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Abstract

Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances
are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new
insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the
analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling
to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output
is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation
hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion.
We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions
of neuronal processes from a 27, 000 µm3 volume of brain tissue over a cube of 30 µm in each dimension corresponding to 1,000
consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors
based on sparse user scribbles.
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1. Introduction

Brain imaging modalities such as diffusion tensor MRI or
functional MRI provide important information about the brain
and the connectivity between brain regions (Seung, 2012).
However, at a resolution of a cubic millimeter per voxel they
provide little data about connectivity between individual neu-
rons. Information about the anatomy and connectivity of neu-
rons can provide new insights into the relation between the
brain’s structure and its function (Marc et al., 2013; Helm-
staedter and Mitra, 2012; Denk et al., 2012; Lee and Reid,
2011; Seung, 2009). Such information may provide insights
into the physical underpinnings of common serious disorders
of brain function such as mental illnesses and learning disor-
ders Kuwajima et al. (2013b); Penzes et al. (2011). Further-
more, information about the individual strength of synapses or
the number of connections between two cells has important im-
plications for computational neuroscience and theoretical anal-
ysis of neuronal networks (Valiant, 2006). As the resolution
of light microscopy is generally limited by diffraction, electron
microscopy (EM) is a better imaging modality to resolve the
brain at the level of synapses and thus provides insight into the
anatomy and connectivity of neurons at nm resolution. To re-
construct the neuronal circuit at the level of individual cells,
the field of neuroanatomy faces the challenge to acquire and
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Figure 1: We propose a pipeline to automatically reconstruct neuronal pro-
cesses from large-scale electron microscopy image data. The target volume
consists of 1,000 images with a size of 5, 120 × 5, 120 pixels, corresponding
to 27, 000 µm3 of mammalian brain tissue. With 8 bits per pixel, the full data
volume is 25 GB in size.
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analyze data volumes that cover a brain tissue volume large
enough to allow meaningful analysis of circuits and detailed
enough to detect synapses and thus the connectivity structure
of the circuit. Recently, significant progress has been made in
the automation of sample preparation (Hayworth et al., 2006)
and automatic image acquisition (Kuwajima et al., 2013a; Bock
et al., 2011; Knott et al., 2008; Denk and Horstmann, 2004) for
electron microscopy. These techniques allow neuroscientists to
acquire large datasets in the GB-TB range. Briggman and Bock
(2012) provide an overview of different sample preparation and
electron microscopy techniques used for Connectomics. With a
resolution of 5 nm per pixel, and a section thickness of 50 nm,
one cubic millimeter of brain tissue results in 20,000 sections
with 40 Gigapixels per image, leading to an image volume of
800 TB. For comparison, this volume corresponds to the size of
one voxel in an fMRI data set. With data sets this size, man-
ual analysis is no longer feasible, leading to new challenges in
automated analysis and visualization.

In this paper we present a pipeline for semi-automated 3D re-
construction of neurons from serial section electron microscopy
images. The pipeline is designed to address large data sets,
while reducing user interaction to the initial training of a ran-
dom forest classifier on manually annotated data and com-
puter aided proofreading of the automatic reconstruction out-
put. Our experiments demonstrate that the proposed pipeline
yields state-of-the art reconstruction results, based on sparse
annotations of only ten EM images (1, 024× 1, 024 pixels). We
provide quantitative evaluation for each step of the pipeline and
an example of a reconstructed volume of 27, 000 µm3, which to
our knowledge is the largest volume of conventionally stained
mammalian brain tissue reconstructed automatically (see Fig.
1).

Some of the work in this paper has been previously published
(Kaynig et al., 2010a; Vazquez-Reina et al., 2011; Roberts et al.,
2011). However, this is the first time we publish the complete
reconstruction pipeline and and its application to large data.
Specifically the novel contributions in this paper are:

• We demonstrate that interactively training a random for-
est classifier for membrane detection not only reduces the
manual annotation effort, but leads to significantly better
cell region segmentations measured in terms of variation
of information against manual annotated data.

• We combine the cell region segmentation of Kaynig et al.
(2010a) with the segmentation fusion of Vazquez-Reina
et al. (2011) into a consistent pipeline leading to long-
range reconstructions of neuronal processes over 30 µm
of brain tissue (up to 1,000 image sections).

• We extend the segmentation fusion approach to allow for
branching structures.

• We enable parallel processing of sub volumes via a pair-
wise matching scheme of segmented blocks into one con-
sistent reconstruction volume.

• We provide large-scale reconstruction results covering a
volume of 27, 000 µm3. To our knowledge we are the first

to achieve automatic reconstructions of individual spine
necks in anisotropic serial section electron microscopy
data prior to manual proofreading.

• Finally, we introduce Mojo, a semi-automated proofread-
ing tool, utilizing sparse user scribbles as described by
Roberts et al. (2011) to correct for merge errors in the 3D
reconstruction.

2. Related Work

Automated reconstruction of neuronal processes has received
increased attention in recent years. With electron microscopy
techniques acquiring large volumes automatically, automated
analysis is becoming the major bottleneck in gaining new in-
sights into the functional structure of the brain at nm scale.
The task to reconstruct the full neuroanatomy including synap-
tic contacts is referred to as connectomics in the literature
(Lichtman and Sanes, 2008). A number of software pack-
ages have been developed to aid the user in manual annota-
tion of the images (Helmstaedter et al., 2011; Cardona et al.,
2010; Fiala, 2005). A complete overview of the different tools
and their strength and limitations is provided by Helmstaedter
and Mitra (2012). In addition, semi-automatic methods have
been developed to facilitate the manual segmentation process
(Roberts et al., 2011; Sommer et al., 2011; Straehle et al., 2011;
Chklovskii et al., 2010; Vazquez-Reina et al., 2009).

