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Abstract

Image rendering maps scene parameters to output pixel
values; animation maps motion-control parameters to tra-
jectory values. Because these mapping functions are usu-
ally multidimensional, nonlinear, and discontinuous, �nd-
ing input parameters that yield desirable output values is
often a painful process of manual tweaking. Interactive
evolution and inverse design are two general methodolo-
gies for computer-assisted parameter setting in which the
computer plays a prominent role. In this paper we present
another such methodology. Design GalleryTM (DG) inter-
faces present the user with the broadest selection, auto-
matically generated and organized, of perceptually di�erent
graphics or animations that can be produced by varying a
given input-parameter vector. The principal technical chal-
lenges posed by the DG approach are dispersion, �nding a
set of input-parameter vectors that optimally disperses the
resulting output-value vectors, and arrangement, organiz-
ing the resulting graphics for easy and intuitive browsing by
the user. We describe the use of DG interfaces for several
parameter-setting problems: light selection and placement
for image rendering, both standard and image-based; opacity
and color transfer-function speci�cation for volume render-
ing; and motion control for particle-system and articulated-
�gure animation.

CR Categories: I.2.6 [Arti�cial Intelligence]: Problem
Solving, Control Methods and Search|heuristic methods;
I.3.6 [Computer Graphics]: Methodology and Techniques|
interaction techniques; I.3.7 [Computer Graphics]: Three-
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1 Introduction

Parameter tweaking is one of the vexations of computer
graphics. Finding input parameters that yield a desirable
output is di�cult and tedious for many rendering, mod-
eling, and motion-control processes. The notion of hav-
ing the computer assist actively in setting parameters is
therefore appealing. One such computer-assisted method-
ology is interactive evolution [11, 21, 23]: the computer
explores the space of possible parameter settings, and the
user acts as an objective-function oracle, interactively se-
lecting computer-suggested alternatives for further explo-
ration. A more automatic methodology is inverse design,
e.g., [10, 12, 14, 19, 22, 25, 27]: the computer searches for
parameter settings that optimize a user-supplied, mathemat-
ically stated objective function.
Unfortunately, there are many interesting and important

graphics processes for which interactive evolution and in-
verse design are not very useful. These processes share two
common characteristics:

� High computational cost: if the process cannot be com-
puted in near real time, interactive evolution becomes
unusable.

� Unquanti�able output qualities: even though desirable
graphics may be readily identi�ed by inspection, it may
not be possible to quantify a priori the qualities that
make them desirable. This lack of a suitable objective
function rules out the use of inverse design.

In this paper we present a third methodology for
computer-assisted parameter setting that is especially ap-
plicable to graphics processes that exhibit one or both of
these characteristics. Design Gallery (DG) interfaces present
the user with the broadest selection, automatically gener-
ated and organized, of perceptually di�erent graphics or an-
imations that can be produced by varying a given input-
parameter vector. Because the selection is generated auto-
matically, it can be done as a preprocess so that any high
computational costs are hidden from the user. Furthermore,
the DG approach requires only a measure of similarity be-
tween graphics, which can often be quanti�ed even when
optimality cannot.
A DG system includes several key elements. The input

vector is a list of parameters that control the generation of
the output graphic via a mapping process. The output vec-
tor is a list of values that summarizes the subjectively rel-
evant qualities of the output graphic. The distance metric
on the space of output vectors approximates the perceptual
similarity of the corresponding output graphics. The disper-
sion method is used to �nd a set of input vectors that map
to a well-distributed set of output vectors, and hence out-
put graphics. The dispersed graphics are presented to the



user through a perceptually reasonable arrangementmethod
that makes use of the distance metric. These six elements
| input vector, mapping, output vector, distance metric,
dispersion, and arrangement | characterize a DG system.
The creator of a DG system chooses the input vector, out-
put vector, and the distance metric for a speci�c mapping
process. For particular instances of the process, the com-
puter performs the dispersion, the mapping of input vectors
to output vectors, and the arrangement of �nal graphics in
a gallery. The end user need only recognize and select ap-
pealing graphics from the gallery.
We explain and illustrate the use of DGs for several

common parameter-setting problems: light selection and
placement for image rendering, both standard and image-
based; opacity and color transfer-function speci�cation for
volume rendering; and motion control for particle-system
and articulated-�gure animation. During the discussion,
we describe the input and output vectors for each mapping
process, and present various methods for dispersion and ar-
rangement that we have used in building DG systems.

