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Fig. 1. Visualizing large-scale segmentation projects in connectomics. Left: The main view of NeuroBlocks, comprising a scalable “pixel-
based” visualization of the current segmentation state on top, and a timeline for exploring the project’s evolution at the bottom. Top
right: Detailed view of a segmentation task assigned to a user, showing recent modifications and thumbnails of the corresponding
tool states. Bottom right: Linked petascale volume rendering of the underlying microscopy data and the selected segmented object.

Abstract—In the field of connectomics, neuroscientists acquire electron microscopy volumes at nanometer resolution in order to re-
construct a detailed wiring diagram of the neurons in the brain. The resulting image volumes, which often are hundreds of terabytes in
size, need to be segmented to identify cell boundaries, synapses, and important cell organelles. However, the segmentation process
of a single volume is very complex, time-intensive, and usually performed using a diverse set of tools and many users. To tackle the
associated challenges, this paper presents NeuroBlocks, which is a novel visualization system for tracking the state, progress, and
evolution of very large volumetric segmentation data in neuroscience. NeuroBlocks is a multi-user web-based application that seam-
lessly integrates the diverse set of tools that neuroscientists currently use for manual and semi-automatic segmentation, proofreading,
visualization, and analysis. NeuroBlocks is the first system that integrates this heterogeneous tool set, providing crucial support for
the management, provenance, accountability, and auditing of large-scale segmentations. We describe the design of NeuroBlocks,
starting with an analysis of the domain-specific tasks, their inherent challenges, and our subsequent task abstraction and visual rep-
resentation. We demonstrate the utility of our design based on two case studies that focus on different user roles and their respective
requirements for performing and tracking the progress of segmentation and proofreading in a large real-world connectomics project.

Index Terms—Neuroscience, Segmentation, Proofreading, Data and Provenance Tracking

1 INTRODUCTION

In recent years, connectomics has become a very promising subfield
of neuroscience, with the aim to reconstruct the complete wiring di-
agram of the mammalian brain at nanometer resolution. To achieve
this goal, high-resolution electron microscopy (EM) volumes of brain
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tissue are acquired at a rate above 10 to 40 megapixels per second [8],
and subsequently have to be segmented, labeled, and analyzed.

Because of this, image and volume segmentation have become a
major bottleneck in connectomics research. Successfully tackling the
associated challenges requires a variety of tools as well as scalable
visualization support. One area where visual representations and in-
teractive visualization tools can be especially helpful is the integration
of a wide variety of heterogeneous components, tasks, tools, and data
types into a coherent, efficient workflow that is driven by interactive
visualization. Currently, in neuroscience no existing tool targets this
goal, which is therefore the aim of the work described in this paper.

Many tools used in current practice in neuroscience are still mostly
based on performing manual segmentation, which is a very labor- and
time-intensive process. Recently, a lot of research in computer vision
and image processing has focused on developing (semi-) automatic
segmentation methods for extracting cell boundaries and specific cell
organelles from EM data. However, while fully automatic approaches
in principle do not require any user interaction, they still exhibit higher
error rates than manual segmentation. For this reason, a subsequent
semi-automatic proofreading step is usually still necessary in practice,
which again requires user interaction.



To keep up with the fast increasing amount of raw data, neurosci-
entists now routinely manage a whole team comprising segmenters
and proofreaders. They divide the segmentation tasks between these
users, whose experience ranges from senior researchers to novice in-
terns. This in turn makes managing and keeping track of the current
segmentation data a very complex task. Users not only have different
levels of experience, but might also be working remotely and at differ-
ent locations. Furthermore, mentally keeping track of recent segmen-
tation changes, double-checking and approving the changes of inexpe-
rienced users, as well as managing their workload and specific tasks
has become a major issue that neuroscientists have to deal with.

Managing such a large-scale segmentation project is further com-
plicated by the fact that a typical neuroscience lab uses a plethora of
different tools for registration, segmentation, labeling, visualization,
and analysis of the data. However, most of the time interfaces be-
tween different tools are non-existent. For example, navigating to the
same spatial position in two different applications might require man-
ually typing in the position that was extracted from one tool into the
user interface of another tool. This also complicates keeping track of
the current segmentation state, as switching between different tools
is usually slow and cumbersome. Moreover, not all tools support the
same kind of meta data, so interoperability becomes very difficult.

Therefore, it is an important goal to design a tool that supports neu-
roscientists in tracking the progress of very large volumetric segmenta-
tion data by offering visual abstractions and scalable views that makes
tracking such a large amount of data feasible. Additionally, this tool
needs to inherently support multiple users and different user groups,
and should seamlessly integrate the diverse set of tools that are used in
practice. At the same time, the visualization of the original microscopy
data and the segmentation data in 2D and 3D is crucial, and needs to
be tightly integrated into the overall workflow.

NeuroBlocks. We present a novel visualization system called Neu-
roBlocks, for tracking the state, progress, and evolution of large seg-
mented EM volumes. NeuroBlocks is a multi-user web-based applica-
tion that supports provenance, accountability, and auditing of segmen-
tation results. It tightly integrates 2D and 3D interactive visualizations
of image and volume data, displays connectivity, and offers abstract
data visualization views of the current and former segmentation states.
It allows users to see, track, and manage segmentation data that are
changing over time, together with the tools that were used in each
step. It enables users to go back to any point of interest in time, and to
the corresponding state of the tool used at that point.

Contributions. Our first contribution is the definition and discus-
sion of a set of requirements and design guidelines for visually manag-
ing large-scale segmentation projects in the domain of neuroscience,
which can be seen as a specific case of task progress management.

Our second contribution is the design of scalable visual representa-
tions for large segmentation data. Our visualizations are fully interac-
tive, and allow users to track the current state, evolution, and progress
of the on-going segmentation and proofreading tasks and projects.