In the area of fully automatic neuron reconstruction, sig-
nificant improvement has been made for the segmentation of
isotropic image data using a special staining method to facilitate
the segmentation (Andres et al., 2012b,a; Turaga et al., 2010;
Andres et al., 2008; Jain et al., 2007). While these methods
yield good performance for long range reconstructions, they
sacrifice the staining of biologically relevant internal cell struc-
tures like vesicles or mitochondria to simplify the segmentation
problem. Without staining these cell organelles, identification
of synapses relies entirely on geometrical features, like the ap-
position of spines and boutons. da Costa and Martin (2011)
have shown that geometrical features are not sufficient to iden-
tify synapses. In this paper we provide long range reconstruc-
tions with conventional osmium stained images, preserving all
structural information for biological analysis of the data, such
as synapse identification or automatic mitochondria reconstruc-
tion (Lucchi et al., 2012; Giuly et al., 2012).

While isotropic volume data enables the direct use of 3D
segmentation methods for reconstruction, the microscopy tech-
niques for these volumes are either limited in resolution to
30 nm voxels (Denk and Horstmann, 2004) or in the field of
view to 20 µm2 (Knott et al., 2008). Serial section imaging is
the only technique to record data volumes of millions of cubic
micrometers (Bock et al., 2011). The tissue sample is cut into
ultra thin sections of 30 nm and each section is imaged with an
electron microscope typically at a resolution of 3 − 5 nm per
pixel. The z resolution of the resulting data volume is limited
to 30 nm leading to an anisotropic data volume. An interest-
ing work by Hu et al. (2013) aims at enhancing the z resolution
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by leveraging tomographic projections, but acquiring the nec-
essary tilt images so far has not been automated for large-scale
image acquisition.

Automatic neuron reconstruction methods for anisotropic se-
rial section data typically focus on segmenting 2D neuronal
regions in the high resolution images (Knowles-Barley et al.,
2011; Jurrus et al., 2010; Kaynig et al., 2010a) or on grouping
2D regions across multiple sections into 3D neuronal processes
(Funke et al., 2012; Vitaladevuni and Basri, 2010; Kaynig et al.,
2010b; Jurrus et al., 2008), though some work also addresses
both steps, the region segmentation and the grouping across
sections together (Vazquez-Reina et al., 2011; Chklovskii et al.,
2010; Mishchenko, 2009). To our knowledge Chklovskii et al.
(2010) describe the only pipeline so far that addresses large-
scale reconstructions in the order of thousands of µm3. They
divide the original large EM data volume into biologically rel-
evant sub volumes of about 3, 000 µm3 which are then seg-
mented and reconstructed. In this paper we demonstrate suc-
cessful segmentation of a volume that is nine times larger than
the result shown by Chklovskii et al. (2010). Our experiments
also demonstrate that the employed CRF framework yields bet-
ter neuronal region segmentations than their use of watersheds,
leading to a reduction in proofreading effort.

3. Overview

We now provide an overview of our reconstruction workflow
(see Fig 2), as well as evaluation metrics for neuron segmenta-
tion and the data sets used for all experiments throughout this
paper.

3.1. Workflow

For automatic segmentation methods, serial section imaging
is challenging, as the resulting image data is highly anisotropic.
While the xy image resolution for each section is only limited
by the resolution of the microscope, the z-resolution is limited
by the section thickness of about 30 nm. For our pipeline we
assume that the image data has been previously aligned. While
registration and alignment for large electron microscopy stacks
is a topic of ongoing research (Wang et al., 2014; Saalfeld et al.,
2012), it is not the focus of this paper.

Figure 2 provides an illustration of the entire workflow. The
first part of the pipeline concentrates on the 2D segmenta-
tions of the high resolution section images. We first train a
random forest classifier on interactive manual annotations for
membrane detection. Then, we generate multiple segmenta-
tion hypothesis per section based on the classification output.
Our experiments demonstrate that thresholding the membrane
probability map at different intervals combined with anisotropic
smoothing in a conditional random field (CRF) framework is
superior to watershed segmentations of the membrane proba-
bility map (Kaynig et al., 2010a). We modified the original
anisotropic smoothing prior to emphasize the importance of the
membrane probability map over the original gray value images,
leading to an improvement in segmentation performance.

Subsequently, we leverage the previously obtained 2D seg-
mentations and group these into geometrical consistent 3D ob-
jects using segmentation fusion (Vazquez-Reina et al., 2011).
This step is especially challenging for large data sets, as geo-
metrically consistency requires context information across mul-
tiple sections. We reduced the number of features used to mea-
sure region similarity to streamline the fusion computation. In
addition, we extend the original segmentation fusion model
(Vazquez-Reina et al., 2011) to allow for the reconstruction of
branching structures. We evaluate the fusion step of the pipeline
and compare bipartite matchings of globally optimal groupings
of sub volumes with a greedy optimization scheme.

In the final step, the segmentation output has to be proofread
by a user, to ensure correct geometries. As fully manual proof-
reading is labor-intensive and practically unfeasible for large
volumes, we introduce Mojo, a semi-automatic proofreading
tool, that leverages sparse user scribbles to correct merge errors
in the automatic segmentation (Roberts et al., 2011).

3.2. Evaluation Measure

There are two types of errors: split errors and merge errors.
In 2D segmentation, a split error refers to a single region be-
ing split into two or more regions in the segmentation due to
false positive cell boundary detections. A merge error is caused
by a gap in the segmented cell boundaries, leading to separate
regions being merged into one region in the automatic segmen-
tation. Both errors can also occur during region grouping in
3D. Missing a branch, for example, can lead to a split error,
whereas merging branches incorrectly can merge two different
neural processes into one object.

The quality of segmented regions does not directly correlate
with boundary detection performance. A small number of false
negatives in the boundary detection can lead to merged regions
and thus large errors in the underlying segmentation, whereas
false positives can be neglectable as long as they do not in-
troduce a new region to the segmentation. To account for this
difference, region-oriented segmentation tasks can be evaluated
using clustering evaluation measures. The idea is that pixels
with the same label form a cluster. The whole segmentation can
then be compared to the pixel clustering obtained from the man-
ual annotation. Rand Index (RI) and Variation of Information
(VI) are two clustering evaluation measures that have been em-
ployed to evaluate region segmentation performance (Arbelez
et al., 2011). Both measures are invariant to label permutations.
The main difference between VI and RI in the context of Con-
nectomics is that VI is less sensitive to region sizes and rescal-
ing, and therefore correlates better to proofreading effort than
RI (Nunez-Iglesias et al., 2013). Thus, we measure the qual-
ity of our segmentation by comparing it to a manual annotation
using variation of information.

