, FSK13]. Data that is not visible is
never rendered, processed, or even loaded from disk.

Other examples for on-the-fly processing for volume vi-
sualization target interactive filtering and segmentation. For
example, Jeong et al. [JBH∗09] have presented a system
where they perform on-the-fly noise removal and edge en-
hancement during volume rendering only for the currently
visible part of the volume. Additionally, they perform an
interactive active-ribbon segmentation on a dynamically se-
lected subset of the data.

3.3.3. Streaming

In streaming approaches, data are processed as they become
available (i.e., are streamed in). Streaming techniques are
closely related to on-demand processing. However, where
the latter usually consists of a pull model (i.e., data is re-
quested by a process), streaming can be a pull or a push
model (i.e., new data is pushed to the next processing step).

Streaming also facilitates circumventing the need for the
entire data set to be available before the visualization starts
and allows rendering of incomplete data [SCC∗02]. Had-
wiger et al. [HBJP12] have described a system for streaming
extreme-scale electron microscopy data for interactive visu-
alization. This system has later been extended to include on-
the-fly registration and multi-volume visualization of seg-
mented data [BHAA∗13]. Further streaming-based visual-

ization frameworks include the dataflow visualization sys-
tem presented by Vo et al. [VOS∗10], which is built on top
of VTK and implements a push and pull model.

3.3.4. In-Situ Visualization

Traditionally, visualization is performed after all data have
been generated—either by measurement or simulation—and
have been written to disk. In-situ visualization, on the other
hand, runs simultaneously to the on-going simulation (e.g.,
on the same supercomputer or cluster: in situ—in place),
with the aim of reducing the amount of data that needs to
be transferred and stored on disk [BCH12] (Chapter 9).

To avoid slowing down the primary simulation, in-transit
visualization accesses only “staging” nodes of a simulation
cluster. The goal of these nodes is to hide the latency of disk
storage from the main simulation by handling data buffering
and I/O [MOM∗11].

In-situ and in-transit visualization have been identi-
fied as being crucial for future extreme-scale comput-
ing [MWY∗09, AAM∗11, KAL∗11, Mor12]. Furthermore,
when the visualization process is tightly coupled or inte-
grated into the simulation, these approaches can be lever-
aged for computational steering, where simulation pa-
rameters are changed based on the visualization [PJ95,
TTRU∗06]. Yu et al. [YWG∗10] present a complete case
study of in-situ visualization for a petascale combustion sim-
ulation. Tikhonova et al. [TYC∗11] take a different approach
by generating a compact intermediate representation of large
volume data that enables fast approximate rendering for pre-
view and in-situ setups.

3.3.5. Query-based Visualization

Query-driven visualization uses selection as the main means
to reducing the amount of data that needs to be pro-
cessed [BCH12] (Chapter 7). Prominent techniques are dy-
namic queries [AWS92], high-dimensional brushing and
linking [MW95], and interactive visual queries [DKR97].
Shneiderman [Shn94] gives an introduction to dynamic
queries for visual analysis and information seeking.

The DEX framework [SSWB05] focuses on query-driven
scientific visualization of large data sets using bitmap index-
ing to quickly query data. Recently, approaches for query-
based volume visualization have been introduced in the con-
text of neuroscience [BvG∗09, BAaK∗13], with the goal to
analyze the connectivity between individual neurons in elec-
tron microscopy volumes. The ConnectomeExplorer frame-
work [BAaK∗13] implements visual queries on top of a
large-scale, visualization-driven system.

4. Scalable Volume Rendering Techniques

In this section we categorize and discuss the individual liter-
ature in GPU-based large-scale volume rendering. We start
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working set
determination

full volume
basic culling ray-guided /

(global, view frustum) visualization-driven

volume data
representation

linear (non-bricked) single-resolution grid octree octree
volume storage [HSSB05] [BHWB07] [LHJ99] [WWH∗00] [GMG08]‡

[CN93] [CCF94] [WE98] [GGSe∗02] [GS04] [CNLE09] [Eng11]
[RSEB∗00] [HBH03] grid with octree [PHKH04] [HFK05] [RTW13]
[LMK03]† [RGW∗03] per brick kd-tree

[KW03] [SSKE05] [RV06] [FK10] multi-resolution grid
[BG05] [MHS08] [HBJP12] [BAaK∗13]

[KGB∗09]† [MRH10] multi-resolution grid [FSK13]
[Lju06a] [BHMF08]

