
Hardware-Accelerated 3D Visualization of Mass Spectrometry Data

José de Corral∗

Waters Corporation

Hanspeter Pfister†

Mitsubishi Electric Research Labs (MERL)

ABSTRACT

We present a system for three-dimensional visualization of complex
Liquid Chromatography - Mass Spectrometry (LCMS) data. Every
LCMS data point has three attributes: time, mass, and intensity. In-
stead of the traditional visualization of two-dimensional subsets of
the data, we visualize it as a height field or terrain in 3D. Unlike
traditional terrains, LCMS data has non-linear sampling and con-
sists mainly of tall needle-like features. We adapt the level-of-detail
techniques of geometry clipmaps for hardware-accelerated render-
ing of LCMS data. The data is cached in video memory as a set
of nested rectilinear grids centered about the view frustum. We in-
troduce a simple compression scheme and dynamically stream data
from the CPU to the GPU as the viewpoint moves. Our system al-
lows interactive investigation of complex LCMS data with close to
one billion data points at up to 130 frames per second, depending
on the view conditions.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism; I.3.2 [Com-
puting Methodologies]: Computer Graphics—Graphics Systems

Keywords: Mass Spectrometry, Terrain Rendering, GPU Render-
ing

1 INTRODUCTION

Liquid Chromatography - Mass Spectrometry (LCMS) is an analyt-
ical technique resulting from a combination of Liquid Chromatog-
raphy (LC) and Mass Spectrometry (MS). It is widely used in the
life sciences and in drug discovery for applications such as protein
analysis. LCMS data has three components: time, mass, and rel-
ative intensity. Typically, two-dimensional subsets of the data are
processed using numerical methods and then visualized in 2D.

In recent years, the demand for faster and more accurate analy-
sis results have resulted in an increase in the size and complexity
of data obtained from LCMS instruments. To keep up with this
pace, analytical chemists use software tools to help them interpret
the data. The system presented in this paper is one of these tools,
allowing the users to interactively visualize LCMS data in 3D as
shown in Figure 1, where relative mass detector intensity is plotted
with respect to time and mass-to-charge ratio.

A three-dimensional visualization allows LCMS practitioners to
have an overview of the entire dataset as well as detailed close-ups.
It can help them to identify features in the data that simultaneously
vary with mass and time. This is hard to do using just 2D plots and
normally requires some prior knowledge about the sample. The 3D
visualization also permits quick identification of peak clusters that
are near the data noise level, confirmation of the presence of a peak
predicted by numerical methods, and other interactive exploration
of the data. Consulted LCMS users were unaware that this type

∗e-mail: jose.de.corral@waters.com
†e-mail: pfister@merl.com

Figure 1: Three-dimensional visualization of LCMS data.

of 3D visualization was possible. They encouraged the authors to
develop this system, as they envisioned its great potential.

Modern LCMS datasets range from tens of millions to over a bil-
lion data points, making interactive 3D visualizations a non-trivial
problem. Also, LCMS data spacing is non-uniform and varies
greatly along each axis. Our system renders large LCMS datasets in
3D on modern graphics processing units (GPUs). We have adapted
the level-of-detail (LOD) techniques of geometry clipmaps [15, 2]
that were developed to render large terrain data at video frame rates.
Geometry clipmaps are based on a pyramid of nested rectilinear
grid rectangles at power of two resolution that are re-filled with
new data as the view changes. We use the same conceptual LOD ap-
proach, but use different LOD levels, data compression, and storage
formats. Our system is capable of interactively exploring LCMS
datasets with close to one billion data points (355,329 mass points
× 2,669 time steps).

2 PREVIOUS WORK

Typically, LCMS data is viewed in 2D. There are several tools avail-
able for this, including plot programs that are part of the Matlab
bioinformatics toolbox. Matlab and some recent software tools [12]
also allow a general or partial view of LCMS datasets in 3D. These
tools are limited by either the size of data they can display or their
rendering performance. We are not aware of any other attempt to
visualize large LCMS datasets interactively with LOD techniques
on modern GPUs.

LCMS data visualization in 3D has similarities with terrain ren-
dering, as both use elevation maps. In recent years, terrain render-
ing has received a lot of attention. The focus of most of this work
has been on real-time terrain visualization with LOD techniques
(e.g., [6, 4, 5, 11, 13]). Others pursue a drastic reduction in the
number of vertices necessary to render the terrain image, resulting
in irregular grids for terrain representation (e.g., [14, 8, 3, 7]).