In contrast to the Rand index, variation of information estab-
lishes a metric in segmentation space (Meila, 2007) with lower
values capturing segmentations that are closer to each other.
The variation of information metric is based on information the-
ory and compares two segmentations S 1 and S 2 based on their
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Figure 2: Illustration of our complete workflow for large-scale neuron reconstruction. First, a random forest classifier is trained by interactive sparse annotations to
detect membranes in the images. Then we generate multiple region segmentation hypotheses per section. Subsequently, we find the three dimensional reconstructions
as geometrically consistent segmentations across multiple sections. Finally, a manual proofreading step ensures accurate reconstructions of neuronal processes of
interest.

entropy H and mutual information I:

VI(S 1, S 2) = H(S 1) + H(S 2) − 2I(S 1, S 2). (1)

Entropy H measures the randomness of the segmentation, and
mutual information I measures the information that the two seg-
mentations share. Eq. (1) can be rewritten as VI(S 1, S 2) =

H(S 1|S 2) + H(S 2|S 1), thus, variation of information measures
how much new information is obtained from one segmentation
given that we have seen the other segmentation. All variation
of information scores reported in the paper are computed using
natural logarithms and hence are given in nats.

Variation of Information can be computed efficiently and is
defined for arbitrary dimensions. Thus, the same evaluation cri-
terion can be employed to evaluate the 2D region segmentations
as well as the 3D region grouping step of our pipeline.

As drawing of cell boundaries requires more precision than
clicking on objects, it is generally faster for a user to correct
split errors than merge errors. Therefore, previous work on neu-
ron segmentation has biased the output of the automatic recon-
struction towards obtaining an over-segmentation of the data
(Chklovskii et al., 2010). We follow a different approach in
our work. Instead of biasing the pipeline towards split errors,
we provide a 3D semi-automatic segmentation method in our
proofreading tool to assist the user with the correction of merge
errors. This allows us to focus on optimizing the overall error
rate with an equal weighting of split and merge errors.

3.3. Data Sets

To demonstrate the scalability of our reconstruction work-
flow we use a data set consisting of 1,000 sections, with
5, 120×5, 120 pixels per image. The tissue is dense mammalian
neuropil from layers 4 and 5 of the S1 primary somatosensory
cortex of a 5 month old healthy C45BL/6J mouse. The images
were taken at a resolution of 3 nm per pixel and downsampled
by a factor of two, leading to a resolution in the image plane
of 6 nm per pixel. The section thickness is 30 nm. The en-
tire data set captures a tissue volume of 30 × 30 × 30 µm3.
Our target is a volumetric reconstruction of the 3D geometry
of all neuronal processes in the data set. In contrast to cen-
ter line tracings used in previous work by Helmstaedter et al.
(2011); Bock et al. (2011) we concentrate on segmenting the
whole volumetric geometry of the neurons. Center line tracings
can be annotated faster by a user than complete volume recon-
structions and are sufficient to evaluate the tracing of neuronal
processes over long ranges in a given volume. In contrast, our
complete volume segmentation enables us to also evaluate the
automatic segmentation with respect to important fine structure
details, such as spine necks (see section 8), that are necessary
to identify neuron connectivity.

In addition, we used a smaller volume consisting of 150 sec-
tion images with 1, 024 × 1, 024 pixels per image. This volume
has been densely annotated and thus captures the full range of
different object sizes and variability on a small scale. Instead
of carefully drawing cell boundaries, manual segmentation was
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performed by focusing on the regions corresponding to neu-
ronal processes. Thus, small extracellular space between cells
as well as thick or fuzzy membranes can lead to unlabeled pix-
els in the manual annotation. In order to preserve the duality
between cell boundaries and annotated regions, we assign un-
labeled pixels the label of the closest annotated region using
seeded region growing. For our experiments we divided the
data into three disjunct subsets for training, parameter valida-
tion and testing. All training and parameter validation is re-
stricted to the first 75 images of the densely labeled data set.
We use 10 images as training set, and 65 images as validation
set. The remaining 75 images from the second half of the stack
are used as test data, only after all parameters of the workflow
have been fixed.

4. Region Segmentation

While the texture characteristics of cell regions in electron
microscopy images can vary significantly between different an-
imal types and staining protocols, the basic appearance of the
cell boundary membranes as thin, smooth, and elongated struc-
tures remains the same. Thus, instead of segmenting interior
cell regions, we focus on segmenting the cell membranes to
make our approach easily adaptable to a wide range of data.

4.1. Membrane Classification

To learn the characteristics of membranes in the electron mi-
croscopy images, we train a random forest classifier based on
sparse manual membrane annotations. Random forests com-
bine the idea of bagging decision trees with random feature
selection (Breiman, 2001). Each decision tree is built from a
bootstrapped sample of the training data and at each node a
random subset of the available features is selected to estimate
the best split (Breiman, 2001). For prediction, the votes of all
decision trees in the forest are accumulated. As each tree can
be grown and queried independently, random forests are ideal
for parallelization during training and prediction, as well as in
an interactive training framework. In addition, random forests
are robust against over-fitting, leading to good generalization
performance with few manual annotations. The parameters to
tune are the number of decision trees and the size of the feature
subset used to determine the best split. We employ 300 trees
and we set the number of features to the square root of the total
number of features, which is the default suggested by Breiman
(2001). To account for imbalanced training data, we follow the
approach of Chen et al. (2004), and reduce the bootstrap sample
for each tree to the size of the minority class.