Our third contribution is a direct integration of multi-user support—
including different user groups with varying permissions, experience,
and assigned tasks—into the visualization. NeuroBlocks allows audit-
ing and crediting of users, and provides accountability of who did what
and when. Furthermore, we enable users to seamlessly switch between
different (segmentation) tools and their respective application states.

Finally, our fourth contribution is a demonstration of the utility of
our design based on two case studies. The first case study is performed
by a domain expert, who manages and tracks a large segmentation
project. The second case study is performed by a relatively inexpe-
rienced proofreader, who uses NeuroBlocks to complete the assigned
tasks and to quickly switch between different segmentation tools.

2 RELATED WORK

Connectomics. The main goal of connectomics is reverse-engineering
the brain and its neuronal connectivity through the use of high-
resolution and high-throughput imaging techniques. Introductions to
connectomics are given by Lichtman and Denk [27] and Seung [33].

Segmentation and proofreading for connectomics. Before the
neuronal connectivity can be extracted from EM data, correct anno-
tation and segmentation of the acquired data volumes is necessary,
which is currently one of the main bottlenecks in the connectomics
pipeline. Despite its obvious limitations and lack of scalability, manual
annotation [3, 5, 12, 30] is still widely used in practice. More recently,
semi-automatic segmentation approaches [21, 24, 37] as well as fully
automatic methods for segmenting neuronal structures [20, 22] have
received a lot of attention. While these automatic approaches are more
scalable than manual segmentation and require only little or no user
input, they still often need an additional proofreading step, where er-
roneous segmentations are fixed in a semi-automatic fashion [17, 25].

To handle huge amounts of EM and segmentation volumes, as well
as additional annotations and labels, Burns et al. [11] recently pre-
sented the open connectome project, a scalable data infrastructure for
annotation and analysis of high-throughput brain imaging data.

Visualization in connectomics. Most visualization tools for con-
nectomics focus either on displaying the abstract connectivity between
cells, or on displaying the original image/volume and segmentation
data. The Viking Viewer [3] represents neurons as nodes in an abstract
connectivity graph. NeuroMap [38] makes use of circuit wiring dia-
grams to represent all possible connections of neurons. NeuroLines [1]
uses a relative distance-preserving subway map metaphor to visualize
and explore neuronal connectivity at the level of individual synapses.

For exploring petavoxel EM data, Hadwiger et al. [16] have pre-
sented a volume rendering pipeline that is entirely driven by the visi-
bility of volume bricks in the final image, which was later extended to
segmented volumes [7]. BrainGazer [9] and ConnectomeExplorer [6]
focus on interactive and visual queries to explore brain connectivity.
We have integrated the latter framework into NeuroBlocks as one of
several available options for 3D visualization.

However, all of these visualization applications assume a fixed seg-
mentation state. They do not show the progress and evolution of large-
scale segmentation volumes and projects.

Provenance and progress tracking. Capturing provenance data
in computational tasks (e.g., visualization systems) is crucial to make
data exploration, processing, and analysis reproducable [13]. The Vis-
Trails system [4] is an open-source framework that tracks and stores
provenance data for visualization pipelines. It not only captures data
provenance, but also provenance of the user’s exploration process.
VisTrails and its provenance management have been incorporated into
many different applications, ranging from creating visualizations by
analogy and query-by-example [32], to provenance-aware workflows
for oceanography [19], and reproducable scientific experiments [14].

Other provenance systems include Halaschek et al. [18], who track
provenance for annotation and management of images on the seman-
tic web, while Simmhan et al. [36] track the derivation history of data
for provenance in data-driven workflows. More recently, Al-Naser et
al. [2] employ provenance in the context of seismic visualization to
manage multi-user and multi-version seismic interpretations. How-
ever, none of these systems have tackled provenance for large seg-
mentation data in complex, distributed workflows.

Pixel views and comparative visualization. The goal of pixel
views or dense information views is to represent as many data ob-
jects as possible within the available screen space. Keim [23] dis-
cusses design decisions for pixel-oriented views for visualizing large
multi-dimensional data sets, including different pixel arrangements,
such as Morton curves or query-based ordering. A common two-
dimensional space-filling approach for representing tree structures
are Treemaps [34] and their extension to squarified treemaps [10].
Heatmaps are another type of dense information visualization, and are
very popular in bioinformatics and genomics [26].

OnSet [31] is a space-filling visualization of binary set data that
supports comparison between and combination of sets, and scales to
several hundred elements per set. Gleicher et al. [15] have presented a
general survey on comparative visualization. They introduce a general
taxonomy of visual design for comparisons based on juxtaposition,
superposition, and explicit encoding. More recently, Wang et al. [40]
have proposed a treemap approach for displaying similarity-based im-
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Fig. 2. Connectomics workflow. Top: High-resolution electron microscope images are acquired and registered into a 3D volume before neuronal
structures are segmented and labeled. Automatic segmentation approaches require a subsequent proofreading step before the data can be
visualized and analyzed. Bottom: Visualization of the typical relative durations of these tasks in a medium- to large-scale neuroscience project.

age collections on large tiled displays. Lindemann et al. [28] have pre-
sented a volume visualization system for comparative visualization of
segmentation masks from different modalities or different timesteps.
However, they focus on medical data comprising only a small number
of segmented objects, whereas in our target area of connectomics we
have to deal with thousands of objects or more in a single data set.

Multi-scale and multiple linked views. Efficient means for ex-
ploring large numbers of data elements are hierarchical navigation
metaphors and focus-and-context techniques [35]. In the context of
connectomics, NeuroLines [1] uses a multi-level navigation metaphor,
with the lowest level inspired by heat maps and extended table
lenses [39] for multi-column sorting. Lex et al. [26] use a multi-tier
focus-and-context approach for large heat maps in genomics.