2 Light Selection and Placement

Setting lighting parameters is an essential precursor to im-
age rendering. Previous attempts at computer-assisted light-
ing speci�cation have used inverse design. For example, the
user can specify the location of highlights and shadows in
the image [15], pixel intensities [19], or subjective impres-
sions of illumination [10]; the computer then attempts to
determine lighting parameters that best meet the given ob-
jectives, using geometric [15] or optimization [10, 19] tech-
niques. Unfortunately, the formulation of lighting speci�ca-
tion as an inverse problem has some signi�cant drawbacks.
High-quality image rendering (e.g., raytracing or radiosity)
is costly; to make the computer's search task tractable, the
user may have to �x the light positions [10, 19], thereby
grossly limiting the illuminations that can be considered.
A more intrinsic di�culty is that of requiring the user to
quantify a priori the desired illuminative characteristics of
the resulting image. This requirement may be satis�able in
an architectural context [10], but seems very challenging in
a more general cinematographic context [8]. The most di�-
cult lighting parameters to set are those relating to light type
and placement, so they have been the focus of our e�orts.

2.1 Input and Output Vectors

For the light selection and placement problem, we begin with
a scene model comprising surfaces and viewing parameters.
The goal is to explore di�erent ways of lighting the scene,
so the input vector includes a light position, a light type,
and a light direction if needed. The light position is lo-
cated somewhere on one of the surfaces distinguished as a
light hook surface by the user. The light type comes from a
user-de�ned group, and describes attributes of the light: its
basic class (e.g., point, area, or spotlight); whether or not
it casts shadows; its fallo� behavior (e.g., none, linear, or
quadratic); and class-speci�c parameters (e.g., the beam an-
gle of a spotlight). Directional lights are aimed at randomly
chosen points on designated light target surfaces.
The output vector should be a concise, e�ciently com-

puted set of values that summarizes the perceptual quali-
ties of the �nal image. Thus, output vectors are based on
pixel luminances from several low-resolution thumbnail im-
ages (32� 25 pixels and smaller). The luminances at resolu-
tion � are weighted by a factor f(�). The distance metric on

the output vector is the standard L1 (Manhattan) distance.
As a result, the distance between output vectors correspond-
ing to images q and r is
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where Y �
q (x; y) is the luminance of the pixel at location (x; y)

in image q at resolution �.1

2.2 Dispersion

The dispersion phase selects an appropriate subset of in-
put vectors from a random sample over the input space.
Speci�cally, T lights are generated at each of H positions
distributed uniformly over the light hook surfaces. This pro-
cedure yields a set L of H�T input vectors. Typical values
are H = 500 and T = 8, in which case jLj = 4000.2 For
each input vector in L, thumbnail images are generated, and
the corresponding output vector is determined as described
above. The dispersion algorithm outlined in Figure 1 then
�nds a set I � L with good spread among output vectors.
The �rst step is the elimination of lights that dimly illumi-
nate the visible part of the scene, because they are obscured
or point away from the scene geometry; these lights are un-
likely to be of interest to the user and can confound the rest
of the dispersion process. Thumbnail images whose average
luminance is less than a cuto� factor c are eliminated from
the set L. (Typical useful values of c are in the range 1%{5%
of the maximum luminance value.) The subset I is assem-
bled by repeatedly adding to I the light in L whose output
vector is most di�erent from its closest match in the nascent
I. The size of I is determined by the interface, as described
below; jIj = 584 for the examples we discuss in the paper.