The feature set extracted from the images is designed to cap-
ture the characteristics of membranes with little computational
cost. Extracted features include the gray value, gradient mag-
nitude, Hessian eigenvalues, and difference of Gaussian for the
image smoothed with Gaussian filters of different kernel sizes.
In addition, we convolve the image with a steerable filter at dif-
ferent orientations. Each filter output serves as a feature, as
well as the minimal, maximal, and average output of the steer-
able filter for different orientations at a pixel position.

Figure 3: An example of the interactive annotation workflow. Left: An original
electron microscopy image, with overlayed membrane annotations (green) and
background annotations (red). Right: The thresholded membrane probability
map overlayed in red. The ellipses mark a split and merge error respectively,
which could be corrected by additional annotations in the next iteration. Both
images are 1.2 µm wide.

Changes in the sample preparation process or different ani-
mal types can lead to significantly different data sets, requiring
a retraining of the membrane classifier. Thus, our approach
aims at minimizing manual interaction. We use an interac-
tive training approach, similar to Sommer et al. (2011). The
user provides sparse training annotations of membranes and the
background class and interactively corrects the output of the
classifier in a feedback loop.

There are two main benefits of this method. One benefit is
that the annotation effort is efficiently guided towards challeng-
ing classifications and saves the user from annotating mem-
branes that are already correctly classified. The second benefit
is that users can weigh pixel errors in the classifier predictions
implicitly by deciding to correct the segmentation or leave the
prediction unchanged. The random forest classifier can only op-
timize for pixel misclassification and not for variation of infor-
mation directly. While both evaluation measures are minimal
for the correct segmentation, pixel misclassifications do not di-
rectly correspond to region segmentation performance. False
positive membrane detections, for example on vesicles, can be
neglectable as long as these do not lead to split errors in the
segmented regions, false negative membrane detections can be
neglectable as long as they do not introduce a gap in the out-
line of a neuronal region. The interactive training allows the
user to provide a training set that is biased towards correcting
pixel misclassifications which impact region segmentation per-
formance.

Figure 3 depicts an example of the interactive annotation.
Our experiments demonstrate that in the context of small train-
ing samples, this interactive approach outperforms complete
annotation of all membranes in the images (see Figure 4).

4.2. Interactive Training Evaluation
To evaluate the interactive annotation against conventional

training of fully annotated images, we chose a training set of
five images out of the first 75 images of the 150 section data
set. These images were manually selected to cover the vari-
ability in the data, from changes in image focus, contrast, or
section thickness. The interactive training consists of multi-
ple passes over the training images. Each pass consists of an
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Figure 4: Evaluation of the interactive annotation approach using variation of
information as the metric. Lower values correspond to better performance. Af-
ter the third to fourth round of interactively correcting the classifier output (or-
ange and green lines), the interactive approach outperforms training on fully
annotated images (red). The blue line corresponds to the performance of the
classifier trained on the last round of both sparse training sets together.

annotation and a feedback phase. The user is presented with
the current classification result and then manually provides ad-
ditional training samples to correct misclassifications. We re-
peated the interactive annotation procedure with a second data
set of five training images. Figure 4 demonstrates the median
performance of the interactive sparse training in terms of vari-
ation of information. The performance is measured over the
validation image data, which consists of the 65 images out of
75 that were not used for training annotations. To compare the
performance of sparse interactive annotations to conventional
batch training on fully annotated images, an expert labeled the
center line of all membranes in all 10 images of both training
sets. We chose the centerline to ensure that only true membrane
pixels are in the training set. As membranes can appear fuzzy
or smeared in the images, we neglect all pixels with a distance
smaller or equal to five pixels from this center line, excluding
possibly ambiguous examples from the training set. All remain-
ing pixels are taken as background examples.

After the third to fourth pass over the images, the inter-
actively trained classifier outperforms the classifier trained on
fully annotated images. As demonstrated by the green and or-
ange curves in Figure 4, the performance of the second training
set is similar to the first training set. Interestingly, the second
pass on the second training set shows a significant degradation
of the segmentation. In this step the annotator introduced back-
ground labels on mitochondria, leading the classifier to mis-
classify fuzzy membranes as background and thus to introduce
gaps in the cell boundaries. In the next step these membrane
misclassifications are corrected, leading to an improvement in
the segmentation performance. The blue line corresponds to
the performance of a classifier trained on the final ten training
images of both interactive sparsely annotated sets. This is the
classifier we use for the remaining steps of the pipeline.

4.3. 2D Segmentation

The random forest classifier captures the main image charac-
teristics of membranes with little manual annotation data. Pre-
vious work has shown that anisotropic smoothing of images
is beneficial for the segmentation of membranes (Mishchenko,
2009). We follow the approach of Kaynig et al. (2010a), which
combines the membrane probability output of the random forest
classifier with an anisotropic smoothing prior for gap comple-
tion in a Conditional Random Field (CRF). In a CRF, the binary
segmentation of all pixels as foreground or background is esti-
mated by maximizing the a posteriori probability of the labels
y given the observed data x:

p(y|x) ∝ exp(
∑
i,p∈P

λiFstatei (yp, x, p)+∑
j,p∈P,q∈N(p)

λ jFtrans j (yp, yq, x, p, q)).
(2)

Fstatei is a state feature function of the label yp ∈ {0, 1} at pixel
p ∈ P, and the image intensity values x, and Ftrans j is a transi-
tion feature function of the labels yp and their neighbored labels
yq in the 8-connected neighborhood N(p). Intuitively, in our
framework the state feature function estimates the probability
of a single pixel as being foreground or background, whereas
the transition feature function introduces dependencies between
neighbored pixels, leading to smooth segmentations. Instead of
maximizing the a posteriori probability of the labels y we min-
imize the negative logarithm, leading to the following energy
term:

E(y) =
∑
p∈P

Er f (yp)+λs

∑
p∈P,q∈N(p)

Es(yp, yq)

+λgc

∑
p∈P,q∈N(p)

Egc(yp, yq).
(3)

The state function Fstatei (yp, x, p) corresponds to the data term
Er f (yp), which uses the output of the random forest classi-
fier to specify the costs for label yp being membrane or non-
membrane. In Eq. 3 we omit the arguments for the observed
data x and the pixel positions p, q to simplify the equation.