An alternative approach to linking views—or even entire
applications—together was presented in ManyVis [29], which is a
framework that can combine different independent visualization tools
into a single integrated application by intercepting and processing low-
level user interactions. ManyVis was also used to implement rapid an-
notation of large microscopy images, with the focus of integrating an
out-of-core visualizer into Adobe Photoshop. However, ManyVis does
not incorporate provenance or tracking of segmentation changes.

3 BASIC DESIGN CONSIDERATIONS

We first discuss the major design considerations for NeuroBlocks,
starting with the necessary neuroscience background, then describing
the general goals, domain-specific tasks, and challenges we have iden-
tified. Finally, we motivate our design decisions and considerations,
including lessons learned from previous alternative design prototypes.

3.1 Neuroscience Background and Workflow
The connectomics workflow of our collaborators starts with high-
throughput electron microscopy image acquisition of tiny samples of
mouse brain tissue. This results in image tiles with a resolution of
3-5 nm per pixel, and a slice thickness of 25-30 nm. Before further
data processing, the image tiles are stitched and registered to form a
single 3D volume with a slice resolution of 20,000 to 100,000 pix-
els, and up to tens of thousands of slices. The next step in the pipeline
consists of segmenting and annotating the neural structures in the data,
before visualization and final analysis can be performed (see Figure 2).

In connectomics, the main goal is to construct a wiring diagram
of how individual neurons (i.e., nerve cells) are connected in the
brain. Neurons transmit electrical signals to neighboring neurons over
synapses, the connections between neurons. The size and form of neu-
rons can vary widely, but typically they consist of several dendrites,
tree-like branching structures that receive input from other neurons,
and an axon, a long and narrow tubular structure that transmits signals
away from the cell body towards other neurons. Additionally, neurons
have several sub-structures or cell organelles, and even synapses have
additional discriminating features, such as vesicles, boutons, or spines.

The high structural variability of neurons combined with the low
signal-to-noise ratio of EM images make segmentation of this data
type challenging. Therefore, and because of the large data sizes, seg-
mentation is often the bottleneck of the entire connectome workflow.

Our collaborators use a wide variety of tools for registration, seg-
mentation, visualization, and analysis. Almost every researcher has
their own favorite tools, often very specific to the task they want to
perform. Currently, our collaborating neuroscientists routinely use
VAST [5] for manual segmentation, and the RhoANA pipeline [22]
for automatic segmentation. The RhoANA pipeline performs state-of-
the-art automatic reconstruction of neuronal processes in terabyte EM
data based on a random forest classifier coupled with an anisotropic
smoothing prior in a conditional random field framework and 3D seg-
ment fusion. Our collaborators typically generate a slightly over-
segmented dataset to simplify and speed up the semi-automatic proof-
reading step, which is performed in Mojo [25] and Dojo [17]. During
this proofreading step, additional data and metadata can be generated,
such as synapse labels (stored as x,y,z positions), textual labels, or
segment names. For visualization and analysis, our collaborators use
Matlab, ConnectomeExplorer [6], and NeuroLines [1].

3.2 Task Analysis
The design of NeuroBlocks was developed in close collaboration with
neuroscientists working in the field of connectomics. Over the course
of several months we have conducted detailed informal as well as
semi-structured interviews with four domain scientists focusing on
EM-based connectomics research: two grad students, one postdoctoral
researcher, and one faculty. Our collaborators typically work on large-
scale segmentation projects, with data sets ranging up to hundreds of
terabytes in size. Although oftentimes these data do not have to be seg-
mented in their entirety, the required effort is still so large that many
undergrads and interns are employed as segmenters or proofreaders,
which places a significant management burden on the scientists.

A common finding in our interviews was that even though the ulti-
mate goal of the neuroscientists is the analysis of their data, most of
their time was spent on segmenting, labeling, and proofreading data
(see Figure 2, bottom). Interestingly, even though three of them ini-
tially worked at the same lab, they all used different combinations
of segmentation and visualization tools, and there was no “standard
workflow.” For example, switching from segmentation tools to visual-
ization or analysis tools was mostly a hand-tuned, improvised solution
and sometimes required several hours to export the data from one tool
into the next. Keeping track of the current and previous states of the
segmentation was not supported by any of their tools, even though our
collaborators considered this to be one of the most cumbersome tasks.

3.2.1 Domain Goals

The ultimate goal of our collaborators is doing research based on anal-
ysis of their segmented data. However, in order to achieve this, their
immediate goal for NeuroBlocks is having a framework for managing,
verifying, and tracking the state of individual segmentation projects.

This includes (a) seeing the current segmentation, (b) tracking its
evolution, (c) managing multiple users with different levels of expe-
rience and having an overview of their current progress, (d) creating
subtasks and tracking their progress, and (e) being able to look at the
segmentation in 2D and 3D with different tools, and moreover being
able to seamlessly switch between them.



For example, a scientist might assign four segmenters to four dif-
ferent proofreading tasks. The segmenters do not have a lot of expe-
rience, so the scientist has to individually approve all of their changes
(e.g., by looking at a diff image in 2D or 3D), before they are merged
into the main segmentation volume. Once these tasks are completed,
the scientist can use NeuroBlocks to quickly extract a meaningful sub-
set of the segmented data for a preliminary analysis of the data, or to
generate a progress report of the current state of the segmentation.

3.2.2 Domain-Specific Tasks

We have identified the following domain tasks for managing large-
scale segmentation projects in neuroscience:

T1 - Overview and detail visualization of the current segmen-
tation state. Dense segmentations of large EM volumes can contain
hundreds of thousands of objects. Neuroscientists need to be able to
get an overview of the entire data set, while also being able to look at
individual segments in detail. A combination of 2D and 3D visualiza-
tions of the original volume data for highly detailed views in combi-
nation with visual abstractions for higher-level contextual information
is required to fulfill this task.