[JBH∗09]

rendering
(ray traversal)

texture slicing CPU octree traversal (multi-pass) GPU octree traversal
[CN93] [CCF94] [WE98] [LHJ99] [WWH∗00] [GGSe∗02] (single-pass)

[RSEB∗00] [HBH03] [GS04] [PHKH04] [HFK05] [RV06] [GMG08]‡

[LMK03]† CPU kd-tree traversal (multi-pass) [CNLE09] [Eng11]
[FK10] [RTW13]

non-bricked ray-casting
(multi-pass) bricked/virtual texture multi-level virtual texture

[RGW∗03] [KW03] ray-casting (single-pass) ray-casting (single-pass)
(single-pass) [HSSB05] [Lju06a] [BHWB07] [HBJP12] [BAaK∗13]

[SSKE05] [BG05] [MHS08] [BHMF08] [JBH∗09] [FSK13]
[KGB∗09]† [MRH10]

scalability low medium high

Table 3: Categorization of GPU-based volume visualization techniques based on the type of working set determination mech-
anism and the resulting scalability in terms of data size, as well as according to the volume data representation employed,
and the actual rendering technique (type of ray traversal; except in the case of texture slicing). † [LMK03, KGB∗09] perform
culling for empty space skipping, but store the entire volume in linear (non-bricked) form. ‡ [GMG08] is not fully ray-guided,
but utilizes interleaved occlusion queries with similar goals (see the text).

with an overview of “traditional” GPU-based volume ren-
dering techniques, before we go into details on “modern”
ray-guided and visualization-driven techniques.

Categorization (Table 3). We categorize GPU-based vol-
ume rendering approaches with respect to their scalability
properties by using the central notion of the working set—
the subset of volume bricks that is required for rendering a
given view. Using the concept of working set, our catego-
rization distinguishes different approaches according to:

1. How the working set is determined.
2. How the working set is stored (represented) on the GPU.
3. How the working set is used (accessed) during rendering.

We elaborate on these categories below in (1) Section 4.2,
(2) Section 4.3, and (3) Section 4.4.

We also categorize the resulting scalability (low, medium,
high), where only “high” scalability means full output-
sensitivity and thus independence of the input volume size.

The properties of different volume rendering
approaches—and the resulting scalability—vary greatly
between what we refer to as “traditional” approaches (cor-
responding to “low” and “medium” scalability in Table 3),

and “modern” ray-guided approaches (corresponding to
“high” scalability in Table 3).

A key feature of modern ray-guided and visualization-
driven volume renderers is that they make full use of re-
cent developments in GPU programmability. They usually
include a read-back mechanism to update the current work-
ing set, and traverse a multi-resolution hierarchy dynami-
cally on the GPU. This flexibility was not possible on earlier
GPUs and is crucial for determining an accurate working set.

4.1. GPU-Based Volume Rendering

GPUs have, over the last two decades, become very versa-
tile and powerful parallel processors, succeeding the fixed-
function pipelines of earlier graphics accelerators. Gen-
eral purpose computing on GPUs (GPGPU)—now also
called GPU Compute—leverages GPUs for non-graphics re-
lated and compute-intensive computations [OLG∗07], such
as simulations or general linear algebra problems. In-
creased programmability has been made possible by APIs
like the OpenGL Shading Language (GLSL) [Ros06] and
CUDA [NVI13].
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Figure 2: Rendering a multi-gigabyte CT data set (as used
in [Eng11]) at different resolution levels using a ray-guided
rendering approach. Data courtesy of Siemens Healthcare,
Components and Vacuum Technology, Imaging Solutions.
Data was reconstructed by the Siemens OEM reconstruction
API CERA TXR (Theoretically Exact Reconstruction).

However, GPU on-board memory sizes are much more
limited than those of CPUs. Therefore, large-scale volume
rendering on GPUs requires careful algorithm design, mem-
ory management, and the use of out-of-core approaches.

4.1.1. Traditional GPU-Based Volume Rendering

Before discussing current state-of-the-art ray-guided volume
renderers, we review traditional GPU volume rendering ap-
proaches. We start with 2D and 3D texture slicing methods,
before continuing with GPU ray-casting. This will give us
the necessary context for categorizing and differentiating be-
tween the more traditional and the more modern approaches.