In addition, we include two smoothness terms which cor-
respond to transition feature functions in Eq. (2). One is an
isotropic smoothness term Es(yp, yq), which penalizes for dis-
continuities in the segmentation for neighboring pixels of sim-
ilar intensities. This smoothness term is widely used in graph
cut approaches (Boykov and Funka-Lea, 2006):

Es(yp, yq) = exp
(
−

(xp − xq)2

2σ2
s

)
·
δ(yp, yq)
dist(p, q)

, (4)

where xp is the gray value of the image at pixel p and dist(p, q)
takes the Euclidean distance between neighbored pixels into
account. The Kronecker delta function δ(yp, yq) equals 0 if
yp = yq and 1 otherwise. Thus, the Kronecker delta function
penalizes label changes, whereas the first factor of the energy
term alleviates this penalty for strong changes of contrast in the
image.
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The second smoothness term Egc(yp, yq) enhances the col-
iniarity of segmented pixels:

Egc(yp, yq) =| < vp, upq > | · exp
− (1 − xm)2

2σ2
gc


·
δ→(yp, yq)
dist(p, q)

,

(5)

where upq is a unit vector with the orientation of a straight line
between pixels p and q, and vp is a vector directed along the
membrane. The length of vp reflects the orientedness of the im-
age at p. To measure the orientation of the membrane we use
a steerable filter consisting of a straight line with a thickness
comparable to the membrane thickness in the training images.
The term < vp, upq > is then estimated by the response to this
filter at the orientation corresponding to upq. The value of xm

is the probability of pixel x being a membrane, and σ2
gc can be

estimated as the variance of these probabilities. Thus, the dif-
ference (1 − xm) weighs the energy term according to the con-
fidence of the classifier in xm being a membrane. In contrast
to Equation 4, the factor δ→(yp, yq) is not symmetric. Instead
δ→(yp, yq) = 1 for yp = 1, yq = 0 and δ→(yp, yq) = 0 for all
other cases. This asymmetric definition ensures that Egc only
penalizes for cuts that violate the smoothness along the direc-
tion of membrane pixels.

The smoothness terms Es and Egc are submodular, i.e.,
E(0, 0) + E(1, 1) ≤ E(1, 0) + E(0, 1), and thus the global min-
imum of E(y) can be efficiently found by max-flow/min-cut
computation (Kolmogorov and Zabin, 2004; Boykov and Kol-
mogorov, 2004; Boykov and Funka-Lea, 2006).

For this purpose, we define a graph G = (V,E). The set
of graph nodes V consists of all pixels p ∈ P and two ad-
ditional terminal modes s and t that represent foreground and
background in the segmentation. The set of directed edges E
connects all pixels p to their neighbors q ∈ N(p). Weights are
assigned to these edges as specified by the smoothness terms
Es and Egc. In addition, the set of edges E connects each pixel
to two additional terminal nodes s and t with weights specified
by Er f . Minimizing E(y) corresponds to finding the optimal cut
C ⊂ E such that no path exists between the terminal nodes s
and t in the graph Gcut = (V,E − C). The cut is optimal in the
sense that the sum of all edge weights of all edges included in
the cut is minimal.

The optimal labeling y corresponds to a binary segmenta-
tion of the image into membrane and non-membrane pixels.
As we are ultimately interested in the region segmentation of
neuronal processes, we identify neuronal regions as connected
background components and then use seeded region growing to
obtain a complete tessellation of the image into segments cor-
responding to neuronal processes.

4.4. Region Segmentation Evaluation
To evaluate the performance of our 2D segmentation step we

set the isotropic smoothing weight λs = 0.6 and the anisotropic
smoothing weight λgc = 0.1. The values for theses parameters
were optimized over the 65 images of our validation set. A vi-
sual example of the output is provided in Figure 5. Figure 6 pro-

Figure 5: Example segmentation of a test EM image. Top left: original image.
Top right: manual annotation. Bottom left: random forest output. Bottom right:
CRF segmentation. The isotropic smoothing closes small regions caused by ex-
tracellular space between cells, whereas the anisotropic term prevents shrinking
bias for long elongated structures and enhances gap completion. All images are
1.9 µm wide.
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Figure 6: Evaluation of membrane segmentations on test data. The top line
(violet) corresponds to the performance of thresholded gray value images. The
orange line demonstrates the performance by a random forest classifier trained
on ten fully contoured training images. The blue line shows the evaluation for
a random forest trained on interactive sparse annotations. The red line cor-
responds to watershed segmentations of the random forest probability map.
The green line corresponds to the performance of the CRF framework in our
pipeline.
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vides a quantitative comparison of different 2D segmentation
methods over 75 test images that were not used for any parame-
ter tuning. For these evaluations, we normalized the gray value
images to a range between zero and one prior to thresholding
the gray value. The random forest results present thresholding
of the respective membrane probability map. Watersheds and
CRF results both use the probability map of the interactively
trained random forest classifier. For watersheds we suppressed
all minima in the probability map whose depth is less than the
given threshold. For the CRF we adjusted the data term to re-
flect the given threshold on the probability map. A random for-
est classifier trained on fully contoured images (orange line in
Fig. 6) gives a large improvement in segmentation performance
over direct segmentation of gray values, but the random forest
trained with sparse interactive annotations demonstrates a bet-
ter generalization to the test data. We also compare the output
of the CRF framework with gap completion against watershed
segmentations, which have been widely used in previous work
to generate segmentations of neuronal structures in EM images
(Vazquez-Reina et al., 2011; Straehle et al., 2011; Chklovskii
et al., 2010; Andres et al., 2008). While the optimal watershed
segmentation performs 0.03 better in terms of variation of in-
formation than the best thresholded random forest output, the
CRF framework yields an additional improvement of 0.09 over
the best watershed segmentation.