LCMS data visualization in 3D has also substantial differences
with terrain rendering that make most of the previous terrain ren-



dering work not directly applicable. Terrain is in general relatively
smooth with no sharp features. On the other hand, LCMS data is
full of spike-like features embedded in flat sections. For highest
performance, terrain grids are sampled at regular intervals along
both axes, making tessellation of the model easy [16]. The sam-
pling rate of LCMS data is different along each axis. It is non-
linear, and there are typically about one hundred times more sam-
ples along the mass axis than the time axis. Figure 2 illustrates this
issue. A typical terrain sampling grid is shown on the left, and a

Figure 2: Terrain and LCMS data sampling comparison.

typical LCMS data grid on the right. The sampling rate is higher
for low mass values than for high mass values and is broken occa-
sionally with bursts of samples. Time sampling is normally regular,
except that some samples might be missing when the instrument
interleaves a mass scan for other purposes.

Initially, we considered an irregular grid approach [5, 11, 8] be-
cause LCMS data has contiguous regions of zero intensity. This
is promising for vertex reduction techniques that result in irregular
grids of vertices. However, we realized that some LCMS datasets
have more noise and no regions of zero intensity, which reduces the
benefit of this technique in those cases. In addition, every LCMS
dataset would have a different vertex distribution, making it diffi-
cult to overlay and compare two LCMS datasets of the same size.
Besides, rendering an irregular grid is usually slower and more dif-
ficult. Therefore, we decided that a rectilinear grid approach was
a better solution. Although LCMS data is not evenly spaced along
the time or mass axes, it is rectilinear in the sense that it is made of
rows and columns of data points.

Among the terrain-rendering approaches we studied, we found
the work by Losasso and Hoppe [15] to be the best fit for our prob-
lem, although there are substantial differences between the two so-
lutions. Losasso and Hoppe use a lossy compression algorithm,
which we cannot use for reasons mentioned later. They use a pyra-
mid structure of nested regular grid rectangles centered about the
viewpoint (i.e., viewer position), with each rectangle representing
the data at a power of two resolution, and equal resolution across
the two horizontal axes. While we use a similar pyramid structure,
ours is centered about the view frustum, and the sampling resolu-
tion along each axis is very different.

Losasso and Hoppe address visual continuity between levels of
the pyramid in their work, but we found this not essential for our
application. The spike-like nature of the LCMS data makes it dif-
ficult to see these transitions except in relatively flat regions of the
data. Nevertheless, this is a subject for future work. Similar to
Losasso and Hoppe, we store the entire dataset in main memory
in compressed form, while the geometry that is being rendered is
stored in video memory using vertex buffers. However, our method
to perform the video memory updates from main memory is dif-
ferent. In both cases, viewer distance determines which pyramid
levels are visible. Also, due to the toroidal addressing, Losasso and
Hoppe recompute vertex indices each frame. We found a method to
avoid this.

3 OVERVIEW OF LCMS

Liquid Chromatography (LC), also commonly known as High Per-
formance Liquid Chromatography (HPLC), is an analytical tech-
nique used to separate the chemical components of a sample mix-
ture. The sample is dissolved in a solvent and pushed through a
liquid chromatograph (Figure 3) that performs the separation into
chemical components [17, 18]. A high-pressure pump pushes the

Figure 3: Block diagram of a liquid chromatograph.

solvent from a container into the rest of the elements at a steady
flow. The sample injector inserts the sample solution into the sol-
vent stream without disrupting the solvent flow. The device that
performs the actual separation of the sample components is called
a separation column or simply column. The column is a piece of
tubing packed with material that allows the solvent to go through
but has some physical or chemical affinity with the components of
the sample. The components with strong affinity will be retained
inside the column longer than those with less affinity. Therefore,
the different components of the sample will be washed out from
the column at different times. Finally, a detector device gives a re-
sponse dependent on some physical property of the components,
such as UV light transmission, index of refraction, electrical con-
ductivity, etc. The response of the detector, therefore, varies with
time as the different sample components emerge from the column.
The duration of a LC analysis, also known as a run, can be any-
where from a few minutes to a couple of hours or more, depending
on the type of sample.

The LC instrument provides data that varies with time. Most LC
detectors provide a single data point per unit time, resulting in a 2D
plot known as a chromatogram. Typically, the LC detector output
stays flat and changes only (normally increasing) when a sample
compound reaches it. This creates in the 2D plot what are known
as chromatographic peaks. Figure 4 shows an example of a LC
chromatogram from an Ultraviolet (UV) detector showing several
peaks with their amplitude in absorbance units (AU).

Figure 4: Example of a LC chromatogram.

Mass Spectrometry (MS), also known as Mass Spec, is a very
powerful analytical spectroscopic technique to determine the mass
of molecules [1, 10, 17]. A mass spectrometer has three major parts:
the ionization source, the analyzer, and the detector.



