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Hardware-Accelerated Volume Rendering

Hanspeter Pfister, Mitsubishi Electric Research Laboratories ∗

Abstract

In this chapter, we discuss methods for hardware-accelerated ren-
dering of rectilinear volume datasets: ray casting, texture slicing,
shear-warp and shear-image rendering, and splatting. We give suf-
ficient background to enable a novice to understand the details and
tradeoffs of each algorithm. As much as possible, we refer to the
literature for more information.

1 Introduction

Over the last decade, volume rendering has become an invalu-
able visualization technique for a wide variety of applications in
medicine, bio-technology, engineering, astrophysics, and other sci-
ences. Examples include visualization of 3D sampled medical data
(CT, MRI), seismic data from oil and gas exploration, or computed
finite element models. While volume rendering is very popular,
the lack of interactive frame rates has long limited its widespread
use. Fortunately, advances in graphics hardware have lead to inter-
active and even real-time volume rendering performance, even on
personal computers.

High frame rates are essential for the investigation and under-
standing of volume datasets. Real-time rotation of 3D objects in
space under user control makes the renderings appear more realistic
due to kinetic depth effects [Sollenberg and Milgram 1993]. Imme-
diate visual feedback allows for interactive experimentation with
different rendering parameters, such as transfer functions [Pfister
et al. 2001]. Dynamically changing volume data can now be vi-
sualized, for example, data from interactive surgical simulation or
real-time 3D ultrasound. And the image quality of hardware accel-
erated volume rendering rivals or equals that of the best software
algorithms.

In this chapter, we review different hardware accelerated meth-
ods and architectures for volume rendering. Our discussion will fo-
cus on direct volume rendering techniques. A survey of iso-surface
methods can be found in Chapter X. Direct volume rendering has
the ability to give a qualitative feel for the density changes in the
data. It precludes the need for segmenting the data [Levoy 1988]
– indeed it is particularly adept at showing structurally weak and
“fuzzy” information.

Section 2 reviews the basics of direct volume rendering. It pro-
vides background and terminology used throughout this chapter.
The following sections then describe several approaches to volume
rendering that have been successfully accelerated by hardware. We
will discuss ray casting, 3D and 2D texture slicing, shear-warp ren-
dering and its implementation on VolumePro, and splatting. We
will focus on the underlying rendering algorithms and principles,
and refer to the literature for implementation details. The chapter
ends with conclusions and an outlook on future work in Section 9.

2 Volume Rendering Basics

2.1 Volume Data

A volumetric dataset consists of information sampled at discretized
positions in space. The information may be a scalar (such as den-
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sity in a computed tomography (CT) scan), or a vector (such as ve-
locity in a flow field), or a higher order tensor (such as energy, den-
sity, and momentum in computational fluid dynamics). The space is
usually three-dimensional, either consisting of three spatial dimen-
sions or another combination of spatial and frequency dimensions.

In many applications the data is sampled on a rectilinear grid,
represented as a 3D grid of volume elements, so called voxels. Vox-
els are assumed to be zero-dimensional scalar values defined at in-
teger coordinates. This is in contrast to an alternative definition,
where a voxel is interpreted as a small unit cube of volume with a
constant value. There are many good arguments why such a defi-
nition may lead to errors and confusion [Smith 1995]. To describe
voxels as volume points in 3D is consistent with signal processing
theory [Möller et al. 1997b] and makes it easy to combine them
with point-sampled surface models [Zwicker et al. 2002].

If all the voxels of a rectilinear dataset are spaced identically in
each dimension, the dataset is said to be regular. Otherwise, the
data is called anisotropic. Anisotropic volume data is commonly
found in medical and geophysical applications. For example, the
spacing of CT slices along the axis of the patient is determined by
the (adjustable) speed of the table, while the spacing within a slice is
determined by the geometry of the scanner. In addition, the gantry
of a CT scanner may be tilted with respect to the axis of the patient.
The resulting (rectilinear) data is called sheared, because the axes
are not at right angles.

Other types of datasets can be classified into curvilinear grids,
which can be thought of as resulting from a warping of a rectilin-
ear grid, and unstructured grids, which consist of arbitrary shaped
cells with no particular relation to rectilinear grids [Speary and Ken-
non 1990]. We restrict our discussion in this chapter to hardware-
accelerated rendering of scalar voxels stored on a rectilinear volume
grid, including anisotropic and sheared data.

2.2 Coordinate Systems and Transformations

Every volume rendering technique maps the data onto the image
plane through a sequence of intermediate steps where the data is
transformed to different coordinate systems. We introduce the basic
terminology in Figure 1. Note that the terms space and coordinate
system are synonymous. The volume data is stored in source space.
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Figure 1: The volume rendering pipeline.
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The correction transformation C transforms source space to object
space, correcting for anisotropy and shear in the volume data. The
model transformation M transforms object space to world space.
This transformation allows to place multiple volume and polygon
objects in the scene. To render the scene from an arbitrary view-
point, the world space is mapped to camera space using the viewing
transformation V . The camera coordinate system is defined such
that its origin is at the center of projection.

The volume rendering algorithm projects the data and evaluates
the volume rendering integral. The details of this integration will
be discussed in Section 2.3. For now, we use the projection trans-
formation P to transform the data to ray space (see Figure 2). Ray

x2

(t0,t1)

t2

tk

xk

(x0,x1)

Figure 2: Transforming the volume from camera to ray space. Left:
camera space. Right: ray space.

space is a non-cartesian coordinate system that enables an easy for-
mulation of the volume rendering integral. In ray space, the viewing
rays are parallel to a coordinate axis, facilitating analytical integra-
tion of the volume function. We denote a point in ray space by
a vector x = (x0,x1,x2)T , where the first two coordinates specify
a point in screen space and can be abbreviated as x̂ = (x0,x1)T .
The third coordinate x2 specifies the Euclidean distance from the
camera to a point on the viewing ray. Because the projection trans-
formation P is similar to the projective transform used in rendering
pipelines such as OpenGL, it is also called the projective mapping.
For orthographic or parallel projection, P is the identity matrix.

Evaluating the volume rendering integral results in a 2D image in
screen space. In the final step, this image is transformed to viewport
coordinates using the viewport transformation VP. We will ignore
the viewport transformation in the remainder of this chapter.

2.3 The Volume Rendering Integral

Volume rendering algorithms typically rely on the low-albedo ap-
proximation to how the volume data generates, scatters, or occludes
light. If the albedo is low, most of the in-scattering of light comes
from the direction of the viewing ray [Blinn 1982; Kajiya and
Herzen 1984; Williams and Max 1992; Max 1995]. Effects of the
light interaction are integrated along the viewing rays in ray space
according to the volume rendering integral. The equation describes
the light intensity Iλ (x̂) at wavelength λ that reaches the center of
projection along the ray x with length L:

Iλ (x̂) =
∫ L

0
cλ (x̂,ξ )g(x̂,ξ )e−

∫ ξ
0 g(x̂,µ)dµ dξ , (1)

where g(x) is the extinction function that models the attenuation
of light per unit length along the ray due to scattering or extinc-
tion. cλ (x) is an emission coefficient, modeling the light added per
unit length along the ray, including self-emission, scattered, and
reflected light.

The exponential term can be interpreted as an attenuation fac-
tor that models the absorption of light between a point along the
ray and the eye. The product cλ (x)g(x) is also called the source
term [Williams and Max 1992; Max 1995], describing the light in-
tensity scattered in the direction of the ray x at the point x2. In the

remainder of this chapter we will omit the parameter λ , implying
that (1) has to be evaluated for different wavelengths separately.

We now assume that the extinction function is given as a
weighted sum of coefficients gk and reconstruction kernels rk(x):

g(x) = ∑
k

gkrk(x). (2)

This corresponds to the source-attenuation physical model [Max
1995] where the volume consists of individual particles that ab-
sorb and emit light. The reconstruction kernels rk reflect position
and shape of individual particles. The particles can be irregularly
spaced and may differ in shape, hence the model is not restricted to
regular datasets.