Texture slicing. The earliest GPU volume rendering ap-
proaches were based on texture mapping [Hec86] using 2D
and 3D texture slicing [CN93, CCF94]. Westermann and
Ertl [WE98] extended this approach to support arbitrary clip-
ping geometries and shaded iso-surface rendering. For cor-
rect tri-linear interpolation between slices, Rezk-Salama et
al. [RSEB∗00] made use of multi-texturing. Hadwiger et
al. [HBH03] described how to efficiently render segmented
volumes on GPUs and how to perform two-level volume
rendering on GPUs, where each labeled object can be ren-
dered with a different render mode and transfer function.
This approach was later extended to ray-casting of multi-
ple segmented volumes [BHWB07]. Engel et al. [ESE00]
were among the first to investigate remote visualization us-
ing hardware-accelerated rendering.

Texture slicing and parallel volume rendering. Texture
slicing has been used in many distributed and parallel
volume rendering systems [MHE01, CMC∗06, MWMS07,
EPMS09, FCS∗10]. Magallon et al. [MHE01] used sort-last
rendering on a cluster, where each cluster node renders one

volume brick before doing parallel compositing for final im-
age generation. For volume rendering on small to medium
GPU clusters, Fogal et al. [FCS∗10] introduced a load-
balanced sort-last renderer integrated into VisIt [CBB∗05], a
parallel visualization and data analysis framework for large
data sets. Moloney et al. [MWMS07] proposed a sort-first
technique using eight GPUs, where the render costs per pixel
are used for dynamic load balancing between nodes. They
later extended their method to support early ray termination
and volume shadowing [MAWM11]. Equalizer [EPMS09] is
a GPU-friendly parallel rendering framework that supports
both sort-first and sort-last approaches.

Texture slicing today. In general, the advantage of texture
slicing-based volume renderers is that they have minimum
hardware requirements. 2D texture slicing, for example, can
be implemented in WebGL [CSK∗11] and runs efficiently
on mobile devices without 3D texture support. However, a
disadvantage is that they often exhibit visual artifacts and
less flexibility when compared to ray-casting methods.

Ray-casting. Röttger et al. [RGW∗03] and Krüger and
Westermann [KW03] were among the first to perform ray-
casting on GPUs, using a multi-pass approach. Ray-casting
is embarrassingly parallel and can be implemented on the
GPU in a fragment shader or compute kernel, where each
fragment or thread casts one ray through the volume.
Ray-casting easily admits a wide variety of performance
and quality enhancements such as empty space skipping
and early ray termination. Hadwiger et al. [HSSB05] and
Stegmaier et al. [SSKE05] were among the first to perform
GPU ray-casting using a single-pass approach, taking advan-
tage of dynamic looping and branching in then-recent GPUs.
Proxy geometries for efficient empty space skipping can be
based on bricks [HSSB05, SHN∗06], spheres [LCD09], or
occlusion frustums [MRH08].

Müller et al. [MSE06] used GPU ray-casting in a sort-last
parallel rendering system. With the introduction of CUDA
as a higher-level GPU programming language, CUDA-based
ray-casters were introduced [MHS08, KGB∗09, MRH10].
They make use of CUDA’s thread/block architecture, and
possibly shared memory model.

Large data. For rendering large data, several multi-
resolution octree rendering methods have been proposed,
most of them based on texture-slicing [LHJ99, WWH∗00,
GGSe∗02, GS04, PHKH04]. Hong et al. [HFK05] used a
min-max octree structure for ray-casting the Visible Hu-
man CT data set. To support volumes that are larger
than GPU memory, bricked single-pass ray-casting can
be used [HSSB05, BHWB07, JBH∗09]. These techniques
access volume bricks stored in a large brick cache (or
brick pool) texture, which is similar to adaptive texture
maps [KE02]. However, the brick cache is usually managed
dynamically to accommodate transfer function changes.
Ljung et al. [Lju06a] used a multi-resolution bricking struc-
ture and adaptive sampling in image- and object-space to
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Figure 3: Per-sample LOD selection as in [HBJP12]. Left:
electron microscopy volume (90 GB). Middle and right: the
LOD used for each sample is color-coded. Middle: discrete
LOD for each sample (tri-linear interpolation). Right: frac-
tional LOD for each sample, with interpolation between data
of neighboring LODs (“quad-linear” interpolation).

render large data. Beyer et al. [BHMF08] proposed a tech-
nique for correct interpolation between bricks of two differ-
ent resolution levels.

A lot of research has focused on remote, parallel, or dis-
tributed visualization for rendering large data, which we can-
not all cover here. For example, Prohaska et al. [PHKH04]
used an octree approach to remotely render large remote
micro-CT scans, while Wang et al. [WGL∗05] proposed a
wavelet-based time space partitioning tree for volume ren-
dering of large time varying volumes but use a parallel CPU
ray-caster on a PC cluster for rendering.