The sample is introduced in the ionization source, where the
molecules of the sample are fragmented and ionized. The analyzer
is a device that uses electrical or magnetic fields, or both, to ac-
celerate the ions and move them from the ionization source to the
detector. The electrical or magnetic fields are chosen such that most
of the ions hit the walls of the analyzer, and only those with a spe-
cific mass-to-charge ratio manage to reach the detector. Changing
the electric or magnetic fields continuously allows different ions to
reach the detector at different times, creating what is known as a
mass scan. A mass scan normally takes less than a second, and
covers a wide range of mass-to-charge ratios, typically from 50 to
2000 Atomic Mass Units (AMU) per charge. Another type of ana-
lyzer, known as Time of Flight (TOF), sets the electrical field such
that none of the ions hit the analyzer walls and all ions reach the
detector, although they do it at different times. Finally, the detector
gives an intensity response proportional to the number of ions that
reach it at any given time.

The mass spectrometer generates an array of data points of rel-
ative intensity that vary with mass (MS scan). An MS scan 2D
plot shows peaks just like a LC chromatogram, although the peaks
are sharper than those of a LC chromatogram and normally more
abundant. Figure 5 shows an example of an MS scan.

Figure 5: Example of an MS scan.

These two analytical techniques, LC and MS, are used indepen-
dently in many applications . However, they can also be combined
such that the output of the LC column (Figure 3) is sent to the ion-
ization source of the mass spectrometer. In other words, the mass
spectrometer becomes the LC detector. This is the hybrid tech-
nique known as LCMS. The data produced by an LCMS system is
a 3D surface plot with the three axes being time, mass-to-charge
ratio (the independent variables), and intensity (the dependent vari-
able). Considering that an MS scan may contain anywhere from a
few thousands to almost half a million data points, and that the LC
chromatogram may have from a few hundred data points to a few
thousand, it is easy to see that the LCMS technique creates a huge
amount of data.

An LCMS practitioner uses different methods to tackle this mas-
sive amount of data. For example, in virtually all LCMS datasets
there are areas of no interest. If the user knows something about
the sample being analyzed, he or she may focus on specific areas.
Another common approach is to process the data using numerical
methods on 2D subsets of the data, specifically on individual scans.
Normally, a scan produced at a particular time of the LC run is com-
pared with another scan containing known information. The other
scan may come from a library of known compounds, in which case
the user is looking for compound identification [1]. Alternatively,

the second scan may come from a different analysis by the user, in
which case he or she is looking for scan differences that may reveal
certain drug interactions on a subject.

4 SYSTEM OVERVIEW

Our intent is to display in 3D an entire LCMS dataset or sections
of it at any desired resolution. This visualization may be used as
a tool to gain insight into a sample analysis, which otherwise may
be difficult to grasp using traditional methods. The user should be
able to observe the 3D plot from far away to get a general view,
or zoom up to the full resolution of the data. One fundamental re-
quirement in this application is that the compression method used
to store the data in memory is lossless. Given the important and pre-
cise relation that exists between the coordinates of different peaks,
the data should be preserved without degradation. Also, since the
user may request these coordinates with a mouse click, their exact
value should be accessible.

The system uses a simple, efficient, lossless compression algo-
rithm to store an entire LCMS dataset in main memory. The user
has the option to use the raw data, or to reduce the data specifying
a fixed sampling interval along the mass axis. The data in main
memory is used to stream data into video memory for rendering.
To render the image, the system uses a LOD approach based on a
pyramid of nested rectangles (PlotMaps) centered about the view
frustum. The PlotMaps are stored as vertex buffers in video mem-
ory and are refilled with data from main memory as the viewpoint
moves. To allow small viewpoint movements without the need for
memory updates, each PlotMap has in video memory twice the size
of data required for rendering. When an update is necessary, we
use toroidal addressing [15] to update the PlotMap with the new
data only.

The system provides independent scale adjustments for each of
the three axes to help with the interpretation of the data. Improperly
set scales can alter the aspect ratio of the data enough to make it dif-
ficult, or even impossible, to see any relation between the peaks. We
use ordinary Phong shading and color the surface based on height.
The system also provides a picking mechanism to help the user
identify a peak by its coordinates (mass, time, intensity).

5 DATA FORMAT AND COMPRESSION

The raw LCMS data from a single analysis comes in different files
grouped in a directory. The instrument interleaves mass scans ob-
tained with different instrument conditions. Each file contains the
scans acquired under a particular instrument condition. Inside each
file, the scans are stored in time-ascending order. Each scan is
marked with the time of acquisition and consists of a sequence of
mass value and intensity value pairs sorted in ascending order of
mass value.

In a typical mass scan there are many mass values with associ-
ated zero intensity. None of these mass/intensity pairs are saved to
the file, except for those that are adjacent to a non-zero intensity
value. This lossless compression technique reduces the size of the
data file, but can be improved further. Our data structure to store
the LCMS data in main memory eliminates the remaining zero in-
tensity pairs. It also replaces the mass/intensity value pairs with
mass index/intensity value pairs. In a typical large LCMS file the
reduction in size with our method is about 35%.