5. Segmentation Fusion

5.1. Region Grouping Across Sections

The previous steps of the pipeline focus on the segmentation
of neuronal processes in the 2D image plane to take advantage
of the high resolution provided by the electron microscope. To
extract the 3D geometry of neuronal processes, these regions
need to be grouped across sections. We follow the segmenta-
tion fusion approach of Vazquez-Reina et al. (2011) that allows
for globally optimal groupings of regions across sections. The
term fusion refers to the option to pick the best choice of geo-
metrically consistent region groupings out of a set of possible
segmentations for each section. The fusion problem is formu-
lated as the maximum a posteriori labeling over a set of binary
indicator variables. Each indicator variable si corresponds to
a possible 2D region of a neuronal process, and each indicator
variable l j to a 3D link between regions of adjacent sections. If
an indicator variable is activated (e.g., si = 1), the correspon-
dent region is assumed to be selected for the final segmentation,
and similarly for a 3D link l j. Thus, a labeling of the indicator
variables corresponds to a 3D segmentation of the whole data
volume.

Following the model of a CRF described in Eq(2) the fusion
problem is modeled as:

p(s, l|r) ∝ exp
( n∑

i=1

Fsegment(si, r, i)+

m∑
j=1

Flink(l j, r, j)
)
ψ(s, l).

(6)

The two functions Fsegment(si, r, i) and Flink(l j, r, j) are state
functions for the indicator variables si and l j, r refers to the
set of all regions obtained from the 2D region segmentation,
and n and m are the total number of indicator variables si and
l j. To ensure that any large segment from the region segmenta-
tions can compete equally against a set of smaller regions cov-
ering the same 2D area, both state functions take the size of the
corresponding regions into account. In addition, links between
regions are weighted according to the similarity of the linked
regions, leading to the following definitions:

Fsegment(si, r, i) = size(ri) (7)

Flink(l j, r, j) = θ(r j,a, r j,b) ·
(
size(r j,a) + size(r j,b)

)
. (8)

r j,a and r j,b are the two regions connected by the 3D link l j

and θ(r j,a, r j,b) measures the similarity between two regions. In
the original fusion formulation, Vazquez-Reina et al. (2011) de-
fined θ in terms of the cross-correlation and displacement be-
tween the pair of segments that re connected by the link in
question. We instead define the region similarity θ in terms
of the minimum relative overlap size of the two regions. This
definition does not take texture similarity into account, but it is
computationally faster than cross-correlation while providing
equally good region similarity measurements for our EM data:

θ(r j,a, r j,b) = min
(
overlap(r j,a, r j,b), overlap(r j,b, r j,a)

)
(9)

overlap(r j,a, r j,b) =
|r j,a ∩ r j,b|

|r j,a|
(10)

By using the minimum of the relative overlap, θ is based on
the relative overlap with respect to the larger region. This def-
inition is useful, because if a large region is overlapped by two
smaller regions by 40% and 60% respectively, we want the link
to the region covering 60% of the overlap to outweight the link
to the region covering 40%.

The compatibility function ψ(s, l) in equation 6 is defined
over the indicator variables and assigns zero-mass to configu-
rations of the CRF that are unrealistic or undesirable given our
domain knowledge of the problem. Specifically, we want each
pixel of the segmentation to belong to no more than one neu-
ron, thus we want to prevent overlapping of activated segments
si in the same section image:

∑
i∈ok

si ≤ 1 for every set of over-
lapping segments ok. Furthermore, the selection of activated
segments and links should yield good 3D continuity through
the stack. We achieve this by making the selection of segments
and links dependent on each other and rewarding the activation
of segments that are connected by strong links: ∑

j∈TOPi

l j

 ≤ |TOPi| · si,

 ∑
j∈BOTi

l j

 ≤ |BOTi| · si (11)

where TOPi and BOTi are the sets of activated links connect-
ing to segment si from the sections immediately above or be-
low, respectively. The main idea is to make the activation of
segments and links depend on each other. Whenever a link is
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Figure 7: Evaluation of 3D reconstructions obtained by segmentation fusion
compared to agglomerative clustering and Sopnet (Funke et al., 2012). As
a baseline we provide the variation of information score for ungrouped data.
Lower scores correspond to better region groupings.

activated, the corresponding connected segments have to be ac-
tivated as well. Compared to the original fusion formulation,
our constraint does allow for multiple links connecting to the
same segment. This relaxed version allows for branching of
segmented structures and thus can adequately model the geom-
etry of neuronal cells.

In our experiments, we noticed that if we allow segments
to connect with any number of overlapping segments from ad-
jacent sections, we have to be careful to not over-merge the
segmentation. To prevent branching from connecting too many
objects, we require links to only connect segments with signif-
icant overlap between sections. Links connecting sections that
do not or only minimally overlap are pruned from the solution
space. To obtain the maximum a posteriori (MAP) solution to
the whole segmentation fusion problem (Eq. 6), we solve the
following binary linear programming problem:

argmaxs,l

n∑
i=1

Fsegment(si, r, i) +

m∑
j=1

Flink(l j, r, j)

s.t. si, l j ∈ {0, 1},
ψ(s, l) = 1.

(12)

We solve this problem using a general-purpose binary linear
programming solver (IBM, 2014).

5.2. Segmentation Fusion Evaluation

There are two important aspects for the evaluation of seg-
mentation fusion: the benefit of using multiple segmentations
per section on the 2D segmentation, and the performance with
respect to the 3D region grouping into geometrically consistent
objects. (see Figure 7). To evaluate the 3D region grouping
performance we compare against greedy agglomerative cluster-
ing (Kaynig et al., 2010b) and the Sopnet framework developed
by Funke et al. (2012). Segmentation fusion and the Sopnet
framework both significantly outperform agglomerative cluster-
ing by finding the globally optimal grouping with respect to a
large volume context. Segmentation fusion outperforms Sopnet
with an improvement of 0.06 in terms of variation of informa-
tion. Both approaches leverage multiple segmentation hypothe-
ses per section and obtain the optimal grouping by solving an
integer linear programming problem. The main difference is
that within Sopnet a classifier is trained to score the similarity
between regions, whereas segmentation fusion relies on region
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Figure 8: Boxplots of the improvement of split and merge errors in the 2D
segmentations. On each box, the central mark is the median and the edges
of the box are the 25th and 75th percentiles. Outliers are marked with a +

symbol. Compared to the best single segmentation from the gap completion
CRF output, fusion reduces the overall error rate by 5% by leveraging multiple
segmentations. The evaluation shows that this improvement is largely due to
fewer merge errors.

overlap and size alone (see section 5.1). It is possible that Sop-
net could benefit from a training set larger than 75 images, but
generating such a large training set would require a consider-
able effort of manual annotation. In addition, the feature extrac-
tion and classification to obtain the region similarity adds sig-
nificant computational overhead to the region grouping. Thus,
segmentation fusion is the better approach for our large-scale
reconstruction effort.