2.3 Arrangement

We would like the set of lights I to be large, so that the user
will have many complementary lights from which to choose.
However, the greater the size of I, the more di�cult it will
be for the user to browse the lights e�ectively. We accom-
modate these contradictory requirements by arranging the
set I in a fully balanced hierarchy in which lights that pro-
duce similar illumination e�ects are grouped together. We
accomplish this goal of the arrangement phase by graph par-
titioning. A complete graph is formed in which the vertices
correspond to the lights in I, and edge costs are given by the
inverse of the distance metric used in the dispersion phase.
An optimal w-way partition of this graph would comprise
w disjoint vertex subsets of equal cardinality such that the
cost of the cut set, the total cost of all edges that connect
vertices in di�erent subsets, is minimized. Optimal graph
partitioning is NP-hard [4], but many good heuristics have

1Since we start with a low-resolution thumbnail, the �ltered
images of even lower resolution called for in the expression will
be truly tiny. Nevertheless, they do contain useful information:
two barely nonoverlapping narrow-beam spotlights will generate
a high (and somewhat misleading) di�erence score at the high-
est resolution, but smaller, more appropriate di�erence scores at
lower resolutions because the beams will overlap in the lower-
resolution images. The e�ect of the weighting function f(�) is
subtle, but we have found it preferable to weight higher-resolution
images slightly more than lower-resolution ones.

2We picked these numbers to allow overnight batch processing
of the entire DG process for one scene on a single MIPS R10000
processor.



Input:
L, a set of lights and corresponding thumbnail images.

n < jLj, the size of the selected subset.

c, an average-luminance cuto� factor.

Output:
I � L, a set of n dispersed lights and their images.

Procedure:
SELECTION DISPERSE(L;n; c) f

L L n �nd dims(c;L);
I  ;;
for i 1 to n do f

p score �1;
foreach q 2 L do f

q score 1;
foreach r 2 I do

if image di�(q; r) < q score then
q score image di�(q; r);

if q score> p score then f
p score q score;
p q;

g
g
I  I [ fpg;
L L n fpg;

g
g

Notes:
n denotes set di�erence.
�nd dims(c;L) returns those lights in L with average
luminance less than c.
image di�(q; r) returns the value computed by Equa-
tion 1.

Figure 1: A selection-based dispersion heuristic.

been developed for this problem [1]. Our partitioning code
is based on an algorithm and software developed by Karypis
and Kumar [9]. Once the initial w-way partition is formed,
representative lights for each partition are selected, and in-
stalled in the hierarchy. The partitioned subsets, minus their
representative vertices, are then processed recursively until a
hierarchy with branching factor w and height h is completed.

The values for w and h are dictated by the user interface,
whose structure is depicted in Figure 2, and actual exam-
ples of which are shown in Figures 9{11. For each light in
the �nal set I, medium-size (128 � 100 pixels) and full-size
(512 � 400 pixels) images are generated for use in the in-
terface. The user is presented with a row of eight images
that serve as the �rst level of the light hierarchy. Click-
ing on one of these images causes its eight children in the
hierarchy to be presented in the next row of images. The
third and �nal level in the hierarchy is accessed by clicking
on an image from the second row. Thus w = 8 and h = 3.
In turn, these parameters determine the cardinality of I:

jIj =
Ph

j=1
wj = 584. This particular interface provides ad-

ditional application-speci�c functionality that exploits the
additive nature of light [6]. Images can be dragged to the
palette, where light intensity and temperature can be var-
ied interactively. Multiple images are composited to form a
full-size image in the lower left.

Clear

Lighting Hierarchy / level one

ExitList

Lighting Hierarchy / level two

Lighting Hierarchy / level three

Full−Size Image

  (composite
from palette)

Palette
   (selections
from hierarchy)

Figure 2: User-interface map.

2.4 Results

The DG in Figure 9 contains a scene inspired by an ex-
ample from [8]. The 
oor, ceiling, and all four walls (only
the rear one is visible) were designated light-hook surfaces.
The surfaces comprising the �gures were designated light-
target surfaces, as was the back wall. The 584 lights in the
gallery were selected from 5,000 randomly generated lights
in the dispersion phase. The cost of computing this and
the other light-selection-and-placement DGs shown here was
dominated by the cost of raytracing the 584 full-size images
used in the display, which took approximately �ve hours on
a MIPS R10000 processor.

Figure 10 contains a scene with richer geometry. The
ceiling, and the area around the base of the statue were des-
ignated light-hook surfaces. The surfaces of the two heads,
the doors, the tree, and the statue were designated light-
target surfaces. The gallery lights were selected from 3,000
randomly generated lights in the dispersion phase.