T2 - Track changes to the segmentation volume. Especially in
large-scale segmentation projects, with multiple people collaborating
on the same data set, it is necessary to not only look at the current state
of a segmentation, but also at previous states and their evolution.

T3 - Manage fine-grained segmentation tasks. Being able to dis-
cuss task-specific details, and to collect and visualize provenance of
the used tools for a specific task, are crucial for accountability of seg-
mentations, and for coordinating the tasks of multiple users.

T4 - Audit users and segmentations. The importance of prove-
nance and accountability for creating scientific results based on a
user’s segmentation requires the possibility to audit and verify indi-
vidual segmentations created by a specific user.

T5 - Switch seamlessly between different segmentation and vi-
sualization tools. One of the main unnecessary bottlenecks of our
collaborating scientists is when they have to switch from one tool to
another one. Therefore, it is crucial to develop a framework that seam-
lessly integrates the different tools that are currently used, while also
planning for easy future extensibility.

3.2.3 Challenges

The goals and domain-specific tasks described above directly corre-
spond to some of the challenges of designing a framework for manag-
ing large-scale segmentation projects. One of the biggest fundamental
challenges is achieving scalability: with respect to overall data size,
the number of segmentations, the number of segmentation changes,
the number of current tasks, and the number of users.

Typical projects comprise many, often distributed users of different
experience levels in segmentation and proofreading. The current strat-
egy of our collaborators is to hire high-school interns for proofreading
tasks. Naturally, not all interns will create segmentations of equally
high quality. Therefore, multiple hierarchical levels of checking and
approving changes to the segmentation need to be employed.

Finally, the diverse eco-system of the current segmentation and vi-
sualization tools available for connectomics data makes it difficult to
find a common standard that is supported by the most common tools.

3.3 Design Iterations
Our collaborators were initially interested in having something simi-
lar to a virtual lab notebook, which would allow them to track their
progress and jot down notes in a semi-structured fashion. Our first de-
sign was heavily based on this idea, and consisted of a virtual notebook
that also allowed users to dynamically integrate external visualization
and analysis applications into their notebooks (see Figure 3 (a)).

This was well received and we subsequently focused more on the
aspect of provenance, how to track the current analysis, and how to
quickly explore similar analysis or visualization options. An initial
design of this stage is shown in Figure 3 (b). It includes a provenance
tree of different analysis states.

Fig. 3. Design iterations of NeuroBlocks. (a) virtual lab notebook; (b)
provenance-driven analysis; (c) data-centric view; (d) final design.

However, over the course of several meetings with our domain sci-
entists it became obvious that their current main bottleneck was han-
dling the segmentation part of their project, not the visualization by
itself and the actual analysis. This means that for the major part of
their projects they are mostly interested in the current state of their
data and its segmentation. Only in the later stages of a project are they
interested in the state of their analysis and visualization.

We therefore adjusted our objective from an analysis-centric view
on their project to a data-centric view on their project, see Figure 3 (c).
This allowed the scientists to focus on the current segmentation and
leverage a data abstraction based on specific neuroscience objects
(e.g., axons, dendrites). This shift to a data-centric view drastically
expanded the way our collaborators thought about the project, and
was the single most important design decision during the course of the
project. However, they found the initial treemap design with variable
sized elements confusing and preferred a fixed size for all elements.

A sketch of the final design of NeuroBlocks is shown in Fig-
ure 3 (d), with a main data view, a timeline, a task list and a detail-
on-demand view for showing details of a selected element in the data
view. By using visualization not just for the analysis and exploration
of the final data, but already for tracking their segmentation progress,
our collaborators now have a much better grasp of their data, of the
parts that are still missing and need to be identified and segmented,
and they are more aware of potential problems in their segmentations.

4 VISUAL DESIGN

The final visual design that we have implemented comprises several
linked views. Figure 1 shows the main elements of a segmentation
project in NeuroBlocks: a segmentation state view, a timeline, and
different views for details-on-demand. Additionally, NeuroBlocks in-
tegrates 2D and 3D views of the original EM volume and segmentation
data (Figure 1, right), as well as “diff” views of segmentation changes.

4.1 Visualizing the Current Segmentation State
The objective for visualizing the current segmentation state is to pro-
vide a dense overview of the available segmentation data. To guaran-
tee scalability to tens of thousands of segmented objects, the provided
visualization abstracts and simplifies the underlying volumetric data
significantly, but details can always be shown on demand.

4.1.1 Segmentation State Pixel View
The main view of NeuroBlocks is the data-centric segmentation state
pixel view. To achieve scalability with respect to the number of seg-
ments in the segmentation project, we chose a pixel-based represen-
tation of the data, where each visual element represents one segment.
We call this visual element a pixel, even though it is usually larger than



Fig. 4. Multi-scale pixel view of the current segmentation state. “Down-
sampling” the full-resolution pixel view ensures overview visibility of all
data. Here, as an example, elements are sorted by size, and color-
coded according to the number of recent modifications. All individual
segments comprising the selected super-pixel are shown in the top right.
The bottom right shows a connectivity graph of the selected object.

a screen pixel. This visual abstraction enables us to create a compact
overview visualization that is dense in information and can show thou-
sands of individual segments at the same time in the available screen
space. Details of individual pixels can be shown on demand and ex-
plored in the multiple linked views (see Sec. 4.3).

In the default state, the segmentation state pixel view displays the
current state of a segmentation project. Individual segments are shown
as pixels and are structured in a hierarchy, according to a neuroscience
taxonomy that our collaborators follow when labeling the data. For ex-
ample, a segment can be categorized as segment ∈ spine ∈ dendrite ∈
neuron. Several segments can belong to the same segmentation object,
and alternatively we can map entire segmentation objects to individual
pixels, instead of mapping individual segments.