Depending on how (1) is evaluated, volume rendering algorithms
can be divided into backward mapping and forward mapping meth-
ods. Backward mapping algorithms shoot rays through pixels on
the image plane into the volume data, and forward mapping algo-
rithms map the data onto the image plane.

2.4 Backward Mapping

Backward mapping (or image-order) algorithms iterate over all pix-
els of the output image and determine the contributions of the in-
tegral to the current pixel [Levoy 1988; Sabella 1988; Danskin and
Hanrahan 1992]. Ray casting is the most commonly used back-
ward mapping technique. It simulates optical projections of light
rays through the dataset, yielding a simple and visually accurate
mechanism for volume rendering.

The integral (1) can be evaluated using a Riemann sum approx-
imation. By approximating the exponential function with the first
two terms of its Taylor expansion (e−x ≈ 1− x), we arrive at this
equation:

I(x̂) =
L

∑
l=0

(
c(xl)∑

k

gkrk(xl)
l−1

∏
j=0

(1−∑
m

gmrm(x j))
)

. (3)

The inner summation ∑k gkrk(xl) computes the sum of volume re-
construction kernels using (2) at position xl on the viewing ray.
As described in Section 3.2, this is typically implemented by tri-
linear interpolation. The product over j is the attenuation due to of
all sample points x j that lie in front of the current position xl . The
weighted sums of reconstruction kernels are typically replaced with
the opacity α at the sample position. Thus we arrive at the familiar
equation:

I(x̂) =
L

∑
l=0

(
c(xl)αl

l−1

∏
j=0

(1−α j)
)

. (4)

2.5 Forward Mapping

Forward mapping (or object-order) algorithms iterate over the vol-
ume data and determine the contribution of each reconstruction ker-
nel to the screen pixels. The traditional forward mapping algorithm
is splatting, introduced by Westover [Westover 1991]. It convolves
every voxel in object space with the reconstruction kernel and ac-
cumulates their contributions on the image plane.

Because of the linearity of integration, substituting (2) into (1)
yields:

I(x̂) = ∑
k

gk

(∫ L

0
c(x̂,ξ )rk(x̂,ξ )∏

j
e−g j

∫ ξ
0 r j(x̂,µ)dµ dξ

)
, (5)

which can be interpreted as a weighted sum of projected reconstruc-
tion kernels.

To compute this integral numerically, splatting algorithms make
a couple of simplifying assumptions. Usually, the reconstruction
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kernels rk(x) have local support. The splatting approach assumes
that these local support areas do not overlap along a ray, and the re-
construction kernels are ordered front to back. We also assume that
the emission coefficient is constant in the support of each recon-
struction kernel along a ray, hence we have ck(x̂) = c(x). Again,
we approximate the exponential function with the first two terms
of its Taylor expansion, thus e−x ≈ 1− x. Finally, we ignore self-
attenuation. Under these assumptions, we can rewrite (5) to:

I(x) = ∑
k

(
gkck(x)qk(x̂)

k−1

∏
j=0

(
1−g jq j(x̂)

))
, (6)

where qk(x̂) denotes an integrated reconstruction kernel:

qk(x̂) =
∫

R

rk(x̂,x2)dx2. (7)

The difference between backward and forward mapping is appar-
ent by comparing (3) and (6). In backward mapping, the evaluation
of the volume rendering integral (1) is a Riemann sum along view-
ing rays. In forward mapping, we assume that the reconstruction
kernels do not overlap and can be integrated separately using (7).
The volume rendering integral (1) is then a sum of pre-integrated
reconstruction kernels, also called footprints.

3 The Volume Rendering Pipeline

Volume rendering can be viewed as a set of pipelined processing
steps. Pipelining is an important concept in hardware design and for
the design of efficient parallel algorithms with local communica-
tion. A pipeline consists of a sequence of so called stages through
which a computation and data flow. New data is input at the start
of the pipeline while other data is being processed throughout the
pipeline. In this section we look in more detail at the pipeline stages
that are commonly found in volume rendering algorithms. The or-
der in which these stages are arranged varies among implementa-
tions.

3.1 Data Traversal

A crucial step of the any volume rendering algorithm is to gener-
ate addresses of resampling locations throughout the volume. The
resampling locations in object space are most likely not positioned
on voxel locations, which requires interpolation from surrounding
voxels to estimate sample values at non-integer positions.

3.2 Interpolation

Interpolation at a resampling location involves a convolution of
neighboring voxel values with a reconstruction filter (see (2)).
There is a wealth of literature that deals with the theory and ap-
plication of appropriate reconstruction filters in computer graph-
ics [Glassner 1995; Wolberg 1990] and volume visualization [Neu-
mann 1993; Bentum 1995; Möller et al. 1997b]. In practice, due to
the prohibitive computational cost of higher order filters, the most
commonly used filters for ray-casting are nearest neighbor inter-
polation and linear interpolation in three dimensions, also called
tri-linear interpolation. Note that tri-linear interpolation is a non-
linear, cubic function in three-dimensions [Möller et al. 1997b].
This has consequences for the order of volume classification, as
discussed below.

3.3 Gradient Estimation

To approximate the surface normals necessary for shading and clas-
sification requires the computation of a gradient. Given a contin-
uous function f (x,y,z), the gradient ∇f is defined as the partial

derivative with respect to all three coordinate directions. Due to the
sampled nature of volumetric data the computation of this continu-
ous gradient has to be approximated using discrete gradient filters.

Most gradient filters are straight-forward 3D extensions of the
corresponding two-dimensional edge detection filters, such as the
Laplacian, Prewitt, or Zucker-Hummel [Zucker and Hummel 1981]
operators. The Sobel operator [Sobel 1995] is one of the most
widely used gradient filters for volume rendering. In practice, and
due to computational considerations, most volume rendering algo-
rithms use the central-difference gradient, which is computed by
local differences between voxel or sample values in all three di-
mensions [Höhne and Bernstein 1986]. Detailed analysis of several
gradient filters for volume rendering can be found in [Goss 1994;
Bentum 1995; Möller et al. 1997a; Lichtenbelt et al. 1998].

3.4 Classification

Classification is the process of mapping physical properties of the
volume, such as different material types, to the optical properties
of the volume rendering integral, such as emission (color, RGB)
and absorption (opacity, α). We distinguish between pre- and post-
classification, depending if the voxel values of the volume are clas-
sified before or after interpolation.

Pre-Classification

In pre-classification, voxels may be mapped directly to RGBα val-
ues, which are then interpolated. Alternatively, voxels may be aug-
mented by attributes that correspond to disjoint materials [Drebin
et al. 1988], which is common for medical image data that con-
tains separate anatomical parts. Typically, these attributes are com-
puted in a separate segmentation process using accurate statistical
methods [Wells et al. 1996; Dengler et al. 1995]. Such segmenta-
tion prevents partial voluming [Jacq and Roux 1997], one of the
main sources of error in direct volume rendering. In partial vo-
luming, single voxels ostensibly represent multiple materials, or
tissue types in the case of medical data. Segmented volumes con-
tain indices and associated probabilities for different material types,
which can then be mapped to different colors and opacities during
pre-classification [Tiede et al. 1998].

However, the individual interpolation of color and opacity af-
ter pre-classification can lead to image artifacts [Wittenbrink et al.
1998]. The solution is to pre-multiply the color of each voxel with
its opacity before interpolation. The resulting vector (Rα , Gα , Bα ,
α) is called associated color or opacity-weighted color [Drebin
et al. 1988; Blinn 1994]. If we denote original colors with C, we
will use the notation C̃ = Cα for associated colors. Wittenbrink
et al. [Wittenbrink et al. 1998] present an efficient method to in-
terpolate associated colors. Interpolation with associated colors is
also necessary for pre-integration techniques (see Section 4.3 and
Chapter X).

Post-Classification

In post-classification, the mapping to RGBα values is applied to
a continuous, interpolated scalar field. Post-classification is eas-
ier to implement than pre-classification and mostly used in the
hardware-accelerated algorithms described below. Note that post-
classification does not require the use of associated colors, although
it is still possible to do so. In that case, the transfer functions (see
below) are stored for associated colors.