Finally, Figure 11 shows a DG for synthetic lighting of a
photograph (inset at lower right). A point- and line-based
3D model is extracted from a triplet of scene images, each
taken from a di�erent viewpoint. This reconstruction pro-
cess is completely automatic, as described in [2]. Points and
lines are then aggregated semi-automatically into planes. An
illumination of the �nal recovered model is used to modulate
intensity in one of the original photographs.

3 Opacity and Color Transfer Functions for
Volume Rendering

Choosing the opacity and color transfer functions for vol-
ume rendering is another tedious and di�cult manual task
amenable to a DG approach.3 We developed DG interfaces
for two data sets: the simulated electron density of a protein,
and a CT scan of a human pelvis.

3The application of both interactive evolution and inverse de-
sign to this problem is the subject of [7].



Figure 3: Pop-up display depicting transfer functions.

3.1 Input and Output Vectors

The protein data set contains values in the interval [0; 255].
The opacity transfer function over this domain is parameter-
ized by a polyline with eight control points, for a total of 16
values. The polyline is low-pass �ltered before it is used. The
color transfer function is parameterized by �ve values that
segment the data into six subranges, which are arbitrarily
assigned the colors red, yellow, green, cyan, blue, and ma-
genta. Thus color is being used only to identify subranges
of the data, and not to convey any quantitative relations
among the data. Figure 3 illustrates a sample opacity and
color transfer function. The complete input vector comprises
23 parameters.
For the scene-lighting DG, the output vector contains ap-

proximately 850 weighted pixel luminances. This kind of
resolution is necessary because lights can cause completely
local illumination e�ects in a synthetically rendered image,
e�ects that should be representable in the output vector. In
comparison, changes to transfer functions will generally af-
fect many pixels throughout a volume-rendered image. We
can take advantage of this homogeneity by including only a
handful of pixels in the output vector. Currently we use eight
pixels, selected manually for each data set. Representing all
of their YUV values requires 24 values in the output vector,
and standard Euclidean distance is used as the output-space
metric. Dispersion on the basis of eight pixels from di�erent
parts of the image produces excellent dispersion of complete
images at a much reduced computational cost.

3.2 Dispersion

The dispersion heuristic in Figure 1 works by distilling a
set of randomly generated input vectors down to a well-
dispersed subset. Although simple, this method has the
drawback of not utilizing what is learned via random sam-
pling about the mapping from input to output vectors. In
contrast, the dispersion heuristic in Figure 4 uses an evo-
lutionary strategy that adapts its sampling over time in re-
sponse to what it implicitly learns, and consequently per-
forms much better. It starts with an initial set of random
input vectors. These vectors are then perturbed randomly.
Perturbed vectors are substituted for existing vectors in the
set if the substitution improves dispersion. The key notion

of dispersion used is nearest-neighbor distance in the space
of output vectors.

Input:
A random set of input vectors, I, and their correspond-
ing output vectors, O. jIj = jOj = n.

A trial count, t.

Output:
Modi�ed sets of input and output vectors, I and O.

Procedure:
EVOLUTION DISPERSE(I;O; t) f

for i 1 to t do f
j  rand int(1; n);
u perturb(I[j]; i);
map(u; v);
k  worst index(O);
if is better(v;O[k];O) then f

I[k] u;
O[k] v;

g
else if is better(v;O[j];O) then f

I[j] u;
O[j] v;

g
g

g

Notes:
rand int(1; n) returns a random integer in the range
[1; n].

perturb(I[j]; i) returns a copy of I[j] in which all the
elements have been perturbed. The magnitude of the
perturbations is inversely proportional to i.

map(u; v) maps input vector u to output vector v using
an application-speci�c mapping process.

worst index(O) returns the index of the output vector
in O with minimum nearest-neighbor distance. Ties
are broken using the average distance to all other vec-
tors in O.
is better(v;O[k];O) returns true if the nearest neighbor
to v in O n fO[k]g is further away than the nearest
neighbor to O[k] in O. Ties are broken using average
distance to all other vectors in the relevant set.

Figure 4: An evolutionary dispersion heuristic.