A different approach to dealing with large data was pro-
posed by Turlington et al. [THM01], who introduced slid-
ing thin slab (STS) visualization to limit the amount of data
needed for any current view. Knoll et al. [KTW∗11] op-
timized CPU ray-casting, achieving interactive rates using
a bounding volume hierarchy (BVH) min/max acceleration
structure and SIMD optimizations.

4.1.2. Ray-Guided Volume Rendering

Ray-guided and visualization-driven volume rendering ap-
proaches incorporate a feedback loop between the ray-caster
and the culling mechanism, where the ray-caster itself writes
out accurate information on missing bricks and brick usage.
Thus, this type of culling mechanism determines an accurate
working set directly on the GPU.

This information about the working set is then used to
load missing data, and to determine which bricks can be
evicted from the GPU cache because they are no longer
needed. Additionally, rays automatically determine the (lo-
cally) required data resolution. This determination can be
performed either on a per-sample basis [HBJP12] (see Fig-
ure 3), or on a per-brick basis [FSK13].

Gobbetti et al. [GMG08] were among the first to imple-
ment a volume ray-caster with stackless GPU octree traver-
sal. They used occlusion queries to determine, load, and pos-
sibly refine visible nodes. This approach already has similar
properties to later fully ray-guided approaches. However, it

is strictly speaking not fully ray-guided, because culling of
octree nodes is performed on the CPU based on the occlu-
sion query information obtained from the GPU.

Crassin et al. [CN09] introduced the Gigavoxels system
for GPU-based octree volume rendering with ray-guided
streaming of volume data. Their system can also make use
of an N3 tree, as an alternative to an octree (which would
be an N3 tree with N = 2). The tree is traversed at run time
using the kd-restart algorithm [FS05] and active tree nodes
stored in a node pool. Actual voxel data are fetched from
bricks stored in a brick pool. Each node stores a pointer to its
child nodes in the node pool, and a pointer to the associated
texture brick in the brick pool (see Figure 4). The focus of
the Gigavoxels system is volume rendering for entertainment
applications and as such it does not support dynamic transfer
function changes [CNSE10]. The more recent CERA-TVR
system [Eng11] targets scientific visualization applications
and supports fully dynamic updates according to the transfer
function in real time. It also uses the kd-restart algorithm for
octree traversal. Reichl et al. [RTW13] also employ a similar
ray-guided approach, but target large smooth particle hydro-
dynamics (SPH) simulations.

A different category of ray-guided volume renderers uses
hierarchical grids with bricking, which are accessed via
multi-level page tables instead of a tree structure. Hadwiger
et al. [HBJP12] proposed such a multi-resolution virtual
memory scheme based on a multi-level page table hierarchy
(see Figure 5). This approach scales to petavoxel data and
can also efficiently handle highly anisotropic data, which is
very common in high-resolution electron microscopy vol-
umes. They also compare their approach for volume traver-
sal to standard octree traversal in terms of traversal complex-
ity and cache access behavior, and illustrate the advantages
of multi-level paging in terms of scaling to very large data.

Fogal et al. [FSK13] have performed an in-depth analysis
of several aspects of ray-guided volume rendering.

4.2. Working Set Determination

Performing culling to determine the current working set
of bricks is crucial for ray-casting large data at interactive
frame rates. Originally, culling was introduced for geome-
try rendering, where view frustum and occlusion culling are
used to limit the number of primitives that have to be ren-
dered. Ideally, all occluded geometry should be culled before
rendering.

4.2.1. View Frustum Culling

Removing primitives or volume bricks outside the current
view frustum is the most basic form of culling. The first step
of GPU ray-casting consists of computing the ray start points
and end points (often via rasterization), which already pre-
vents sampling the volume in areas that are outside the view
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Figure 4: The Gigavoxels system uses an N3 tree structure
with node and brick pools that store the set of active nodes
and bricks, respectively.

frustum. However, in order to prevent volume bricks out-
side the frustum from being downloaded to the GPU, the
individual bricks have to be culled against the view frustum.
Naturally, if a brick lies completely outside the current view
frustum, it is not needed in GPU memory. Culling a view
frustum against a bounding box, a bounding volume hier-
archy, or a tree can be done very efficiently and has been
studied extensively [AM00, AMHH08].