As discussed by Engel et al. [Engel et al. 2001], pre- and post-
classification produce different results because classification is in
general a non-linear operation. The non-linearity of tri-linear in-
terpolation may lead to artifacts if it is applied to pre-classified
data. For post-classification, the evaluation of the non-linear classi-
fication function in a linearly interpolated scalar field produces the
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correct result [Neumann 1993; Bentum 1995]. However, as noted
above, pre-classification remains a very important tool in medical
imaging, and it is important that the hardware-accelerated volume
rendering method is able to support both options.

Transfer Functions

The mapping which assigns a value for optical properties like g(x)
or c(x) is called a transfer function. The transfer function for g(x)
is called opacity transfer function, typically a continuously varying
function of the scalar value s along the ray: g(x) = To(s(x)). Often
it is useful to include the gradient magnitude |∇s| as an additional
parameter for classification. This approach has been widely used
in the visualization of bone or other tissues in medical datasets or
for the iso-surface visualization of electron density maps [Levoy
1988]. In the simplest case, the opacity is optionally multiplied
with the gradient magnitude, which also called gradient magnitude
modulation, to emphasize surface boundaries or to minimize the vi-
sual impact of noisy data [Gelder and Kim 1996; Pfister et al. 1999]
(see Figure 3). Kindlmann et al. [Kindlmann and Durkin 1998] and

Figure 3: CT scan of a human foot, rendered on VolumePro 1000
with gradient magnitude modulation of opacity. Image courtesy of
Yin Wu and Jan Hardenbergh, TeraRecon Inc.

Kniss et al. [Kniss et al. 2001] use higher order derivatives for semi-
automatic transfer function design. Easy transfer function design
still remains one of the main obstacles to make volume rendering
more accessible to non-expert users [Pfister et al. 2001].

The emission term c(x) can also be specified as a transfer func-
tion of the scalar s: c(x) = Tc(s(x)). The simplest emission term
is direction independent, representing the glow of a hot gas [Max
1995]. It may have red, green, and blue components, with their
associated color transfer functions fred(s), fgreen(s), and fblue(s).
More sophisticated emission models include multiple scattering
and anisotropic scattering terms [Max 1995; Harris and Lastra
2001] – mostly used for rendering of clouds – and shading effects.

3.5 Shading

Volume shading can substantially add to the realism and under-
standing of volume data (see Figure 4). Most volume shading

Figure 4: CT scan of a human head. Left: volume rendering with
a simple emission model without shading. Right: including Phong
shading. Images rendered on VolumePro 1000; courtesy of Yin Wu
and Jan Hardenbergh, TeraRecon Inc.

is computed by the well-known Phong [Phong 1975] or Blinn-
Phong [Blinn 1977] illumination models. The resulting color is
a function of the gradient, light and view directions, ambient, dif-
fuse, and specular shading parameters. It is typically added to the
color that results from classification. Higher-order shading mod-
els, which include the physical effects of light-material interac-
tion [Cook and Torrance 1982], are computationally too expensive
to be considered for volume rendering. More illumination models
for interactive systems can be found in [Akenine-Möller and Haines
2002].

Care has to be taken for sheared and anisotropic volume data.
The different voxel spacing and alignment leads to incorrect gradi-
ents because the vector components are not orthonormal in object
space. One remedy is to use full three-dimensional convolution
kernels for gradient computation, which may be prohibitive in real-
time systems. The alternative is to use separable kernels and to
apply gradient correction before classification and lighting calcula-
tions. For example, gradients can be transformed from voxel space
to world space, including the correction transformation C. Shading
is then computed using world-space versions of the eye and light
vectors [Pfister et al. 1999]. However, this transformation requires
multiplication with a 3×3 matrix per gradient vector.

Alternatively, Wu et al. [Wu et al. 2003] describe an elegant and
efficient solution for gradient correction using an intermediate light-
ing space. The product MC of model and correction transformation
is decomposed into a shear-scale transformation L and a rotation
R. Gradients are transformed to lighting space by (L−1)T , similar
to how surface normals are transformed in polygon graphics [Fran-
cis S. Hill 2000], while light and eye vectors are transformed from
world space to lighting space by R−1. Note that this rotation pre-
serves dot products, which enables to pre-compute some shading
calculations. The transformation (L−1)T is upper triangular and
requires only six multiplications per gradient. For anisotropic but
non-sheared volumes this reduces to three multiplications per gra-
dient.

3.6 Compositing

Compositing is the recursive evaluation of the numerical integra-
tion in (4) and (6). It was first introduced in the context of digital
image compositing, where it was formulated using the “over” op-
erator [Porter and Duff 1984]. The composition of n associated
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color samples C̃i = Ciαi is described by:

C̃(0,n−1) =
n−1

∑
x=0

C̃x

x−1

∏
t=0

(1−αt) (8)

= C̃0 +C̃1(1−α0)+C̃2(1−α0)(1−α1)+ · · ·
+ C̃n−1(1−α0) · · ·(1−αn−2)

= C̃0 over C̃1 over C̃2 over · · · C̃n−1.

Because of the associativity of the “over” operator, the compo-
sition of – for example – four samples C̃i can be computed in three
different ways [Wittenbrink and Harrington 1994]:

Front-to-back: C̃ = (((C̃1 over C̃2) over C̃3) over C̃4)
Back-to-front: C̃ = (C̃1 over (C̃2 ;over (C̃3 ;over C̃4)))
Binary tree: C̃ = ((C̃1 ;over C̃2) ;over (C̃3 ;over C̃4))

The front-to-back or back-to-front formulations are used in most
volume rendering algorithms. The last formulation as a binary tree
is especially useful for parallel implementations algorithms, where
partial results of segments along the ray can be computed on dif-
ferent processors [Pfister et al. 1994; Hsu 1993; Wittenbrink and
Somani 1993]. The final composition of the partial results yields
the same image as sequential compositing along the ray.

Compositing is expressed algorithmically using recursion. The
front-to-back formulation is:

t̂0 = (1−α0); Ĉ0 = C̃0 (9)

Ĉi = Ĉi−1 + t̂i−1 C̃i

t̂i = t̂i−1 (1−αi),

where Ĉi, t̂i indicate the results of the current iteration, Ĉi−1, t̂i−1
the accumulated results of the previous iteration, and C̃i and αi the
associated sample color and opacity values at the current resam-
pling location. Note that t̂ is the accumulated transparency. Substi-
tuting t̂i = (1− α̂i) leads to the less efficient – but more familiar –
formulation with accumulated opacities α̂i.

When compositing back-to-front, the accumulated transparen-
cies of Equation 9 do not need to be maintained. However, they are
useful if the final image is composited over a new background or
for mixing volumes and polygons (see Section 4.5). The recursive
back-to-front formulation for n sample points is:

t̂n = (1−αn); Ĉn = C̃n (10)

Ĉi = Ĉi−1(1−αi)+C̃i

t̂i = t̂i−1 (1−αi).

Because the extinction coefficient measures the volumetric light
absorption per unit length, the opacity value must be adapted to the
distance between interpolated samples. This scaling is called opac-
ity correction. If opacities are defined for a distance dold , and sam-
ples are spaced by a distance dnew, the scaling becomes [Lacroute
1995]:

αcorrected = 1− (1−αstored)
dold
dnew . (11)

This can be efficiently implemented using a pre-computed lookup
table that stores αcorrected as a function of αstored and dnew.

As discussed by Schulze et al. [Schulze et al. 2003], associated
colors have to be corrected correspondingly:

C̃corrected = C̃stored
αcorrected

αstored
. (12)

Orthographic projections typically lead to constant sample dis-
tances throughout the volume. Maintaining constant sample dis-
tance for perspective projections leads to spherical shells of sam-
ples around the from the center of projection (see Figure 2). While

some approaches have used spherical shell sampling [LaMar et al.
1999] for uniform sample spacing, it is more common to correct
opacities by evaluating (11) and (12).