3.3 Arrangement

The arrangement method based on graph partitioning that
is presented in x2.3 results in a simple and easy-to-use in-
terface. Unfortunately, sometimes the partition contains
anomalies, e.g., dissimilar lights placed in the same subset
of the partition. This problem is due to limitations of the
partitioning method (no heuristic partitioning strategy guar-
antees an optimal partition), and to the structure of the set
of output vectors, which may not map well to any regular
hierarchical partition.
For the volume-rendering application, we used an alter-

native arrangement method that eschews a partition-based
or hierarchical framework and instead illustrates the struc-
ture of the set of output vectors graphically in a 2D lay-
out. An interface for this arrangement method is shown in



   Thumbnail
Display Panel

Image / Animation Gallery

Figure 5: A more 
exible user interface.

Figure 5. A thumbnail, which in this case is a small, low-
resolution volume-rendered image, is generated for each �nal
output vector. The thumbnails are arranged in the center
display panel, in a manner that correlates the distance be-
tween thumbnails with the distance between the associated
output vectors. The thumbnail display panel can be panned
and zoomed. Selecting a thumbnail brings up a full-size im-
age, which can then be moved to the surrounding image
gallery. Mousing on an image in the gallery highlights its
associated thumbnail, and vice versa.
Thumbnail layout is accomplished using a multidimen-

sional scaling (MDS) [3] method due to Torgerson [24].4

Given a matrix of distances between points, MDS procedures
compute an embedding of the points in a low-dimensional
Euclidean space (2D in our case) such that the interpoint
distances in the embedding closely match those in the given
matrix. Torgerson's \classical scaling" method, although
simpler and less general than iterative methods, is fast and
robust. When the interpoint distances come from an em-
bedding of the points in a high-dimensional Euclidean space
(which is true for the applications we discuss here, although
it need not be true in general), classical scaling is equiv-
alent to an e�cient technique for computing a principal-
component analysis of the points [5, 13].
The layouts computed by classical scaling are not without

anomalies | as we are using it, this MDS method is a projec-
tion from a high-dimensional space onto a 2D space, which
cannot be done without loss of information | but they do
re
ect the underlying structure of the output vectors well
enough to allow e�ective browsing. One important practical
detail: since full-size versions of all the images returned by
the dispersion procedure must be rendered anyway, it is con-
venient and better to compute distances from these full-size
images in the arrangement phase, instead of from the eight
pixels used in the dispersion phase.

3.4 Results

Figure 12 illustrates the DG for the volume rendering of
the protein data set. The dispersion procedure returned 256
dispersed input and output vectors. A selection of images
is shown in the surrounding image galleries. The lines that

4The use of more sophisticated MDS techniques for arranging
a database of images is being investigated by Rubner et al. [18].

0

10000

20000

30000

40000

50000

60000

0 500000 1e+06 1.5e+06 2e+06

N
ea

re
st

-n
ei

gh
bo

r 
(n

-n
) 

di
st

an
ce

 v
al

ue
s

Iteration

Avg. n-n dist.
Min. n-n dist.

Figure 6: Nearest-neighbor distances over time.

connect images with their thumbnails give some indication
of how images congregate in the thumbnail display. (During
interactive use the association between thumbnails and im-
ages is done preferably by dynamic highlighting, as described
above.) Figure 3 shows the result of clicking on one of the
images in the image gallery: the corresponding opacity and
color transfer functions are depicted in a pop-up window,
allowing the user to see how image and data relate.
The performance of the dispersion heuristic from this ex-

periment is documented in Figure 6; this data is represen-
tative of all the DG experiments that use the evolution-
ary dispersion heuristic. The curves show how two val-
ues, the minimum and average nearest-neighbor distances
in the set of output vectors, increase over time. Improve-
ment is rapid at �rst: the minimum and average nearest-
neighborhood distances in the initial random set are 184 and
7,789, respectively. However, the rate of improvement drops
quickly. Although we used a trial count of t = 2; 000; 000
(see Figure 4), it is clear that relatively little improvement
occurred after t = 500; 000. To reach this point requires
8 � 500; 000 = 4; 000; 000 raycast operations and takes less
than 40 minutes on a single MIPS R10000 processor. This
duration is roughly one-sixth of that needed to render the
256 full-size images (300 � 300 pixels) for the DG.
A second volume-rendering experiment was performed us-

ing a computed tomography (CT) data set for a human
pelvis. These data values are presegmented into four dis-
joint subranges, one each for air, fat, muscle, and bone. The
input vector speci�es the y-coordinates of 12 opacity control
points; the x-coordinates are held �xed. The input vector
does not specify a color transfer function, since standard col-
ors are used for the di�erent tissue types. The output vector,
distance metric, dispersion, and arrangement were identical
to the protein-rendering experiment. Figure 13 illustrates
the DG for the volume rendering of the pelvis data set.