4.2.2. Global, Attribute-Based Culling

Another way to cull bricks in volume rendering is based on
global properties like the current transfer function, iso value,
or enabled segmented objects. Culling against the transfer
function is usually done based on min/max computations
for each brick [PSL∗98, HSSB05, SHN∗06]. The brick’s
min/max values are compared against the transfer function to
determine if the brick is invisible (i.e., only contains values
that are completely transparent in the transfer function). In-
visible bricks are then culled. The downside of this approach
is that it needs to be updated whenever the transfer function
changes and usually needs pre-computed min/max values for
each brick that have to be available at runtime for all bricks.
A similar approach can be used for culling bricks against an
iso-surface [PSL∗98, HSSB05], or against enabled/disabled
objects in segmented volume rendering [BHWB07].

4.2.3. Occlusion/Visibility Culling

Occlusion or visibility culling tries to cull primitives in-
side the view frustum that are occluded by other primitives.
While this is easier for opaque geometry, in (transparent)
volume rendering this process is more involved and often
requires a multi-pass rendering approach.

Greene et al. [GKM93] introduce hierarchical z-buffer
visibility. They use two hierarchical data structures, an oc-
tree in object space and a z-pyramid in image space to

quickly reject invisible primitives in a hierarchical man-
ner. Zhang et al. [ZMHH97] propose hierarchical occlusion
maps (HOMs), where a set of occluders is rendered into a
low-resolution occlusion map that is hierarchically down-
sampled and used to test primitives for occlusion before ren-
dering them.

For volume visualization, Li et al. [LMK03] introduce
occlusion clipping for texture-based volume rendering to
skip rendering of occluded parts of the volume. Gao et
al. [GHSK03] propose visibility culling in large-scale par-
allel volume rendering based on pre-computing a plenop-
tic opacity function per brick. Visibility culling based on
temporal occlusion coherence has also been used for time-
varying volume rendering [GSHK04]. The concept of oc-
clusion culling has also been used in a parallel setting for
sort-last rendering [MM10], by computing and propagating
occlusion information across rendering nodes.

4.2.4. Ray-Guided Culling

Ray-guided culling approaches are different in the sense that
they start with an empty working set. Only bricks that are
actually visited during the ray-casting traversal step are re-
quested and subsequently added to the working set of active
bricks. Therefore, this approach implicitly culls all occluded
bricks, as well as bricks outside the view frustum.

Gobbetti et al. [GMG08] use a mixture of traditional
culling and ray-guided culling. They first perform culling
on the CPU (using the transfer-function, iso value, and view
frustum), but refine only those nodes of the octree that were
marked as visible in the previous rendering pass. To deter-
mine if a node is visible they use occlusion queries to check
the bounding box of a node against the depth of the last vis-
ited sample that was written out during ray-casting.

Crassin et al. [CN09] originally used multiple render tar-
gets to report which bricks were visited by the ray-caster
over the course of several frames, exploiting spatial and tem-
poral coherence. The same information was constructed in
a more efficient way using CUDA in a later implementa-
tion [CNSE10].

Hadwiger et al. [HBJP12] divide the viewport into smaller
tiles and use a GPU hash table per image tile to report a
limited number of cache misses. Over the course of several
frames, this ensures that all missing bricks are reported.

Fogal et al. [FSK13] use a similar approach built on lock-
free hash tables.

4.3. Working Set Storage and Access

Efficient GPU data structures for storing the working set
should be fast to access during ray traversal, and should also
support efficient dynamic updates of the working set. Recent
approaches usually store volume bricks (actual voxel data) in
a singe large 3D cache texture (or brick pool).
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Figure 5: Multi-resolution, multi-level GPU page tables [HBJP12]. The virtual memory architecture comprises two orthogonal
hierarchies: the resolution hierarchy, and the page table hierarchy. Ray-casting performs address translation based on the
multi-resolution page directory (i.e., one page directory per volume resolution) and shared “mixed-resolution” cache textures.

If ray traversal needs to follow tree nodes (as in octree-
based renderers), the working set of tree nodes must also be
stored, e.g., in a node pool (e.g., [CNLE09, Eng11]).

If ray traversal is built on virtual to physical address trans-
lation (as in page table-based renderers), the working set of
page table entries must be stored, e.g., in a page table cache
(e.g., [BHL∗11, HBJP12]).