4.1.2 Sorting, Filtering and Layouting
Pixels in the pixel view are sorted, filtered, and highlighted based on
user input. Default settings can be specified for each NeuroBlocks
project separately. For example, in a project that focuses on proof-
reading of automatically segmented data, the project manager would
get a view where pixels are sorted based on proofreading completion
status with a color-coding that shows the number of modifications in
a segment. This enables directly getting an overview of the current
progress. Other options for sorting and filtering include showing only
segments that were modified by a certain user, sorting by segment
size, or highlighting all segments that were modified since the user last
logged in. Pixels are always sorted from left to right and top to bottom,
to correspond to the general reading direction. The individual pixel
size is either set to a constant, or adjusts automatically based on the
number of available segments. To ensure that the pixel size never falls
below a certain threshold, a multi-scale representation is displayed if
there are too many pixels for the current display (see Sec. 4.1.3).

The pixel view supports three main layouts: Pixels can either be
displayed in a nested hierarchy, as treemap [34], or in a flat view. The
nested hierarchy is shown in in Figure 1, and clusters segments based
on their assigned neuroscience category. This category is typically as-
signed either during segmentation or proofreading. The treemap view
also shows the data clustered based on segment category, but avoids
any white space. The flat view avoids any clustering, and displays all
segments as a single block. This is particularly useful for fast sorting
and filtering over all segments, and for uncategorized data.

4.1.3 Multi-Scale Visualization
Automatic segmentation methods typically over-segment data because
merging segments in the subsequent proofreading step is easier and
faster than splitting segments [17]. This, however, often results in a
large number of individual segments, exceeding the available screen
space in our pixel view. Therefore, we developed a multi-scale pixel-
based view, guaranteeing visibility of the entire data set on screen.

The multi-scale view is computed based on the sorting order of the
segments, and recursively combines a pre-defined number of pixels

into a single “super-pixel.” Conceptually, this is similar to down-
sampling. However, we can specify the number of elements that are
combined into a super-pixel as well as the type of aggregation opera-
tion (e.g., average, min, max). Figure 4 shows a multi-scale pixel view
with the coloring highlighting the recent changes in the segmentation.

4.2 Visualizing the Segmentation History and Evolution
In addition to showing a single timestep or snapshot of the segmenta-
tion, NeuroBlocks also supports exploring the evolution or provenance
of the segmentation. In contrast to most provenance visualization sys-
tems, we do not focus on a graph-based visualization of provenance
data, but chose a timeline-based approach for navigating between dif-
ferent segmentation states. This has the advantage that it is easy to
navigate at multiple time scales, and that it is intuitive for novice users.

Exploring the evolution of the segmentation is supported in three
different ways: First, by moving a slider through a timeline (see
Sec. 4.2.1), users can navigate through the segmentation history. In
this mode, the pixel view is synced to the time slider and shows the
segmentation state at the position of the time slider. While moving the
slider, the pixel view transitions between the different time steps in a
smooth animation. This allows users to intuitively follow the evolu-
tion of the segmentation and see newly added segments or track how
segments change size over time. Second, the user can choose two
timestamps, and the pixel view will then show a direct comparison be-
tween these two states. This highlights the changes that have occurred
between two distinct time steps. Segments can be color-coded and
sorted based on different criteria, such as change in size, or showing
the segments whose categorization changed in the specified time in-
terval. Finally, NeuroBlocks offers a multi-scale time navigation. For
a specified time span or time interval, the pixel view can display the
frequency of change in segments. This time interval can be resized
and moved interactively, similarly to the time slider.

4.2.1 Timeline View
In addition to navigating between different time steps and temporal in-
tervals via time sliders and brushes, the timeline view can also directly
visualize attributes over time. While the former can be used to explore
the evolution of a segmentation project, and to explore the project in
different time scales and intervals by using linking and brushing, the
latter offers a direct visualization of user specified attributes over time,
which are displayed as stacked area charts. The default attributes that
are shown vary depending on the type of project and the current user.
For example, it can show recent activity of all users, the amount of
change in segments over time, or task status. The timeline in Figure 1
shows the activity of different users, and how many segments they
have modified recently. The timeline is implemented as a dynamic
scale and allows users to switch between highly detailed views of in-
dividual days or hours, and coarse views of entire weeks or months.

4.3 Visualizing Details on Demand
Once the user has examined the high-level structure of a segmentation
project, NeuroBlocks offers different views for exploring the details
of individual objects, tasks, users, and segments. Details are typically
shown on demand, whenever a segment is selected in the pixel view.

4.3.1 Segment and Object Detail Views
Individual segments and objects (i.e., semantic structures that consist
of more than one segment) can be examined in more detail in the seg-
ment view and the object view, respectively. Figure 5 displays a seg-
ment detail view, including an interactive 3D preview of the selected
segment (top left), the segmentation history (bottom left), and a con-
nectivity view (top, second from right). Figure 5 (right) shows the
selected segment in a ConnectomeExplorer 3D volume view.

The object and segment detail views allow users to explore previous
edits to the segmentation, and allow senior users to approve or reject
a proposed segmentation change. Additionally, the previous segmen-
tation states of the selected segment can be displayed as thumbnails,
and allow users to directly go back to that state in the corresponding
segmentation tool by clicking on the thumbnail.



Fig. 5. Segmentation object details and volume rendering integration. De-
tails about the segmented object, all its segments, revision history, and
collaborators are shown in this view. Recent changes to the segmen-
tation can be examined in detail and at full resolution in the integrated
volume renderer, and then be approved or discarded by the user. The
view at the bottom right shows a “diff” of the most recent merge.