4 Animation Applications

Motion control in animation involves extensive parame-
ter tuning because the mapping from input parameters to
graphical output is nonintuitive, unpredictable, and costly
to compute.5 For these reasons, motion control is very

5Both interactive evolution [26] and inverse design [12, 14, 22,
25, 27] have been applied previously to motion control.
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amenable to a DG approach. Building a DG interface for
animation is similar to building one for still images (we
reuse the dispersion and arrangement code from x3 virtually
without change); the major di�erences are in computing the
output-vector components. We now discuss three DG sys-
tems for animation tasks, focusing on this latter issue.

4.1 2D Double Pendulum

The 2D double pendulum is a simple dynamic system with
rich behavior that makes it an ideal test case for parameter-
setting methodologies.6 A double pendulum consists of an
attachment point h, two bobs of masses m1 and m2, and
two massless rods of lengths r1 and r2, connected as shown
in Figure 7. Our pendulum also includes motors at the
joints at h and m1 that can apply sinusoidal time-varying
torques. The input vector comprises the rod lengths, the
bob masses, the initial angular positions and velocities of
the rods, and the amplitude, frequency, and phase of both
sinusoidal torques, for a total of 14 parameters.
Choosing a suitable output vector proved to be the most

di�cult part of the DG process for the double pendulum,
as well as for the other motion-control applications; several
rounds of experimentation were needed (see x5 for more de-
tails). The output vector must capture the behavior of the
system over time. For the double pendulum, the output
vector has 12 parameters: the di�erences in rod lengths and
bob masses, the average Cartesian coordinates of each bob,
and logarithms of the average angular velocity, the number
of velocity reversals, and the number of revolutions for each
rod. Euclidean distance is used as the distance metric on
this output space.
The mapping from input vector to output vector is accom-

plished by dynamically simulating 20 seconds of the pendu-
lum's motion, and using the algorithm in Figure 4 for dis-
persion. Arrangement is accomplished using the MDS layout
method of x3.3. The displayed thumbnails are static images
of the �nal state of the pendulum, along with a trail of the
lower bob over the �nal few seconds. We found that these
images give enough clues about the full animation to enable
e�ective browsing. Thumbnails can be dragged into gallery
slots, all of which can be animated simultaneously by click-
ing on any occupied slot.
Figure 14 shows the DG for the double pendulum. As be-

fore, the overlaid lines show where animations in the gallery
are located in the thumbnail display. The plateau in nearest-
neighbor distance is reached after 170; 000 dispersion itera-

6Even without the application of external torques at its joints,
the 2D double pendulum exhibits chaotic behavior [20].

tions, which take 6.5 hours on a single MIPS R10000 pro-
cessor.

4.2 3D Hopper Dog

The previous DG is useful in �nding and understanding the
full range of motions possible for the pendulum under a given
control regime. However, complete generality is not always a
useful goal: the animator may have some preconceived idea
of a motion that needs subtle re�nement to add nuance and
detail. The 3D hopper dog, shown in Figure 7, is an articu-
lated linkage with rigid links connected by rotary joints. It
has a head, ears, and tail, and moves by hopping on its single
leg. It has 24 degrees of freedom (DOF). The hopper dog is
actuated by a control system that tries to maintain a desired
forward velocity and hopping height, as well as desired po-
sitions for joints in some of the appendages. The equations
of motion for the system are generated using a commercially
available package[17]; dynamic simulation is used to produce
the animations.
We started with a basic hopping motion, and then used