4.3.1. Texture Cache Management

Texture allocation. Early tree-based volume renderers often
employed one texture per brick, rendering one after the other
in visibility order using one rendering pass per brick/tree
node [LHJ99,WWH∗00,GGSe∗02,GS04]. However, multi-
pass approaches are usually less performant than single-pass
approaches and are also limited in the number of passes they
can efficiently perform. To circumvent rendering bottlenecks
due to many rendering passes, Hong et al. [HFK05] cluster
bricks in layers (based on the manhattan distance) and render
all bricks of the same layer at the same time.

To support single-pass rendering, bricking approaches
and modern ray-guided renderers usually use a single large
3D cache texture (or brick pool) to store the working
set [BHWB07, CN09, HBJP12], and often assume that the
working set will fit into GPU memory.

When the working set does not fit into GPU memory, ei-
ther the level of detail and thus the number of bricks in the
working set can be reduced [HBJP12], or the renderer can
switch to a multi-pass fall-back [Eng11, FSK13].

Texture updates. Whenever the working set changes, the
cache textures have to be updated accordingly. Hadwiger et
al. [HBJP12] compare texture update complexity between
octree-based and multi-level page table approaches. Octree-
based approaches usually have to do a large number of up-

dates of small texture elements, whereas hierarchical page
tables tend to perform fewer but larger updates.

To avoid cache thrashing [HP11], different brick replace-
ment strategies have been introduced. Most common is the
LRU scheme which replaces the brick in the cache that was
least recently used [GMG08, CN09, FSK13]. It is also com-
mon to use a hybrid LRU/MRU scheme, where the LRU
scheme is used unless the cache is too small for the cur-
rent working set. In the latter case, the scheme is switched to
MRU (most recently used) to reduce cache thrashing.

4.3.2. Virtual Texturing and Address Translation

Page tables. Kraus and Ertl [KE02] were the first to intro-
duce adaptive texture maps for GPUs, where an image or
volume can be stored in a bricked fashion with adaptive res-
olution and accessed via a look-up in a small index texture.
This index texture can be seen as a page table [HP11].

Virtual texturing. Going further in this direction leads to
virtual texturing [OVS12], also called Megatextures in game
engines [vW09], and partially resident textures [BSH12]. A
single, very large virtual texture is used for all data instead
of allocating many small textures.

During rendering, virtual texture coordinates have to be
translated to physical texture coordinates. Recently, hard-
ware implementations of this scheme have become available
with the OpenGL GL_ARB_sparse_texture extension.
Unfortunately, current hardware limitations still limit the
size of these textures to 16k pixels/voxels and do not allow
for automatic page fault handling.

GPU-based page tables for virtual texturing are con-
ceptually very similar to CPU virtual memory architec-
tures [HP11]. For volume rendering, the virtual volume is
decomposed into smaller bricks (i.e, pages), and a look-up
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texture (i.e., page table) maps from virtual pages to physical
pages. The earliest uses of virtual texturing and page tables
in volume rendering [HSSB05] used a single page table tex-
ture. However, the basic concept of virtualization can be ex-
tended in a “recursive” fashion, which leads to a page table
hierarchy. Virtual texturing architectures using such multi-
level page tables have been shown to scale to volume data of
extreme scale [BHL∗11, HBJP12].

Hadwiger et al. [HBJP12] describe multi-level, multi-
resolution page tables as a (conceptually) orthogonal 2D
structure (see Figure 5, left). One dimension corresponds to
the page table hierarchy, consisting of the page directory (the
top-level page table) and several page tables below. The sec-
ond dimension corresponds to the different resolution lev-
els of the data. Each resolution level conceptually has its
own page table hierarchy. However, the actual cache tex-
tures can be shared between all resolution levels. Multi-level
page tables scale very well. For example, two levels have
been shown to support volumes of up to several hundred ter-
abytes, and three levels should in principle be sufficient even
for exascale data [HBJP12] (in terms of “addressability”).

Octrees. To traverse an octree directly on the GPU, not only
the volume brick data, but also a (partial) tree needs to be
stored on the GPU. Gobbetti et al. [GMG08] use a spatial
index structure to store the current subtree with neighbor in-
formation. Each octree node stores pointers to its eight chil-
dren and its six neighbors (via ropes [HBZ98]), and a pointer
to the volume brick data. Crassin et al. [CN09,CNLE09] use
an N3 tree, whose current subtree is stored in a node pool and
a brick pool, respectively. Each node stored in the node pool
contains one pointer to its N3 children, and one pointer to the
corresponding volume brick in the brick pool (see Figure 4).
Using a single child pointer is possible because the children
are stored together in the node pool.