There are several alternatives to volumetric compositing that
have proven useful. In X-ray or weighted sum projections, the value
of the pixel equals the sum of the intensities. Maximum Intensity
Projections (MIP) project the maximum intensity along the ray into
a pixel. Other options includes first opaque projection, minimum in-
tensity projection, and weighted sum projection [Gasparakis 1999].

4 Advanced Techniques

Given the high performance requirements of volume rendering, it
becomes clear that a brute-force implementation requires an exces-
sive amount of processing. It is therefore not surprising that many
optimizations have been developed.

4.1 Early Ray Termination

Early ray termination is a widely used method to speed up ray cast-
ing [Levoy 1990a; Arvo and Kirk 1990; Danskin and Hanrahan
1992]. The accumulation of new samples along a ray is terminated
as soon as their contribution towards the currently computed pixel
becomes minimal. Typically, the ray is terminated as soon as the
accumulated ray opacity reaches a certain threshold since any fur-
ther samples along the ray would be occluded. More general meth-
ods terminate rays according to a probability that increases with
increasing accumulated ray opacity [Arvo and Kirk 1990; Danskin
and Hanrahan 1992], or decrease the sampling rate as the optical
distance to the viewer increases [Danskin and Hanrahan 1992]. The
performance of early ray termination is dataset and classification
dependent.

4.2 Space Leaping

Empty or transparent regions of the volume data may be skipped us-
ing pre-computed data structures. In content-based space leaping,
samples are skipped that are invisible by virtue of opacity assign-
ment or filtering. Typically, the opacity transfer function is used to
encode non-transparent areas of the data into hierarchical [Meagher
1982; Levoy 1990a; Danskin and Hanrahan 1992; Subramanian
and Fussell 1990] or run-length encoded [Reynolds et al. 1987;
Lacroute and Levoy 1994] data structures. Inherent problems of
content-based space leaping are that its performance is classifica-
tion dependent, and that changes of the opacity transfer function
lead to lengthy re-computation of the data structures.

In contrast, geometry-based space leaping skips empty space
depending on the position of samples, not based on their values.
Levoy [Levoy 1990a] uses an octree data structure to skip empty
subvolumes of the data during ray-casting. Avila et al. [Avila
et al. 1992] use convex polyhedral shapes as bounding volumes and
graphics hardware to efficiently skip space by rendering the bound-
ing volume into the depth buffer. Other methods use pre-computed
distance functions to indicate the radial distance from each voxel in
the data [Sramek 1994; Zuiderveld et al. 1992] or fast discrete line
algorithms to progress quickly through empty regions [Yagel et al.
1992].

4.3 Pre-Integration

The discrete approximation of (1) will converge to the correct re-
sults only for high volume sampling rates, i.e., if the spacing be-
tween samples is sufficiently small. As discussed by Engel et
al. [Engel et al. 2001], the Nyquist frequency for correct sampling
is roughly the product of the Nyquist frequencies of the scalar field
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and the maximum of the Nyquist frequencies of the two transfer
functions for g(x) and c(x). In other words, non-linear transfer
functions require very high sampling rates. Artifacts may still oc-
cur unless the transfer functions are smooth and the volume is band-
limited.

To address the problem, Max et al. [Max et al. 1990] and
Roettger et al. [Roettger et al. 2000] introduced a technique called
pre-integration (see Chapter X). The volume rendering integral be-
tween two samples is a function of their interpolated values and
the distance between the samples. For each combination of scalar
values, the integration of the opacity or color transfer function is
pre-computed and stored in a 2D lookup table (for constant sam-
pling distance). The computation of the integral can be acceler-
ated by graphics hardware [Roettger and Ertl 2002; Guthe et al.
2002a]. The value of the pre-integrated opacity or color values is
looked up during post-classification. Meissner et al. [Meissner et al.
2002a] also apply pre-integration to the ambient, diffuse, and spec-
ular lighting parameters of the Phong shading model.

Despite pre-integration, artifacts may still occur from high fre-
quencies that are present in the scalar field [Knittel 2002] and from
the non-linear effects of tri-linear interpolation and shading. Con-
sequently, the distance between samples needs to be decreased to
over-sample the volume.

4.4 Volume Clipping

Volume clipping is an important operation that helps the under-
standing of 3D volumetric data. Clipping helps to uncover impor-
tant details in the data by cutting away selected parts of the volume
based on the position of clip geometry. The simplest clip geometry
are one or more clipping planes that reveal slices and cross-sections
of the volume data. Cropping is an easy way of specifying a recti-
linear region of interest with multiple clipping planes parallel to the
volume faces [Pfister et al. 1999]. During cropping, cross-sections
of the volume may be combined by taking intersections, unions,
and inverses to define elaborate regions of visibility of the volume
data set. In its most general form, volume clipping uses arbitrary
clip geometry that may be defined by a polygon mesh or by an addi-
tional volume (see Figure 9). Weiskopf et al. [Weiskopf et al. 2003]
provide a good overview of volume clipping methods.

4.5 Mixing Polygons and Volumes

The incorporation of polygonally defined objects into a volumetric
scene is often important, especially in medical applications such as
virtual endoscopy [Geiger and Kikinis 1995]. Volume data – such
as CT or MR images – can be directly combined with synthetic ob-
jects – such as surgical instruments, probes, catheters, prostheses,
and landmarks displayed as glyphs. In some instances, preopera-
tively derived surface models for certain anatomical structures such
as skin can be more efficiently stored and better visualized as a
polygon mesh. A straightforward way of mixing volume and poly-
gons is to convert the polygonal models into sampled volumes and
then render them using a volume rendering method [Kaufman et al.
1990]. Another way is to simultaneously cast rays through both
the polygonal and volume data, at the same sample intervals, and
then composite the colors and opacities in depth sort order [Levoy
1990b]. Bhalerao at al. [Bhalerao et al. 2000] provide an overview
of recent methods and propose a hardware-accelerated method for
static views. All of the techniques described in this chapter are
amenable to mixing volumes with polygons, although some with
less efficiency than others.

We now will discuss several hardware-accelerated volume ren-
dering algorithms for rectilinear grids: ray casting, texture slicing,
shear-warp and shear-image rendering, and splatting. Our discus-
sion will focus on how these methods implement each stage of the

volume rendering pipeline (Section 3) followed by an overview of
the available extensions (Section 4). Throughout the chapter, we
will rarely quote performance numbers, unless we are confident
they will not change over time. For an additional comparison be-
tween most of these algorithms, including image-quality evalua-
tions, see [Meissner et al. 2000].

5 Ray Casting

Ray casting is the most commonly used image-order technique. It
simulates optical projections of light rays through the dataset, yield-
ing a simple and visually accurate mechanism for volume render-
ing [Levoy 1988].

Data Traversal: Rays are cast from the viewpoint (also called
center of projection) through screen pixels into the volume. The
ray directions can be computed from the model and viewing trans-
formations using standard computer graphics techniques [Francis
S. Hill 2000]. Empty space between the viewing plane and the
volume can be skipped by rendering a polygonal bounding box of
the volume into a depth buffer [Avila et al. 1992]. The ray start-
ing points and their normalized directions are then used to generate
evenly spaced resampling locations along each ray (see Figure 5).

Figure 5: Ray casting sample generation.

Interpolation: At each resampling location, the data is interpo-
lated, typically by tri-linear interpolation in cells of 2×2×2 voxels.
Note that tri-linear interpolation can be efficiently evaluated using
caching of cell data among neighboring rays [Pfister et al. 1999].

Gradient Estimation: Gradient vectors are usually pre-
computed at voxel locations and stored with the volume data. Al-
ternatively, they are computed during rendering using the central
difference gradient filter. The gradient vectors of a cell are interpo-
lated to the nearest resampling locations. Optionally, the gradient
magnitude is computed for gradient magnitude modulation during
post-classification.

Classification: If scalar values were interpolated, color and
opacity are assigned to each sample using a post-classification
lookup. Optionally, the sample opacity is modulated by the gradient
magnitude. If the data was pre-classified, no further classification
of the interpolated associated colors is necessary.