4.3.2 Connectivity View
Neuronal objects such as axons or dendrites are typically very highly
interconnected. Therefore, NeuroBlocks offers an abstract object visu-
alization that shows which segments are part of an object, and a node-
link diagram showing the directly connected neighbors (Figure 5).

The center of the connectivity view shows the selected object as
a circular node, and all the segments it contains as pixels within that
object. Whenever a pixel is selected in the main pixel view, the con-
nectivity view gets updated and the selected segment is highlighted in
both views respectively. Connectivity of objects is based on the la-
beled synapses an object makes to neighboring cells. These connected
objects are displayed in the connectivity view as small nodes that share
an edge with the object in focus. Clicking on these nodes allows users
to navigate to the connected objects and to explore them in more detail.

4.3.3 External Views
One essential feature of NeuroBlocks is the integration of a diverse set
of external tools that support segmentation, proofreading, visualiza-
tion, and analysis. Currently, we have integrated Dojo, a web-based
proofreading application (see Figure 1), and ConnectomeExplorer, a
scalable volume visualization and analysis application (see Figure 5).

Dojo supports fast volume navigation based on a 2D slice view and
and also offers a basic interactive volume rendering view for preview-
ing the current segment in 3D. Dojo enables operations such as semi-
automatic merging and splitting of segments by directly drawing and
clicking on the segments in the slice view.

ConnectomeExplorer allows for high-quality volume rendering of
terabyte-sized datasets. It can render the original data in combination
with the segmentation data and users can interactively change param-
eters such as clipping planes, transfer functions, or enabling/disabling
segments. Additionally, ConnectomeExplorer has a “diff” view for
visual comparison between two segmentation states.

While working with external tools, their current state is periodi-
cally sent to NeuroBlocks and stored in a provenance database. These
state snapshots are displayed as thumbnails in NeuroBlocks and enable
users to reset their tool to any previous state to continue working from
there. Furthermore, we have integrated the Dojo proofreading tool di-
rectly into the main view of NeuroBlocks. In this way, whenever the
user selects a specific element, a 2D or 3D rendering of that segment
or object is directly displayed in the sidebar of NeuroBlocks, without
having to switch between different views or windows (see Figure 1).

4.3.4 Management Views
Similarly to the object view, the task view provides the details for a
specific task, its recent activity, and the people assigned to work on
it. From this view, it is also possible to navigate to individual objects
or segments that were modified in that task, and to explore the recent
states of the used external tools (see Figure 1 top, second from right).

The user view is designed mainly for project managers and allows
them to assign users to different groups with different default views
and privileges. Furthermore, it offers an interface to audit users, the

tasks they have been working on, and the objects that they have modi-
fied. Other user groups can look at their profile to get summary statis-
tics of their work. These summary statistics include a graph showing
the number of contributions (i.e., segmentation changes) users made
over time and a calendar view showing their activity over time.

5 INTERACTION DESIGN

The interaction features of NeuroBlocks were designed to support the
domain-specific tasks discussed in Sec. 3.2 as intuitively as possible.
NeuroBlocks supports multiple user roles that can have different privi-
leges and default visualization views associated with them. By default,
NeuroBlocks has three different user roles: segmenters and proofread-
ers, senior segmenters, and project managers — all with different de-
fault views and interaction possibilities. Project managers, for exam-
ple, can create and assign tasks, audit segmentations, and assign users
to different projects and tasks. Segmenters, on the other hand, can only
modify segments based on their currently assigned tasks, and might
need supervisor approval before their suggested changes are accepted
into the current segmentation state.

5.1 Project Status Exploration
Exploring the overall status of the current project is mainly done in
the segmentation state view and the timeline view. User interaction
consists of filtering, sorting, and color-coding pixels in these views
based on different criteria, but default configurations are provided to
support specific tasks. For example, in a manual segmentation project,
the project manager would see all segments, sorted by creation date
and color-coded according to size. This enables users to see which
segments have been added recently, and to follow the progress of the
segmentation (i.e., segments growing in size as they are being traced
through the volume by a segmenter).

Furthermore, users can get details on individual segments in the
provided linked views, and explore the evolution of the segmentation
over time with time sliders and brushes in the timeline.

5.2 Task Creation
Segmentation tasks are created by project managers during their
project exploration process and often depend on previously-
accomplished tasks. For example, manual segmentation projects typ-
ically start with completely segmenting a single object of interest and
labeling its synapses (by marking the synapse locations in the image
viewer). Objects of interest are selected by domain scientists based
on their domain-specific analysis goal and are identified by the ob-
jects’ location, size, anatomy, or connectivity (e.g., a central, highly-
connected dendrite). In the next step, new segmentation tasks are cre-
ated for all connected structures sharing synapses. New tasks can be
defined at any spatial position or segment, and proofreaders are auto-
matically set to the specified starting position.

5.3 Task Completion
To minimize user interaction overhead, users who start working on
a task are automatically transferred to the correct state and location in
the integrated proofreading or segmentation tool. While they are work-
ing on their task, they can mark and report unclear areas in the data,
and save additional comments. Their current progress is automatically
saved in NeuroBlocks. Users can stop and interrupt their work at any
time, and can later automatically resume at the exact same state, even
when working on different computers. Once a task is marked as com-
plete it will be submitted for approval to a project manager.

5.4 Task Approval and Audits
Project managers see a list of completed tasks and segmented objects
that need approval, and can check the correctness of the data before
they officially close a task or “lock” a segmented object. Locked ob-
jects are considered to be correctly segmented, and cannot be touched
or modified anymore (unless explicitly re-opened).