To gain more insight into the segmentation performance we
evaluate 2D segmentations with respect to split and merge er-
rors. Figure 8 compares the segmentation fusion output with
the best single 2D segmentation obtained by the gap comple-
tion CRF framework as described in Section 4.4. Over the
whole test set of 75 images, fusion gave a significant improve-
ment in the overall segmentation performance, increasing the
percentage of correctly segmented regions from 68%(±4%) to
73%(±3%). We define a correctly segmented ground truth re-
gion as having a reciprocal majority overlap of 60% or greater
with a region from the automatic segmentation. Figure 8
demonstrates that this improvement is mainly due to a correc-
tion of merge errors. While the split error rate is slightly in-
crased by 1% the merge error rate is nearly halved, dropping
from 15.8% for the single segmentation to 8.6% for the fu-
sion result. Figure 9 shows the segmentation performance with
respect to region sizes. In total, error rates are lower for the
larger regions than for the small regions. It is also noteworthy
that the dominant error type changes from mainly merge er-
rors for smaller regions to split errors for larger regions. For the
most typical region size the errors are nearly balanced. Because
smaller regions belong to thin flexible neuronal processes they
change more prominently between adjacent sections than large
regions belonging to thick neuronal processes. Thus, it is chal-
lenging to pick the right region segments based on the overlap
criterion as described in (Eq. 10).
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Figure 9: Histogram of error rates for different region sizes. While over 70%
of the regions are correctly segmented for most region sizes, smaller regions
tend to be merged, whereas larger regions tend to be split. Overall large regions
exhibit smaller error rates than small regions.

Figure 10: Example region of an automatically segmented image (middle) com-
pared to manual annotation (left). The original EM image is shown on the right.
All images are 3 µm wide.

6. Semiautomatic Proofreading with Mojo

Manual proofreading is necessary in order to guarantee the
correct topology of the neuron reconstruction. Figure 10 shows
an example segmentation of a 2D section compared to a manual
annotation. While most regions are correctly segmented, some
are split into several parts and need manual merging, while
other regions span multiple objects and need to be manually
split.

In order to minimize the user effort required to correct split
and merge errors, we developed an interactive system called
Mojo (see Figure 11). The proofreading workflow in Mojo is as
follows: The user is presented with a 2D view of a 3D EM im-
age stack that allows zooming, panning, and scrolling through
the out-of-plane dimension. Mojo presents the user with an in-
teractive color overlay of the automatic reconstruction. Mojo
provides two distinct interaction modes for correcting split er-
rors and merge errors, respectively.

Correcting a split error requires the user to merge objects.
To correct a split error in Mojo, the user clicks on a source
object, and then clicks on one or more target objects. Mojo is
responsible for re-labeling the target objects with the label from
the source object.

Correcting a merge error requires the user to split an ob-
ject into multiple sub-objects. The user begins by clicking on

Figure 11: Screenshot of our proofreading tool Mojo. The main area shows the
segmentation as color-overlay on the original electron microscopy image. On
the right side segmented processes can be selected by their name or ID. In the
top menu the user can select split or merge error correction and if the correction
should be applied in 3D or restricted to the currently shown section.

the object to be split. The user then roughly scribbles with a
uniquely colored brush on each distinct sub-object within the
object to be split. We use the interactive segmentation method
of Roberts et al. (2011) to segment each sub-object. We chose
to implement this segmentation method in Mojo because it pro-
duces highly accurate segmentations with minimal user effort,
and provides the user with real-time feedback on the resulting
segmentation while the user is scribbling. During each split
operation, we constrain the user scribbles and the resulting sub-
objects to be entirely contained within the original object to be
split. This allows the user to more easily segment each sub-
object without disturbing neighboring objects.

7. Parallel Implementation

Our pipeline has been designed to efficiently scale to large
data sets in the GB-TB range. Scalability is an important as-
pect in the context of Connectomics. While a resolution of
5 nm is essential to allow for identification of biological struc-
tures like vesicles or synapses, whole neuronal cells expand
over several µm of brain tissue. In the following sections we
describe the run-time performance and scalability of the cur-
rent implementation. We use the Harvard Research Computing
cluster Odyssey for our computations. A typical node contains
2 × 4-core Intel Xeon E5410 2.3 Ghz and 32 GB RAM. All
evaluations concerning run time are given with respect to the
current MATLAB implementation and include computational
and i/o overhead to facilitate restarting of jobs on a computer
cluster. The 2D segmentations are computed on 1, 024 × 1, 024
image tiles with a runtime of 9 - 13 hours per job. For seg-
mentation fusion we use 512 × 512 × 64 sub-volumes and the
average runtime is 2 - 3 hours per job. In the pairwise match-
ing step, sub-volumes are joined to form a consistently labeled
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volume. Every pair of adjacent sub-volumes (in x, y and z di-
rections) is considered independently and in parallel. Winning
groups of segments from the fusion step are merged or split
based on the proportion of overlapping voxels inside the over-
lap region. Merge operations link segments to form a single
object. Split operations assign all 2D segments in the overlap
to just one group, creating two non-overlapping objects. This
ensures a consistent labeling of voxels between adjacent sub-
volumes. Runtime for each pair of sub-volumes is about 5-6
minutes. Finally, a single global consistency step is required to
link objects over multiple sub-volume pairs and assign unique
IDs. This step is performed by a single job and takes 1-2 hours
due to the amount of i/o operations required.