a DG approach to explore seven input quantities in order
to achieve stylistic, physically attainable gaits. The seven
quantities are: the forward velocity, the hopping height, and
the positions of 2-DOF ear joints, a 2-DOF tail joint, and a
1-DOF neck joint. For each of these seven, a time-varying
sinusoid speci�es the desired trajectory, with the minimum
value, maximum value, and frequency speci�ed in the input
vector, which therefore contains 21 values.
In this particular case, the elements of the output vector

correspond closely to those of the input vector. The 14-
element output vector contains the averages and variances
of the same seven quantities, and is obtained by dynamically
simulating 30 seconds of the hopper dog's motion. (Output
vectors from simulations in which the hopper dog falls are
discarded automatically.) As for the previous two applica-
tions, the output-space distance metric is Euclidean, and the
arrangement method and interface from x3.3 are used. The
hopper-dog DG is illustrated in the video proceedings.

4.3 Particle Systems

Particle systems are useful for modeling a variety of phe-
nomena such as �re, clouds, water, and explosions [16]. A
useful particle-system editor might have 40 or more param-
eters that the animator can set, so achieving desired e�ects
can be tedious. As in the previous subsection, we use a DG
interface to re�ne an animator's rough approximation to a
desired animation.
The subject for our experiment is a hypothetical beam

weapon for NASA space shuttles. A �rst draft was produced
by hand using a regular particle-system editor; a still from
midway through the animation is shown in Figure 8. The
input vector contains the subset of particle-system controls
that the animator wishes to have tweaked. In this exam-
ple the controls govern: the mean and variance of particle
velocities, particle acceleration, rate of particle production,
particle lifetime, resilience and friction coe�cient of colli-
sion surfaces, and perturbation vectors for surface normals.
Among the parameters that are held �xed are the origin,
average direction, and color of the beam.
For e�ciency reasons, DG output vectors are based on

subsampled versions of the �nal graphic where possible,
thereby reducing computational costs and allowing more of
the space to be explored. For example, static images can
be rendered at low resolution (x2 and x3). The subsampling



Figure 8: A still from a particle-system animation.

strategy for the particle animation is to simulate only every
500th particle generated during the dispersion phase, and
to examine the state of the particle system at just two dis-
tinct points in time: once midway through the simulation,
and once at the end. The output vector comprises mea-
sures of the number of particles, their average distance from
the origin and the individual variation in this distance, their
spread from the average beam, the average velocity of the
entire system, and the individual variation from this average
(we take logs of all of these quantities except for the beam
spread). These six measures are included for each of the
two distinguished times, resulting in 12 output parameters.
Euclidean distance is the metric on the output space.
Figure 15 shows the DG of variations on the animator's

original sketch from Figure 8. The dispersion and arrange-
ment methods from x3 are used to generate the DG. Each
thumbnail is the midway still from the corresponding anima-
tion. (The user can optionally select thumbnails from di�er-
ent stages in the animation.) As with the double-pendulum
DG, thumbnails can be dragged to gallery slots and ani-
mated therein. Also as before, lines connect animation stills
with their associated thumbnails. The dispersion heuristic
ran for t = 100; 000 iterations, at which point it appeared to
reach a plateau. This number of trials took approximately
six hours on a MIPS R10000 processor. Generating the 256
animations in the DG with their full complement of particles
took a little under �ve hours on the same processor.

5 Discussion

Table 1 summarizes the DGs described in this paper, in
terms of the six basic elements of a DG system. Some of
the variation in this table is application speci�c, while the
remainder stems from our investigation of alternative disper-
sion and arrangement methods. All of the galleries described
in the paper produce a useful variety of output graphics.
Using a DG for a particular instance of a design prob-

lem is fairly straightforward for the end user. Aside from
browsing the �nal DG, the user's only other task may be
to loosely focus the dispersion process by, for example, se-
lecting suitable light-hook and light-target surfaces (x2), or
by specifying a relevant subset of particle-control parame-
ters (x4.3). However, creating a DG system for an entire

class of design problems is more di�cult. The DG-system
creator is responsible for choosing the structure of the input
and output vectors, and the distance metric on the output
space. Thus, the creator needs a better understanding of the
design problem than the end user. Of the creator's tasks,
the simplest is choosing the distance metric: very standard
metrics su�ced for all applications we tried. Choosing the
input vector is also straightforward. Even when there are
many possible ways to parameterize the input, our experi-
ence is that choosing an acceptable parameterization is not
hard.
The most di�cult task of the DG-system creator is devis-