Audits are a more formal evaluation of recent accomplished work to
ensure that the project meets certain quality standards. NeuroBlocks
supports audits for tasks, objects, segments and users. This helps in
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Fig. 6. NeuroBlocks system design. The NeuroBlocks server integrates
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cate with NeuroBlocks and access the original volume and segmenta-
tion data, which is stored on a shared filesystem.

identifying (junior) segmenters that need more training or do not have
the required concentration for longer proofreading tasks.

6 SYSTEM DESIGN AND IMPLEMENTATION

The overall system design with the major components of NeuroBlocks
is shown in Figure 6. NeuroBlocks is implemented as a web-based
client/server application. The server integrates user management, han-
dling of meta data, and can access the provenance database. The user
only needs a web browser to connect to the server.

6.1 Data Management
The original EM volume and the current segmentation volume are
stored in a multi-resolution format on a shared file system, and can
either be accessed directly from there or via on-demand data stream-
ing from a data server process [16]. To avoid having to store different
snapshots of the entire segmentation volume over time, we only store
the changes to the data in our provenance database, which allows us to
roll back to previous versions without data loss. Currently, our prove-
nance module is implemented as a MongoDB database. However, our
modular design would allow us to easily plug in different provenance
back-ends in the future, such as VisTrails [4], for example.

All segmentation meta data (e.g., textual labels, marked synapse
locations, object attributes) are stored in a MongoDB database, which
can easily be extended to incorporate new attributes or object types.

6.2 Multi-Tool Support
One of the main design decisions during the development of Neu-
roBlocks was to support the largest possible number of external tools
that are or might be used by neuroscientists to segment, analyze, and
visualize their data. NeuroBlocks offers a general API to allow exter-
nal applications to plug into the system. The API has been designed
in a way that makes it very easy to integrate external tools, with a
minimum amount of required programming on the tool side. After a
handshake protocol and user authentication, external applications send
their states and meta data to NeuroBlocks and receive updates in turn.

Currently, we have integrated two external applications that exem-
plify how very heterogeneous tools can easily be integrated into Neu-
roBlocks: ConnectomeExplorer [6] is a GPU-based volume renderer
that runs locally on the user’s machine and is integrated into Neu-
roBlocks by using the general API. Dojo [17], on the other hand, is a
web-based multi-user proofreading system for which we implemented
a tighter coupling into NeuroBlocks. It still uses the general API for
communication, but we display Dojo’s views directly in NeuroBlocks,
without using a separate browser window.

6.3 Implementation
NeuroBlocks is implemented in JavaScript and uses Meteor, an open
source JavaScript framework for client/server applications. The in-
teractive visualizations are implemented in D3. The provenance and
data handling back-ends are built on MongoDB (a noSQL database).
Communication with external tools is based on TCP sockets and web-
sockets. To run NeuroBlocks, users only require a web browser, no in-
stallation is needed. To run Dojo with high-quality rendering settings,
the web browser has to support WebGL. To run ConnectomeExplorer
for interactive 3D visualization of the data, a standard Windows PC
with at recent NVIDIA GPU is required.

7 CASE STUDIES AND DISCUSSION

We present two case studies that demonstrate how NeuroBlocks is use-
ful in managing large-scale connectomics segmentation projects. We
evaluated the case studies with our collaborating neuroscienctists from
the Harvard Center for Brain Science and the School of Medicine at
Boston University. Throughout the project, we had regular meetings
with them to discuss the goals and detailed tasks in NeuroBlocks. We
performed informal as well as semi-structured interviews and used the
fly-on-the-wall observation technique, to observe the scientists’ typical
workflow without direct participation or interference from our side.

7.1 Case Study 1: Managing a Segmentation Project
The first case study focused on a manually segmented data set of a
955 GB electron microscopy volume. Previously, the scientists had
already sparsely segmented around 4,000 objects and labeled 943
synapses, by managing a team of summer interns and grad students.
Since the first step of this segmentation had already been performed
prior to the development of NeuroBlocks, we were only able to extract
a small amount of provenance data from this initial segmentation state.
However, for all modifications after the initial segmentation, we were
able to fully employ NeuroBlocks and its provenance tracking capabil-
ities. The initial segmentation of the EM volume was performed with
VAST [5]. For each labeled synapse several attributes were extracted
from the EM volume. In the later stages of the project, the scientists
used Dojo [17] for segmentation and proofreading.

In this first case study, our target user group was a segmentation
project manager—in our case a senior researcher. The main objec-
tive of the senior researcher was to quickly identify interesting areas
of the segmentation, and to create tasks for his project members based
on his exploration. The researcher started by exploring the main seg-
mentation state view in NeuroBlocks, focusing on the current state of
the segmentation (T1 - Overview and detail visualization of current
segmentation). He was focusing on three main structures of inter-
est: three large dendrites, and the structures that connect to them. The
three dendrites and their synapses had already been segmented previ-
ously, but some of the structures connecting to these synapses had only
been quickly marked and not segmented completely. The researcher
quickly identified these structures by using the filtering capabilities of
NeuroBlocks to only show the interesting subset of the data, and then
sorted the pixel view according to segment size. Subsequently looking
at the small segments that were connected to the dendrites in Dojo’s
integrated 3D view allowed him to identify new segmentation targets
(T3 - Manage fine-grained segmentation tasks). The researcher then
created and assigned new tasks, by filling out new task descriptions
and specifying start positions for the follow-up segmentation in Dojo.

While the segmenters were working on the data, the manager regu-
larly checked their progress, and discussed ambiguous areas and seg-
mentations with them (T2 - Track segmentation changes). Once the
users were done, the senior researcher double-checked their work, us-
ing ConnectomeExplorer’s 3D and “diff” views, before approving the
segmentation (T4 - Audit users and segmentation).