Shading: Using the gradient as the surface normal approxima-
tion and the classified color as the emitted (or primary) color, a
local shading model is applied to each sample. For example, the
Phong illumination model for directional lights can be efficiently
implemented using pre-computation and table lookup in so-called
reflectance maps [Voorhies and Foran 1994]. The reflectance map
implementation supports an unlimited number of directional light
sources, but no positional lights.

Compositing: All samples along the ray are composited into
pixel values – typically in front-to-back order – to produce the final
image. For higher image quality, multiple rays per pixel are cast and
combined using high-quality image filters [Francis S. Hill 2000].
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Ray casting offers high image quality and is conceptually easy
to implement. Unfortunately, these advantages come at the price of
high computational requirements. The volume data is not accessed
in storage order because of the arbitrary traversal direction of the
viewing rays. This leads to poor spatial locality of data references,
especially for sample and gradient interpolation.

There has been a lot of research on special-purpose hardware for
volume ray casting. General surveys on early work in this field can
be found in [Hesser et al. 1995; Ray et al. 1999]. The Cube project
at SUNY Stony Brook resulted in VolumePro 500 (see Section 7.1),
the first commercial real-time volume rendering engine, and various
proposals for improvements [Kreeger and Kaufman 1998; Kreeger
and Kaufman 1999a; Dachille and Kaufman 2000] The VIZARD
project [Knittel and Strasser 1997; Meissner et al. 1998] at the Uni-
versity of Tübingen lead to the successful implementation of the
VIZARD II hardware [Meissner et al. 2002b]. VIZARD II uses re-
configurable field-programmable gate arrays (FPGAs) for fast de-
sign changes and low cost development. The system can be config-
ured for high quality perspective ray casting of volume data or for
medical image reconstruction.

Recently, Roettger et al. [Roettger et al. 2003] presented the
first implementation of volume ray casting on off-the-shelf graph-
ics hardware (see Figure 6). All rays are processed in parallel in

Figure 6: Hardware-accelerated ray casting of a CT scan of a bon-
sai (2563) with adaptive pre-integration. Image courtesy of Stefan
Roettger, University of Stuttgart, Germany.

front-to-back order. The bounding box of the volume is rendered to
provide starting locations for all rays. The parameters for ray traver-
sal are stored in floating point textures, which are subsequently up-
dated. The optimal step size for each ray is pre-computed and stored
in a so-called importance volume. The step size depends on the
pre-integrated emission and opacity value as well as second-order
gradients. This technique, called adaptive pre-integration, is able to
guarantee error bounds on the ray integration. Rays are terminated
early or when they leave the volume by setting the z-buffer for the
corresponding pixels such that further computation is avoided. Ad-
ditional rendering passes are necessary to determine if all rays have

terminated.
The number of rendering passes for this approach is 2n − 1,

where n is the maximum number of samples along a ray. The per-
formance on modern graphics hardware is interactive, and it outper-
forms a software ray caster with pre-integration. The image quality
is higher than comparable texture slicing methods (see Section 6),
and additional performance increases can be expected with future
hardware improvements.

6 Texture Slicing

Texture slicing on programmable graphics processing units
(GPUs) [Lindholm et al. 2001] is the predominant hardware-
accelerated volume rendering method. Texture-based volume ren-
dering approaches can be implemented using 3D or 2D texture map-
ping functionality.

6.1 3D Texture Slicing

3D texture methods traverse the volume using image-aligned tex-
ture slices [Akeley 1993; Cullip and Neumann 1993; Wilson et al.
1994; Guan and Lipes 1994; Cabral et al. 1994] (see Figure 7).

Figure 7: Image-aligned 3D texture slicing.

Data Traversal: The volume is stored in 3D texture memory
and sampled during rendering by polygons parallel to the image
plane. The view-aligned polygons are generated on the CPU and
clipped against the volume bounding box. The clipping operation,
which has to be performed for each frame, requires an efficient al-
gorithm [Rezk-Salama 2001]. The texture coordinates of each poly-
gon vertex with respect to the 3D texture parameters in the range
[0,1] are computed.

Interpolation: The polygons with associated 3D texture coor-
dinates are projected by the graphics hardware using the standard
transformations of the polygon graphics pipeline (see Section 2.2).
The volume data is automatically resampled by the 3D texture hard-
ware during polygon projection using tri-linear interpolation. Note
that the sampling rate along viewing rays for orthographic projec-
tions is constant, whereas the sampling rate varies per ray for per-
spective projections [Rezk-Salama 2001]. This may lead to some
artifacts, depending on the transfer functions and the data.

Gradient Estimation: Current GPUs do not support the com-
putation of 3D gradients in hardware. Gradients are pre-computed,
scaled and biased into the range [0,1], and stored in the 3D texture.
Typically, the RGB channel is used for the volume gradients, while
the scalar values are stored in the alpha channel [Westermann and
Ertl 1998]. Since gradients are projected and interpolated the same
way as scalar values, subsequent shading operations are computed
per pixel in screen space.

Gradients can also be stored using an integer encoding of the
quantized gradient vector [Fletcher and Robertson 1993; Glassner
1990; Gelder and Kim 1996]. However, a non-linear shading func-
tion is very sensitive to quantization errors of the gradients. Another
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alternative is to use a shading approximation without gradients by
pairwise subtracting co-planar texture slices, one shifted in direc-
tion of the light source [Peercy et al. 1997].

Classification: Most texture mapping methods use post-
classification (see Figure 8) by storing a one- or higher-dimensional
transfer function as a texture [Meissner et al. 1999]. The interpo-
lated scalar value is stored as a texture, which is then used as a
lookup coordinate into the transfer function texture. This is also
called dependent texture lookup because the texture coordinates
for the second texture are obtained from the first texture If pre-

Figure 8: CT Angiography of a human brain (5122 × 128). Ren-
dered on an ATI Radeon 9700 with 3D texture slicing and post-
classification using dependent textures. Image courtesy of Christof
Rezk-Salama, University of Erlangen, Germany.

classification is used, a 3D texture with associated colors is stored
in addition to a 3D gradient texture. Alternatively, paletted textures
can be used, where the texture format is defined by an index to a
color palette that maps scalar values to colors [Berger et al. 2003].
Opacity correction is applied based on the distance between tex-
ture slices. It can be implemented using a dependent lookup into a
one-dimensional floating point texture.

Shading: Before the introduction of programmable graphics
hardware, shading of volumes stored as 3D textures was either ig-
nored or performed in a pre-processing step [Gelder and Kim 1996].
However, pre-shaded volumes need to be recomputed whenever the
light position and viewing direction change. A more fundamental
problem is that classification and shading are in general non-linear
operations. Interpolation of the pre-computed values degrades the
image quality when compared to the evaluation of the non-linear
functions in a linearly interpolated scalar field [Neumann 1993;
Bentum 1995].

Dachille et al. [Dachille et al. 1998] use hardware for interpo-
lation and compositing, and compute shading on the CPU during
volume rendering. Westermann and Ertl [Westermann and Ertl
1998] introduced a hardware-accelerated ambient and diffuse shad-
ing technique for iso-surface rendering. Meissner at al. [Meissner
et al. 1999] first expanded this technique for semi-transparent vol-
ume data, and then proposed an efficient technique to compute the
full Phong illumination model using cube maps [Meissner et al.
2002a]. They also point out the need for normalized gradients in
shading computations, and propose an efficient solution for pre-
integrated classification. Engel et al. [Engel et al. 2001] compute
diffuse and specular lighting for iso-surface rendering. They ob-
serve that memory requirements can be reduced for static lighting
by storing the dot products of light and gradient vectors per voxel
in luminance-alpha textures. Behrens et al. [Behrens and Ratering

1998] add shadows to the lighting model. Their multi-pass method
works with 2D and 3D texture mapping hardware.

Compositing: The resampled RGBα textures are accumulated
into the frame buffer using back-to-front compositing [Porter and
Duff 1984]. If front-to-back compositing is used, accumulated
opacities need to be stored for each pixel in the image.