Hash tables. An alternative data structure to GPU page ta-
bles are hash tables, which have not yet received a lot of at-
tention for large-scale volume rendering. However, Hastings
et al. [HMG05] use spatial hashing to optimize collision de-
tection in real-time simulations, and Nießner et al. [NZIS13]
use voxel hashing for real-time 3D reconstruction.

4.4. Rendering (Ray Traversal)

In this section we will look into details of the actual ren-
dering methods and how dynamic address translation is per-
formed on the GPU.

Single-pass vs. multi-pass. In single-pass approaches the
volume is traversed in front-to-back order in a single render-
ing pass as compared to multi-pass approaches that require
multiple rendering passes. As mentioned before, the first
GPU volume rendering approaches [CN93, CCF94, WE98,
RSEB∗00, HBH03], including the first octree-based ren-
derers [LHJ99, WWH∗00, GGSe∗02, GS04, HFK05], were

all based on multi-pass rendering. With the introduc-
tion of dynamic branching and looping on GPUs, single-
pass approaches have been introduced to volume ray-
casting [HSSB05, SSKE05].

Multi-pass approaches offer a higher flexibility, however,
they also have a significant management overhead compared
to single-pass rendering (i.e., context switching, final com-
positing) and usually result in lower performance. Further-
more, optimization techniques like early ray termination are
not trivial in multi-pass rendering and create an additional
overhead. Therefore, most state-of-the art ray-guided vol-
ume renderers use single-pass rendering [CNLE09, Eng11,
HBJP12]. A limitation of single-pass approaches, however,
is the requirement for the entire working set to fit into the
cache. One way to circumvent this requirement is to use
single-pass rendering as long as the working sets fits into
the cache, and to switch to multi-pass rendering when the
working set gets too large [Eng11, FSK13].

Multi-resolution rendering. There are several motivations
for multi-resolution rendering. Next to the obvious advan-
tage of data reduction and rendering speed-ups, choosing a
resolution that matches the current screen resolution reduces
aliasing artifacts due to undersampling [Wil83].

A multi-resolution data structure requires level-of-detail
(LOD) or scale selection [LB03] for rendering. Weiler et
al. [WWH∗00] us a focus point oracle based on the dis-
tance from the center of a brick to a user-defined focus
point to select a brick’s LOD. Other methods to select
a level of detail include estimating the screen-space er-
ror [GS04], using a combined factor of data homogene-
ity and importance [BNS01] or using the predicted visual
significance of a brick [Lju06b]. A common method esti-
mates the projected screen space size of the corresponding
voxel/brick [CNLE09]. Whereas LOD selection is often per-
formed on a per-brick basis, Hadwiger et al. [HBJP12] select
the LOD on a per-sample basis for finer LOD granularity
(see Figure 3).

The most common data refinement strategy (e.g., when
quickly zooming-in on the data) consists of a “greedy” ap-
proach that iteratively loads the next higher-resolution of the
brick until the desired resolution is reached [CNLE09]. A
different approach, where the highest resolution is loaded di-
rectly and intermediate resolutions are skipped was proposed
in [HBJP12]. Most recently, Fogal et al. [FSK13] found that
the “greedy” approach converges in the fewest number of
frames in their ray-guided ray-caster.

4.4.1. Virtual Texturing and Address Translation

Address translation is performed during ray-casting, when
stepping along a ray, to access the correct location of a sam-
ple along the ray in the texture cache. When using multi-
resolution data this implies that a GPU multi-resolution data
structure has to be traversed dynamically on the GPU.
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Tree traversal. Traversal algorithms for efficiently navigat-
ing and traversing trees, such as kd-trees or octrees have
been well researched in the ray-tracing community. Ama-
natides and Woo [AW87] were the first to introduce a fast
regular grid traversal algorithm. Recently, stackless traver-
sal methods such as kd-restart [FS05] have received a lot of
attention [HSHH07,PGS∗07,HL09], as they are well-suited
for GPU implementation.

The GPU octree traversal in Gobbetti et al. [GMG08] is
based on previous work on rope trees [HBZ98, PGS∗07],
whereas Gigavoxels [CNLE09, CNSE10] and similar sys-
tems [Eng11, RTW13] base their octree traversal on the kd-
restart algorithm [FS05].

Page table look-ups. In virtual texturing approaches [vW09,
OVS12, HBJP12], each texture sample requires address
translation from a virtual texture coordinate to a correspond-
ing physical texture coordinate during rendering. This trans-
lation is done via small look-up texture(s), the page table(s).