7.2 Case Study 2: Proofreading Automatic Segmentation
The second case study focused on an electron microscopy volume that
was automatically segmented and required manual proofreading. The
automatic segmentation was performed by the RhoANA pipeline [22],



Fig. 7. Case study 2: Proofreader workflow. After task creation and assignment by a project manager (a), it is displayed in the segmenter’s task list,
which allows switching to the specified segment in the proofreading tool (b). Progress there is sent back to NeuroBlocks (c). After task completion,
the project manager can double-check the new segmentation using the integrated volume renderer (d), and set the task to complete if satisfied.

resulting in a slightly over-segmented data set that required proofread-
ing based on segment merging, and labeling of structures according to
user-defined categories (e.g., axons, dendrites, spines).

For this case study, we focused on the segmenter and proofreader
user group, and observed a user with relatively little proofreading ex-
perience. The complete workflow of this case study is shown in Fig-
ure 7. After logging into NeuroBlocks, the user could directly ex-
amine her assigned tasks and start working on one of them. Starting
the proofreading process automatically sets the user to the specified
position in Dojo (if a position was defined during task creation). Dur-
ing proofreading, all state changes (i.e., segment merges or splits) are
automatically transferred to NeuroBlocks, which stores it in the prove-
nance database (T2 - Track segmentation changes). During proof-
reading, the segmenter added several comments to her current task, to
discuss ambiguous cell boundaries with more experienced segmenters
(T3 - Manage fine-grained segmentation tasks). While waiting for
answers, she suspended working on the current task and started other
tasks that were assigned to her. After the ambiguity was resolved, she
could directly continue with her first task where she originally left of,
without losing the original tool state (T5 - Seamless switching be-
tween different tools). After checking her work in the integrated 3D
view and setting the task status to complete, a segment approval noti-
fication was automatically triggered for the project manager.

7.3 Discussion

In this section we present the qualitative feedback we received from
our collaborating scientists, and discuss limitations and as well as de-
sign lessons we learned during the development of NeuroBlocks.

7.3.1 Qualitative Feedback

Qualitative feedback from our collaborators indicated three main ad-
vantages of NeuroBlocks that match our design goals:

First, it was a lot easier for neuroscientists to keep track of a project
in NeuroBlocks than in their previous workflow. The distributed task
assignment of NeuroBlocks was extremely helpful, especially when
more than just one or two people are working on a project.

Second, NeuroBlocks was found to speed up and simplify the pre-
vious workflow. By seamlessly integrating external proofreading and
visualization tools, users could easily switch from one tool to another
and back again, without manual data importing and exporting, and
without having to manually copy and paste meta data. Finally, users
found NeuroBlocks most useful when the segments were categorized
into the different neural object types defined by our collaborators’ tax-
onomy (e.g., spines, dendrites, neurons) early in the process. The rea-
son is that the segmentation state pixel view makes use of this catego-
rization to display the segments sorted into the corresponding hierar-
chy. If the categorization is unknown, the visualization results in a flat
view of the segments, which is still useful, but not as informative as the
hierarchical view. Currently, the segment categorization is done manu-
ally during proofreading, but in the future the automatic segmentation
pipeline could propose an initial object category for each segment.

7.3.2 Lessons Learned
One of the crucial decisions during the design of NeuroBlocks was
switching from a visualization and analysis-centric to a data-centric
focus. This strategy allowed us to build a system that supports project
management and tracking tasks much more intuitively by leveraging
more abstract and high-level visualizations to get an overview of the
current project state. This first design decision goes hand in hand with
our next finding: By forgoing the typical graph-based provenance vi-
sualization, and providing a timeline-based provenance visualization
triggered by users moving time sliders and brushes, we have created
an intuitive way to explore the evolution of a project, even for users
new to provenance systems. Tracking the overall progress of a project
is a lot easier when one does not need to focus on individual changes
or clusters, but can browse via smooth animations.

7.3.3 Limitations
The main limitations of NeuroBlocks with respect to interoperability
with external tools is that these tools need to use the NeuroBlocks API
for transmitting and receiving state information. Even though the API
is well-documented and flexible, this process usually requires access
to the source code and recompilation of the external applications.

We have tested the scalability of our system by simulating prove-
nance data for tens of thousands of proofreading steps in a teravoxel
data set. Our multi-scale pixel view can potentially scale to thousands
of segments per visual element and ensures on-screen visibility of all
segments. However, as all multi-resolution and aggregation views, this
comes at the cost of losing information on individual segments that are
a part of a super-pixel. That is why we offer users the possibility to
switch from the multi-scale pixel view with guaranteed visibility to a
high-resolution pixel view with a scroll bar.

8 CONCLUSIONS AND FUTURE WORK

We have presented the design and implementation of NeuroBlocks,
a system for visual tracking of large-scale segmentation and proof-
reading projects in the field of connectomics. NeuroBlocks enables
scientists to track the current state and evolution of their on-going seg-
mentation and proofreading project, and provides a scalable visual-
ization that can handle thousands of segmented objects. We have in-
corporated a provenance management system for tracking the project
evolution and auditing of segmentation and users, and support multi-
ple users and multiple user groups with different default views, tasks
and permissions. NeuroBlocks allows to seamlessly integrate external
tools and handle their respective application states. We believe that by
combining a high-level abstract pixel view of the entire segmentation
data with highly-detailed spatial 2D and 3D views of the EM volume
and its segmentation, we have created a powerful visual system that
allows scientists to focus on the essential parts of their research, rather
than on management, data handling, and interoperability issues.

In the future, we plan to extend NeuroBlocks into a complete
virtual lab notebook that will allow scientists to not only track the
progress of their segmentation, but also the progress of their visualiza-
tion and analysis, and the discovery of new scientific insight. Another



promising research direction is the integration of dynamic and evolv-
ing guidelines for different types of science projects that will allow
students with little experience to follow common templates.
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