Engel et al. [Engel et al. 2001] apply pre-integration of opac-
ity and color transfer functions to texture slicing. Their method
produces high quality images for semi-transparent and iso-surface
volume rendering (see Chapter X). The pre-integration is applied to
successive volume slabs, taking the scalar values at the entry and
exit points and the distance between the two slices into account.
Roettger et al. [Roettger et al. 2003] improve the image quality even
further by internally blending the results of multiple pre-integrated
slabs before writing the results to the framebuffer. They suggest that
two-times over-sampling has almost the same performance as no
over-sampling because of increased cache coherency. Using their
multi-step slicing approach [Roettger et al. 2003], four-times over-
sampling yields the best quality-performance tradeoff.

Weiskopf et al. [Weiskopf et al. 2002; Weiskopf et al. 2003] pro-
pose several techniques for volume clipping in 2D and 3D texture
slicing methods. Arbitrary clip geometry can be defined by poly-
gons, voxelized geometry, or the iso-surface of another volume.
They also present a high-quality shading technique for clip bound-
aries (see Figure 9). Roettger et al. [Roettger et al. 2003] extend

Figure 9: Volume clipping applied to a CT scan of an engine (left,
2562 × 110) and an MRI scan of a human head (right, 2563). The
cutting surfaces are enhanced by combining surface-based and vol-
umetric shading. Image courtesy of Daniel Weiskopf, University of
Stuttgart, Germany.

some of their methods to work with pre-integrated classification.
Kreeger and Kaufman [Kreeger and Kaufman 1999b] developed

a texture slicing method that renders opaque and translucent poly-
gons embedded within volumes. Thin slabs of translucent polygons
are rendered between volume slices and composited in the correct
order.

A significant amount of texture memory is required to store the
volume gradients. Typically, the storage increases by a factor of two
to three. Visualization of very large volume data is also an issue for
the limited memory of today’s GPUs. Meissner et al. [Meissner
et al. 2002a] use lossy texture compression to compress the volume
with a corresponding loss in image quality. LaMar et al. [LaMar
et al. 1999] propose a multi-resolution framework based on an oc-
tree, where each node is rendered using 3D texture slicing. Weiler
et al. [Weiler et al. 2000] improve this algorithm to prevent discon-
tinuity artifacts between different multi-resolution levels. Guthe et
al. [Guthe et al. 2002b] use a hierarchical wavelet decomposition,
on-the-fly decompression, and 3D texture slicing. Their implemen-
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tation is able to render very large datasets at interactive rates on
PCs, although with a loss in image quality.

6.2 2D Texture Methods

Historically, 3D texture mapping was not available on PC graph-
ics cards, and 2D texture mapping methods had to be used in-
stead [Cabral et al. 1994; Rezk-Salama et al. 2000]. For example,

Brady et al. [Brady et al. 1998] present a technique for interac-
tive volume navigation that uses ray casting accelerated with 2D
texture mapping. Despite the availability of 3D texture mapping on
all modern GPUs, 2D texture slicing is still used for volume render-
ing today, and it outperforms 3D texture slicing for large volumes.

2D texture methods traverse the volume using object-aligned
texture slices [Cullip and Neumann 1993; Guan and Lipes 1994;
Cabral et al. 1994] (see Figure 10).

Figure 10: Object-aligned 2D texture slicing.

Data Traversal: Similar to 3D texture methods, each texture
slice is defined by a polygon. In 2D texture slicing the polygons are
always parallel to the face of the volume data that is most parallel
to the viewing plane, which is also called the base plane. It can be
easily determined by computing the minimum angle between view-
ing direction and face normals [Rezk-Salama 2001]. An arbitrary
choice can be made in case of a tie at 45o. Each polygon vertex is
assigned the texture coordinates of the corresponding 2D volume
slice in texture memory. In contrast to 3D texture methods, three
copies of the volume have to be stored in texture memory, one for
each slicing direction.

Interpolation: The texture mapped slices are interpolated by the
graphics hardware during projection of the polygon to screen space.
Object-aligned 2D texture slicing requires only bi-linear instead of
tri-linear interpolation, which leads to higher performance due to
the coherent memory accesses.

The lack of interpolation between slices may lead to aliasing ar-
tifacts if the scalar field or transfer functions contain high frequen-
cies [Lacroute 1995]. Rezk-Salama et al. [Rezk-Salama et al. 2000]
improve the image quality by interpolating additional slices during
rendering using multiple texture units in one pass (see Figure 11).
The tri-linear interpolation of inbetween slices is decomposed into

Figure 11: CT scan of a carp (5123) rendered on an ATI Radeon
9700 with 2D multi-textures and post-classification. Image courtesy
of Christof Rezk-Salama, University of Erlangen, Germany.

two bi-linear interpolations (performed by 2D texture units in the
graphics hardware) and one linear interpolation between slices (per-
formed in the pixel shader of the GPU).

Gradient Estimation and Classification: Gradients and clas-
sification are computed similar as in 3D texture slicing. Pre-
computed gradients are stored in the RGB channel and bi-linearly
interpolated to screen space during polygon rasterization. Classifi-
cation can take place pre- or post-interpolation.

For opacity correction, Rezk-Salama et al. [Rezk-Salama et al.
2000] show that scaling the opacities linearly according to the dis-
tance between samples is a visually adequate approximation. They
also describe an algorithm for fast shaded iso-surface display us-
ing multi-stage rasterization (see Figure 12). Engel et al. [Engel

Figure 12: CT Angiography of a human brain (5122 ×128). Trans-
parent rendering of a non-polygonal shaded iso-surface with 2D
multi-textures on an NVIDIA GeForce-4Ti. Image courtesy of
Christof Rezk-Salama, University of Erlangen, Germany.

et al. 2001] improve the quality of 2D texture methods with pre-
integrated classification.

Shading and Compositing: The same methods are used for
shading and compositing as in 3D texture slicing. For high im-
age quality, the gradients need to be normalized by the fragment
shader after projection [Meissner et al. 2002a]. The texture-mapped
slices are composited onto the image plane using the texture blend-
ing modes of the graphics hardware.

When the viewing direction suddenly changes from one slicing
direction to another, the sampling through the volume changes as
well. This may lead to popping artifacts, which are sudden changes
in pixel intensity with changes in slicing direction (see Figure 13).
The problem is worse for anisotropic volume data. Note that 3D
texture slicing methods avoid popping artifacts by gradually adjust-
ing the slice directions with the viewing angle. Rezk-Salama et
al. [Rezk-Salama et al. 2000] virtually eliminate popping artifacts
in 2D texture slicing by interpolating and shifting inbetween slices
such that the sample spacing along viewing rays is practically con-
stant independent of the viewing direction.

7 Shear-Warp Rendering

Shear-warp rendering algorithms resample the volume data from
object space to the image coordinate space so that the resampled

9



This is not the final version – please do not distribute

Figure 13: Popping artifacts in 2D texture slicing. The samples
along rays may not be aligned after a small change in viewing an-
gle leads to a change of slicing direction. The superposition on
the right shows that the location of resampling locations abruptly
changes, which leads to sudden changes in pixel intensity. Figure
suggested by Christof Rezk-Salama, University of Erlangen, Ger-
many.

voxels line up on the viewing axis in image space [Drebin et al.
1988; Upson and Keeler 1988] (see Figure 14). The interpolated
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Figure 14: Shear-warp factorization.

samples are then composited onto the viewing plane along axis-
aligned viewing rays. The 3D affine transformation between object
space and image space can be decomposed into three sequential 1D
shear operations [Hanrahan 1990]. Alternatively, the viewing trans-
formation can be decomposed into a shear and a 2D image warping
operation [Reynolds et al. 1987; Lacroute and Levoy 1994]. Per-
spective projections require an additional transformation, typically
in the form of a scale operation of the sheared data slices [Vézina
et al. 1992; Lacroute and Levoy 1994]. Shear-warp algorithms are
very efficient due to the combination of object-order volume traver-
sal and scanline-order resampling. More recently, they have been
extended for improved image quality [Sweeney and Mueller 2002]
and pre-integration [Schulze et al. 2003].