In multi-level page tables, additional levels of page ta-
bles are added [BHL∗11]. The top level is usually called the
page directory, in analogy to CPU virtual memory [HP11].
The right part of Figure 5 depicts address translation dur-
ing ray-casting with a multi-resolution, multi-level page ta-
ble. Hadwiger et al. [HBJP12] use this approach for render-
ing extreme-scale electron microscopy data. Their approach
starts with computing a LOD for the current sample, which is
then used to look up the page directory corresponding to that
resolution. Next, address translation traverses the page table
hierarchy from the page directory through the page table lev-
els below. Previous page directory and page table look-ups
can be cached to exploit spatial coherence. Thus, the number
of texture look-ups that is required in practice is very low.

Handling missing and empty bricks. In contrast to tradi-
tional ray-casting approaches, where the working set is com-
puted prior to rendering on the CPU, ray-guided volume ren-
ders only build up the current working set during ray traver-
sal. This implies that ray-guided volume renderers have to
be able to deal with missing bricks in GPU memory, be-
cause bricks are only requested and downloaded once they
have been hit during ray-casting.

Whenever the ray-caster detects a missing brick (i.e., ei-
ther a page table entry that is flagged as unmapped or a miss-
ing octree node), a request for that missing brick is written
out. Crassin et al. [CN09] use multiple render targets to re-
port missing nodes and then stop ray traversal. More recent
approaches [CNSE10, HBJP12, FSK13] use OpenGL exten-
sions such as GL_ARB_shader_image_load_store
or CUDA, and often GPU hash tables, to report cache
misses. Missing bricks can be either skipped, or substituted
by a brick of lower resolution. After missing bricks are de-
tected and reported, the CPU takes care of loading the miss-
ing data, downloading it into GPU memory, and updating the
corresponding GPU data structures.

Figure 6: Ray-guided volume rendering [FSK13] of the
Mandelbulb data set. Colors indicate the amount of empty
space skipping and sampling that needs to be performed
(green: skipped empty brick, red: densely sampled brick,
blue: densely sampled but quickly saturated). Image cour-
tesy of Tom Fogal.

Empty space skipping. In addition to skipping missing
bricks, a common optimization strategy that is easily imple-
mented in ray-guided volume rendering is empty space skip-
ping. This optimization relies on knowing which bricks are
empty bricks (e.g., by a flag in the page table) and skipped
during ray-casting. Figure 6 shows a rendering with color-
coded empty space skipping information.

5. Discussion and Conclusions

In this survey we have discussed different large-scale GPU-
based volume rendering methods with an emphasis on ray-
guided approaches. Over recent years, sophisticated scalable
GPU volume visualization methods have been developed,
hand in hand with the increased versatility and programma-
bility of graphics hardware. GPUs nowadays support dy-
namic branching and looping, efficient read-back mecha-
nisms to transfer data back from the GPU to the CPU, and
several high-level APIs like CUDA or OpenCL to make
GPU programming more efficient and enjoyable.

Our discussion of scalability in volume rendering was
based on the notion of working sets. We assume that the data
will never fit into GPU memory in its entirety. Therefore, it
is crucial to determine, store, and render the working set of
visible bricks in the current view efficiently and accurately.
The review of “traditional” GPU volume rendering methods
showed that these approaches have several shortcomings that
severely limit their scalability. Traditionally, the working set
of active bricks is determined on the CPU and no read-back
mechanism is used to refine this working set. Additionally,
due to previously limited branching or looping functionality
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on GPUs, renderers often had to resort to multi-pass ren-
dering approaches. Modern ray-guided approaches exhibit
better scalability, they support dynamic traversal of multi-
resolution structures on the GPU, and they allow determin-
ing the working set of active bricks based on actual visibility
by employing efficient read-back mechanisms from the GPU
to the CPU. Therefore, ray-guided approaches are promising
for the future, where data set sizes will continue to increase.

In this survey we have focused on GPU-based approaches
for single stand-alone workstations. However, there is a huge
area of parallel and distributed visualization research that fo-
cuses on clusters, in-situ setups and client/server systems.
Additionally, we expect web-based visualization to become
more and more important, which will make it necessary to
research scalable algorithms for remote visualization and
mobile devices. Finally, as data sets get larger and scal-
able volume rendering methods more mature, it will be-
come more and more important to have efficient workflows
and integrated solutions that encompass the whole data flow
through a system, from data acquisition and pre-processing
to interactive visualization and analysis.
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