ing an output vector. The �rst two DGs in Table 1 work
on static images. In these examples, the perceptual similar-
ity between images correlates well with subsampled image or
pixel di�erences, hence the output vectors comprise subsam-
pled image and pixel values. An added advantage is that the
ranges of all components of the output vector are bounded
and known. Finding measures that capture the perceptual
qualities of a complete animation is harder. The DG sys-
tems for animation tasks required several experiments to get
a suitable output vector, although the process became eas-
ier for each successive system. Among the lessons learned
in developing output vectors for motion-control problems,
the two most important precepts are, with hindsight, fairly
obvious:

� Take the log of quantities that have a large dynamic
range. For many such quantities, e.g., velocity, human
ability to resolve changes in magnitude diminishes as
the magnitude increases. To uniformly sample the per-
ceptual space, one must therefore sample the lower end
of the dynamic range more thoroughly.

� The relative weights of the output-vector parameters
matter. In general, the output-vector parameters
should be scaled so that they each have approximately
the same dynamic range, otherwise only the parameters
with the largest ranges will be dispersed e�ectively.

What inevitably happened with a poorly chosen output vec-
tor was that the dispersion algorithm found a malicious way
to get unfortunate and unexpected spread in one of the vec-
tor coordinates, usually through a degenerate set of input
parameters, e.g., pendulums with extremely short links and
very high rpm's, and particle systems with only a few parti-
cles, but very high variance in velocity.
In our experiments, we investigated two dispersion meth-

ods and two arrangement methods. The dispersion method
of Figure 4 is more complex, but performs better. However,
an advantage of the simpler method in Figure 1 is that it
may be easier to parallelize. Two arrangement methods were
also tried, one based on graph partitioning and the other on
MDS. Both allowed the user to navigate through the out-
put graphics e�ectively, and both had their fans among our
group of informal testers. Layout and organizational anoma-
lies were occasionally evident in both interfaces, but they did
not hinder the user's ability to peruse the output graphics.

6 Conclusion

Design Gallery interfaces are a useful tool for many applica-
tions in computer graphics that require tuning parameters to
achieve desired e�ects. The basic DG strategy is to extract
from the set of all possible graphics a subset with optimal
coverage. A variety of dispersion and arrangement methods
can be used to construct galleries. The construction phase



Application
Light selection &

placement
Volume rendering Double pendulum Particle system Hopper dog

Input Vector
Light type,
location, and
direction

Control points for
opacity/color

transfer functions

Pendulum
dimensions,

initial conditions,
motor torques

Animator-
speci�ed subset
of particle control

parameters

Desired
trajectory
sinusoids

Output Vector
Luminances of
thumbnail pixels

YUV values for
eight pixels

Trajectory statistics
(mainly logs of time averages and variances)

Distance
Metric

Manhattan Euclidean

Mapping Raytracing Volume rendering
2D dynamic
simulation

3D particle
simulation

3D dynamic
simulation

Dispersion

Selection from
random sample

over
neighborhood

Evolution from
full random sample

Evolution from random
sample over neighborhood

Arrangement
Graph

partitioning
Multidimensional scaling

Table 1: Summary of Design Gallery experiments.

is typically computationally intensive and occurs o�-line, for
example, during an overnight run. After the gallery is built,
the user is able to quickly and easily browse through the
space of output graphics.
Inverse design is one technique for setting parameters, but

it is only feasible when the user can articulate or quantify
what is desired. DGs replace this requirement with the
much weaker one of quantifying similarity between graph-
ics. Unlike interactive evolution, DGs are feasible even when
the graphics-generating process has high computational cost.
Finally, DGs are useful even when the user has absolutely
no idea what is desired, but wants to know what the possi-
bilities are. This is often the �rst step in the creative design
process.
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Figure 10: Another DG for light selection and placement.

Figure 11: Light selection and placement for synthetic lighting of a photograph.



Figure 12: A DG with di�erent opacity and color transfer functions.

Figure 13: A DG with di�erent opacity transfer functions.



Figure 14: A DG for an actuated 2D double pendulum.

Figure 15: A DG for a particle system.