7.1 VolumePro 500

The VolumePro 500 system [Pfister et al. 1999] is based on the
Cube-4 architecture developed at SUNY Stony Brook [Pfister and
Kaufman 1996]. Mitsubishi Electric licensed the technology, im-
proved it [Osborne et al. 1997], and started production shipments
of the VolumePro 500 in 1999 [Pfister et al. 1999]. The technology
was subsequently acquired by TeraRecon Inc., which released the
VolumePro 1000 system in 2002 [Wu et al. 2003].

Data Traversal: VolumePro 500 uses the standard shear-warp
factorization [Reynolds et al. 1987; Lacroute and Levoy 1994] for
orthographic projections. Instead of casting rays from image space,
rays are sent into the data set from pixels on the base plane. The
ray traversal mechanism ensures that ray samples are aligned on

slices parallel to the base plane [Yagel and Kaufman 1992]. A key
feature of the VolumePro architecture is the special memory address
arithmetic called 3D skewing [Kaufman and Bakalash 1988] and
a highly optimized memory interface [Osborne et al. 1997]. This
enables to efficiently read any blocks and axis-aligned voxel slices
while storing only one copy of the volume data.

Interpolation: To prevent undersampling, VolumePro 500 uses
tri-linear interpolation between volume slices. On-chip slice buffers
and a the axis-aligned processing order allow maximum memory
coherent accesses. The viewing rays can start at sub-pixel locations,
which prevents popping artifacts during base plane switches and
allows over-sampling of the volume in x, y, or z direction.

Gradient Estimation: VolumePro 500 has hardware for on-the-
fly central-difference gradient estimation at each voxel. The gradi-
ents are then tri-linearly interpolated to resampling locations. The
hardware includes gradient correction and gradient magnitude com-
putation. The gradient magnitude is mapped by a lookup table to a
user-specified piece-wise linear function. This function can be used
to highlight particular gradient magnitude values or to attenuate the
modulation effect. The lookup table is also used to automatically
correct the gradient magnitudes in anisotropic volumes.

Classification: VolumePro 500 implements post-classification
using a 4k × 36 bit classification lookup table that outputs 24-bit
color and 12-bit α values. That precision is necessary for high ac-
curacy during rendering of low opacity volumes. Because of the
uniform sample spacing, opacity correction can be applied in soft-
ware for each frame. The opacity and color lookup tables can be
dynamically loaded using double buffering in hardware.

Shading: The hardware implements Phong shading at each sam-
ple point at the rate of one illuminated sample per clock cycle. The
diffuse and specular illumination are looked up in reflectance maps,
respectively [van Scheltinga et al. 1995; Voorhies and Foran 1994].
Each reflectance map is a pre-computed table that stores the amount
of illumination due to the sum of all of the light sources of the scene.
Reflectance maps need to be reloaded when the object and light po-
sitions change with respect to each other, or to correct the eye vector
for anisotropic volumes (see Figure 15).

Figure 15: CT scan of a human head (2563) rendered on VolumePro
500 with Phong shading and different transfer functions.

Compositing: The ray samples are accumulated into base plane
pixels using front-to-back alpha blending or Minimum and Maxi-
mum Intensity Projections (MIP). The warping and display of the
final image is performed by an off-the-shelf 3D graphics card using
2D texture mapping.

VolumePro 500 renders 2563 or smaller volumes at 30 frames
per second. Due to the brute-force processing, the performance is
independent of the classification or data. In order to render a larger
volume, the driver software first partitions the volume into smaller
blocks. Each block is then rendered independently, and their re-
sulting images are automatically combined to yield the final image.
VolumePro 500 also provides various volume clipping and crop-
ping features to visualize slices, cross-sections, or other regions-of-
interest of the volume.
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7.2 VolumePro 1000

The VolumePro 1000 system [Wu et al. 2003] uses a novel shear-
image order ray casting approach (see Figure 16).

Figure 16: Shear-image order ray casting. Grey samples are inter-
polated inbetween original volume slices.

Data Traversal: Shear-image ray casting casts ray directly
through the centers of pixels, but keeps the slices parallel to the
base plane, similar to 2D texture mapping methods. However, the
3D viewing transformation is explicitly decomposed into two ma-
trices: a transformation from voxel coordinates to an intermediate
coordinate system called sample space, and a transformation to ad-
just the depth values of sample points to reflect their distance from
the image plane. A detailed derivation of these transformations is
given by Wu et al. [Wu et al. 2003].

Sample space is coherent with image and voxel space, and the fi-
nal image does not have to be warped because samples are aligned
along viewing rays from image plane pixels. This leads to higher
image quality than the traditional shear-warp factorization (see Fig-
ure 17).

Figure 17: Comparison of shear-warp (left, rendered by Volume-
Pro 500) and shear-image order ray casting (right, by VolumePro
1000). Images courtesy of Yin Wu and Jan Hardenbergh, TeraRecon
Inc.

Interpolation and Gradient Estimation: Similar to VolumePro
500, the resampling of the volume proceeds in object-space for high
memory coherence. VolumePro 1000 performs tri-linear interpola-
tion of the volume data and computes gradient vectors in hardware.
Similar to VolumePro 500 and the 2D texture slicing method of
Rezk-Salama et al. [Rezk-Salama et al. 2000], additional interpo-
lated slices can be generated inbetween original voxel slices. Since
slices can be shifted with sub-pixel accuracy, this method avoids
popping artifacts and keeps the ray spacing and sample spacing
constant, also for anisotropic and sheared volumes.

Classification: VolumePro 1000 uses a set of cascaded lookup
tables that can be combined by a hierarchy of arithmetic-logic
units [Gasparakis 1999]. Voxels can have up to four fields, and each

field is associated with its own lookup table. The classification and
interpolation stage are cross-connected to allow the application to
choose pre- or post-classification (see Figure 18). The hardware
also supports opacity correction and gradient magnitude modula-
tion of opacity.

Figure 18: CT scans of a human torso, pre-classified with different
transfer functions per material type. Images courtesy of Yin Wu and
Jan Hardenbergh, TeraRecon Inc.

Shading: VolumePro 1000 uses similar Phong shading hardware
as VolumePro 500. Great care is taken to ensure correct gradient
and Phong shading calculations for sheared and anisotropic data
using lighting space [Wu et al. 2003] (see Section 3.5).

Compositing: In addition to the blending modes of VolumePro
500, the hardware also supports early ray termination for increased
performance. VolumePro 1000 also implements geometry-based
space leaping, volume clipping and cropping, and perspective pro-
jections using a variation of the shear-warp transformation. Vol-
umePro 1000 is capable of rendering 109 samples per second.

For embedding of polygons into the volume data, the depth of
volume samples can be compared with a polygon depth-buffer (see
Figure 19). The implementation uses multiple rendering passes:

Figure 19: Embedding a polygon prosthesis into a CT scan of a
human hip. Images courtesy of Yin Wu and Jan Hardenbergh, Ter-
aRecon Inc.

first, the polygons are rendered into the depth buffer. Next, rays
are cast into the volume starting at the image plane and ending at
the captured depth buffer. The color buffers of the polygon and
volume rendering are then blended. In the second pass, rays are ini-
tialized with the result of the blending pass. They start at the depth
buffer and end at the background to render the portion of the vol-
ume behind the polygon. The result is an image of the volume with
embedded polygons. VolumePro 1000 also supports embedding of
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multiple translucent polygons using a dual depth buffers [Wu et al.
2003].

8 Splatting

Splatting, introduced by Westover [Westover 1991], convolves ev-
ery voxel in object space with a 3D reconstruction filter and accu-
mulates the voxels contribution on the image plane (see Chapter X
and Figure 20).

Slicing Slab

a) Splat-Every-Sample

b) Image-Aligned Sheet

    Buffers

Figure 20: Splatting algorithm. Left: 3D reconstruction kernels are
integrated into 2D footprints, projected, and composited onto the
image plane. Right: Image-aligned sheet buffers slice through the
kernels. The contributions of 3D reconstruction kernels within a
slab are added. The result of each slab is then composited onto the
image plane.