8. Large-scale reconstruction results

We successfully used our pipeline to reconstruct neuronal
processes in a 27, 000 µm3 volume of brain tissue. This vol-
ume is more than 150 times larger than the manually annotated
volume we used for quantitative evaluations, and it would take
about 13500 hours to segment this volume manually, rendering
a full quantitative evaluation of the large volume infeasible. To
address this challenge and still provide a quantitative measure
for the quality of our automatic reconstruction we measure the
number of processes that enter and exit the volume correctly.
Neuronal processes are typically longer than 30 µm and it is
unlikely that a process ends inside the volume, thus it is desir-
able to have many processes that are correctly traced from one
face to the other. This evaluation measure is challenging for
large volumes, as the chance of introducing an error to the re-
construction of an object grows exponentially with the object
length.

The following reconstruction results were obtained automat-
ically, without any manual proofreading.

Figure 12 shows a subset of the reconstructed processes.
The visualization in Figure 12 only includes processes that are
traced from one face of the volume to another and that do not
show obvious errors in the reconstructed 3D geometry. In total
93 objects satisfied these criteria. Note that although our data
set is anisotropic, the reconstruction contains processes that run
orthogonal as well as horizontal across the volume. The anno-
tations mark an example of a correctly reconstructed branching
structure (A) as well as several reconstructed spine necks (B).

Spines are important parts of neuronal processes in mam-
malian tissue. A spine typically consists of a thin spine neck
and a thicker spine head at the end. Spine heads normally end
in a synapse forming a connection to another neuronal process.
Spine necks form the thinnest parts of a neuronal processes and
can have a diameter of only 25 nm. Thus they can be hard to
distinguish from extracellular space between cells and some-
times are also missed by human expert annotators. Figure 13
shows an example image with annotations for a spine neck re-
gion and several regions corresponding to extracellular space.
The small diameter of spine necks renders their automatic 3D
reconstruction challenging. Differentiation of spine neck re-
gions and extracellular space is often only possible by taking
the broader 3D context into account. To gain more insight into

A

B
B

B

Figure 12: Automatic large-scale reconstruction of 93 objects from the whole
data volume without any manual proofreading. The reconstructions contain
long-range tracings across the whole volume running orthogonal across all 1000
sections as well as longitudinal to the cutting plane. A correctly reconstructed
branching structure is marked with (A). (B) marks automatically reconstructed
spine necks of approximately 30 nm in diameter. The reconstructed volume
size is 30.72 µm × 30.72 µm × 30 µm.

Figure 13: Example image with an annotated spine neck (green) and multiple
annotated extracellular space regions (purple). The small diameter of spine
necks makes the automatic 3D reconstruction challenging. The width of the
image is 1.2 µm
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Figure 14: Fragmentation of a automatically reconstructed dendrite with re-
spect to a manual reconstruction. The different colors correspond to different
objects in the automatic segmentations. While manual proofreading is neces-
sary to obtain the correct reconstruction, the automatic result includes spine
necks traced over several sections. (A) and (B) only require merging of the
identified spine neck with the spine head, whereas (C) and (D) exhibit further
split errors, but still contain large continuous segments. (E) is an example of a
fragmented spine neck, running longitudinal to the cutting plane. The bounding
box of the shown dendrite is about 3 µm × 6 µm × 6 µm

the quality of our spine reconstructions we used a manually an-
notated part of a dendrite and cut out the corresponding area
from the automatic reconstruction. Figure 14 depicts the result.
While none of the spines are correctly reconstructed automat-
ically, proof reading the fragmentation of spines (A) and (B)
is reduced to correcting one split error, merging the spine neck
with the spine head. The spines (C) and (D) are more frag-
mented than (A) and (B), but contain tracings over several sec-
tions. (E) is heavily fragmented as it runs longitudinal across
the sections and thus is harder to trace than orthogonal spine
necks.

Region grouping with branching is essential not only to ac-
count for branching neuronal processes, but also to reconstruct
spine necks along a dendrite. However, it can also lead to merge
errors in the resulting segmentation. Figure 15 shows examples
of long-range merge errors. The reconstruction shown con-
tains a correctly segmented cell body (red) including correct
branches. The neuronal processes marked (A), (B), and (C)
should be separate objects. The green structure is a merge of
two neuronal processes. While both processes contain a cor-
rectly identified branching point, they are erroneously merged
at location (D). These long-range merge errors are easy to detect
for a human proof reader by looking at the 3D geometry of the
reconstructed objects. Automatic identification and correction
of the long-range 3D geometry is part of our future research.

Figure 16 depicts an example segmentation of 2D image

Figure 15: Examples of large-scale merge errors. The large red cell body is
merged with neuronal processes marked (A), (B), and (C). The green object
contains two branching structures, which are erroneously merged at location
(D). The height of red cell is about 30 µm

from our reconstructed volume.

9. Conclusions

In this paper we address the automatic reconstruction of neu-
ronal processes at nm resolution for large-scale data sets. We
demonstrate state-of-the art performance of our pipeline with
respect to automatic dense reconstruction of neuronal tissue,
and also for long range reconstructions covering neuronal pro-
cesses over many µm. The workflow is designed to minimize
manual effort and to be easy parallelizable on computer clus-
ters and GPUs, with most steps scaling linearly with the num-
ber of processors. The electron microscopy data is available at
http://openconnecto.me/catmaid/?dataview=13#, and
the source code is available at https://github.com/Rhoana.

Future work concentrates on improving the performance of
our pipeline, as well as facilitating the proofreading further. We
are currently focusing our efforts on improving the runtime of
the pipeline by optimizing code and removing MATLAB de-
pendencies. We are also working on new algorithms to improve
the overall segmentation performance. With respect to proof-
reading, we are working on a web-based Mojo version that al-
lows for collaborative proof reading of large data volumes.
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