Data Traversal: Data traversal in splatting depends on the com-
positing method (see below). In its simplest form, voxels are
traversed in object space and projected onto the screen (see Fig-
ure 20a). However, this leads to the wrong compositing order of
the projected splats. Typically, traversal proceeds through the vol-
ume slice by slice, in approximate back-to-front order, similar to
2D texture slicing. For more advanced splatting methods, such as
image-aligned sheet buffers, the traversal order is similar to 3D tex-
ture slicing (see Figure 20b).

Interpolation: Splatting is attractive because of its efficiency,
which it derives from the use of pre-integrated reconstruction ker-
nels. For simple splatting, the 3D kernel can be pre-integrated into
a generic 2D footprint that is stored as a 2D texture.

Splatting also facilitates the use of higher quality kernels with
a larger extent than trilinear kernels. Three-dimensional Gaussian
reconstruction kernels are preferable because they are closed under
convolution and integration [Zwicker et al. October 2001]. I.e., the
convolution of two Gaussians is another Gaussian, and the integra-
tion of a 3D Gaussian is a 2D Gaussian.

Additional care has to be taken if the 3D reconstruction kernels
are not radially symmetric, as is the case for sheared, anisotropic,
curvilinear, or irregular grids. In addition, for an arbitrary position
in 3D, the contributions from all kernels must sum up to one in the
image. Zwicker et al. [Zwicker et al. 2002] discuss these issues
in more detail and present a solution for Gaussian reconstruction
kernels.

Gradient Estimation, Classification, and Shading: Typically,
splatting uses pre-classification and pre-shading of the volume data.
Each voxel stores the resulting RGBα values, which are then mul-
tiplied with the footprint before projection. Mueller et al. [Mueller
et al. 1999a] propose a method for post-classification and shading in
screen space. The gradients are either projected to screen space us-
ing so-called gradient splats, or they are computed in screen space
using central differencing.

Compositing: Compositing is more complicated for splatting
than for other volume rendering methods. While the principle is
easy, it is more difficult to achieve high image quality.

The easiest compositing approach is called splat-every-sample
(see Figure 20a). The 2D footprint of the kernel is multiplied
by the scalar voxel value, projected to screen space, and blended
onto the image plane using graphics hardware [Crawfis and Max
1992]. However, this leads to visible artifacts, such as color bleed-
ing from background objects, because of incorrect visibility deter-
mination [Westover 1989].

To solve this problem, Westover [Westover 1990] introduces
sheet buffer splatting. 2D footprints are added (not composited)
onto sheet buffers that are parallel to the base plane. Traversal pro-
ceeds in back-to-front order, and subsequent sheet buffers are com-
posited onto the image plane. The approach solves color bleed-
ing, but similar to 2D texture slicing it introduces popping artifacts
when the slice direction suddenly changes.

Mueller and Crawfis [Mueller and Crawfis October 1998] pro-
posed to use image-aligned sheet buffers (see Figure 20b). A slab
parallel to the image plane traverses the volume. The contributions
of 3D reconstruction kernels between slab planes are added to the
slab buffer, and the result is composited onto the image plane. This
technique is similar to 3D texture slicing (see Section 6) and re-
solves the popping artifacts. But intersecting the slab with the 3D
reconstruction kernels has a high computational cost.

Mueller and Yagel [Mueller and Yagel October 1996] combine
splatting with ray casting techniques to accelerate rendering with
perspective projection. Laur and Hanrahan [Laur and Hanrahan
1991] describe a hierarchical splatting algorithm enabling progres-
sive refinement during rendering. Furthermore, Lippert [Lippert
and Gross 1995] introduced a splatting algorithm that directly uses
a wavelet representation of the volume data. For more extensions
see Chapter X.

Westover’s original framework does not deal with sampling rate
changes due to perspective projections. Aliasing artifacts may oc-
cur in areas of the volume where the sampling rate of diverging rays
falls below the volume grid sampling rate. The aliasing problem in
volume splatting has first been addressed by Swan et al. [Swan et al.
1997] and Mueller et al. [Mueller et al. 1998]. They use a distance-
dependent stretch of the footprints to make them act as low-pass
filters.

Zwicker et al. [Zwicker et al. 2002] develop EWA splatting along
similar lines to the work of Heckbert [Heckbert 1989], who intro-
duced EWA filtering to avoid aliasing of surface textures. They
extended his framework to represent and render texture functions
on irregularly point-sampled surfaces [Zwicker et al. 2001], and
to volume splatting [Zwicker et al. October 2001]. EWA splatting
results in a single 2D Gaussian footprint in screen space that in-
tegrates an elliptical 3D Gaussian reconstruction kernel and a 2D
Gaussian low-pass filter. This screen-space footprint is analytically
defined and can efficiently be evaluated. By flattening the 3D Gaus-
sian kernel along the volume gradient, EWA volume splats reduce
to surface splats that are suitable for high quality iso-surface ren-
dering.

Ren et al. [Ren et al. 2002] derive an object space formulation
of the EWA surface splats and describe its efficient implementation
on graphics hardware. For each point in object-space, quadrilater-
als that are texture-mapped with a Gaussian texture are deformed
to result in the correct screen-space EWA splat after projection. A
similar idea can be applied to EWA volume splatting, as shown in
Figure 21. The EWA volume splat is evaluated in screen space by
deforming a texture-mapped screen-space quadrilateral. The pro-
jection of samples and the deformation of the screen-space quads
can be performed efficiently on modern GPUs [Chen et al. 2004].
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Figure 21: CT scan of a human head (2562 × 225) and of an en-
gine (2562 × 110) rendered with hardware-accelerated EWA vol-
ume splatting on a GeForce FX Ultra 5900. Image courtesy of Wei
Chen, Zhejiang University, China, and Liu Ren, Carnegie Mellon
University, USA.

9 Conclusions

Without a doubt, the availability of programmable graphics hard-
ware on PCs has changed the field of hardware-accelerated volume
rendering. It is has lead to the great popularity of texture slicing
methods. More recently, it has become feasible to implement ray
casting on the GPU, including space leaping and early ray termi-
nation. The rapid progress of GPU hardware will address some
remaining performance and image quality issues soon. The recent
introduction of procedural shading languages [Mark et al. 2003]
will increase productivity and portability of code across hardware
from different vendors.

A more serious issue is the continuing growth of volume data
compared to the limited memory on the GPU and its low down-
load / upload bandwidth. The availability of increasingly powerful
computers and high resolution scanners result in highly accurate
and detailed data. For example, CT scanners now capture thou-
sands of images with 512 × 512 resolution, supercomputers are
producing terabytes of simulation data, and seismic scans for the
oil and gas industry contain gigabytes or terabytes of data [Volz
2000]. All of the GPU accelerated algorithms presented in this
chapter, such as texture slicing, multiply these memory require-
ments many fold by storing gradients and other auxiliary volumes.
Interesting directions to solve these problems are multi-resolution
techniques [LaMar et al. 1999; Guthe et al. 2002b], compression-
domain volume rendering [Chiueh et al. 1994], and image-based
volume rendering (IBVR) [Mueller et al. 1999b; Chen et al. 2001;
Harris and Lastra 2001].

On the high end, VolumePro remains the only commercially
available solution. In its current incarnation it can store up to 1
GB of volume data on board; that memory size will undoubtedly
increase with new releases. The business challenge is to make this
hardware widely available in dedicated, high-end visualization sys-
tems, such as PACS or geo-physical workstations, and 3D ultra-
sound systems. This challenge will increase with the continuing
pressure from cheap, ever more powerful GPUs.

As hardware-accelerated techniques for rectilinear volumes ma-
ture, researchers focus their attention on the interactive or real-time
rendering of unstructured volume data [Guthe et al. 2002a; Weiler
et al. 2003a; Weiler et al. 2003b], time-varying data [Ma 2003],
and non-traditional, illustrative volume rendering [Lu et al. 2003].
If the rapid pace of innovation continues, the chapter on hardware-
accelerated volume rendering will have to be expanded in the very
near future.
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