Our mass scan configuration maps a mass index to an intensity
value. The intensities data structure is then made of an array of
these scans, one for each mass scan in the data. Figure 6 show a
diagram of the resulting data structure in main memory. The figure
shows a mass array with m elements of distinct mass values, a time
array with n elements, and n scans, one per element of the time



Figure 6: Data structure in main memory.

array. The number of elements for each scan is different (typically)
and it is smaller than m.

Given a time index t and a mass index m we get the time, mass,
and intensity values from the data structure as follows. We use
the time index t to read the time value from the time array and to
address one of the mass scans. We use the mass index m to read the
mass value from the mass array and to read the intensity value from
the addressed scan at the same m index. If index m is not present in
the scan, the intensity is zero.

We use this data structure to fill the PlotMaps with data of the
appropriate subsampling level. A distinct characteristic in this ap-
plication is that the data reduction may be different in the mass ver-
sus the time axis because the PlotMap resolution is different along
each axis. Since each PlotMap needs the data at a different power of
two resolution depending on its LOD level, we subsample the data
appropriately while filling the PlotMaps. However, we cannot use
straightforward subsampling because the high frequency of the data
would result in severe and unacceptable aliasing. Similarly, filtering
the data would produce visible intensity value (height) transitions
between PlotMaps. Instead, during subsampling we keep track of
the maximum intensity value of all raw data points and assign the
maximum intensity value found to the reduced sample. The time
and mass values are subsampled normally, though.

6 LEVEL-OF-DETAIL HIERARCHY

We use a LOD structure consisting of a pyramid of nested PlotMaps
at power of two resolutions, just like Losasso and Hoppe. Each
PlotMap represents a rectangular section of the data, not necessar-
ily square as in the case of geometry clipmaps. The tessellation
value is the number of data points (minus one) along each side of
the PlotMap rectangle, and it is normally different along each axis
(time and mass). In addition, the system has a maximum tessel-
lation value for each of the axes that will not be exceeded. An
important difference with Losasso and Hoppe is that the PlotMap
points are not evenly spaced as in the case of regular terrain grids.

When a new data file is read, the system examines the size of the
data and decides how many LOD levels are required to cover the
data with the LOD structure. In particular, it checks how many data
points there are across the mass axis and across the time axis, and
computes the mass and time tessellation values. The system then
defines a different number of LOD levels for the mass axis and for
the time axis.

For each axis, given the tessellation value, the number of LOD
levels are the number of levels necessary such that the highest reso-
lution PlotMap covers a section of the data at full resolution, each of
the next lower resolution PlotMaps covers a section of the data dou-
ble in size but at half the resolution than the previous PlotMap, and

the lowest resolution PlotMap covers the entire data. The tessella-
tion value along each axis, which remain the same for PlotMaps at
all levels, is chosen to be smaller than the defined maximum, and
is forced to be an even number so that the points at adjacent levels
align.

For example, assume that the maximum mass tessellation value
is 200 and the number of points across the mass axis for a particular
file is 50,000. We first compute the maximum even number under
200 that multiplied by a power of two results in the closest number
under 50,000. In this case, 194×28 = 49,664. The exponent is the
number of LOD levels minus one. Thus, the mass tessellation value
is 194 and the number of mass levels is 9. 49,664 is the number of
raw data points actually covered by the lowest resolution PlotMap,
194 is the number of points of the PlotMap across the mass axis,
and 28 = 256 is the number of consecutive raw data points we have
to read from the data structure to get to each of the subsampled 194
points. For the next higher level PlotMap results 194×27 = 24,832,
and similarly for higher level PlotMaps. The same method is used
for the time tessellation and number of time LOD levels.

Note that the lowest resolution PlotMap does not cover the entire
50,000 mass points. The number of points that are not covered is
always a small percentage of the data. This is generally not an issue
for LCMS data because the users set the instruments to acquire data
well before and after the region of interest. However, an alternate
tessellation method that overcomes this limitation involves choos-
ing a larger tessellation value such that the number of data points
covered is greater than the number of points in the file. The system
then displays zero intensity value for data points that are beyond the
data range. This method, however, requires more video memory as
each PlotMap is larger.

Given that typically there are more data points across the mass
axis than the time axis, there are almost always more mass LOD
levels than time LOD levels. The system creates as many PlotMaps
as the largest of the two LOD levels. Figure 7 shows an example
with nine PlotMaps that have nine mass LOD levels and four time
LOD levels. The correspondence between LOD level, mass axis

Figure 7: PlotMap LOD levels (method A).

LOD level, and time axis LOD level is shown using dashed lines
in the figure. To maintain the maximum time resolution in as many
PlotMaps as possible, time level zero is repeated for LOD levels
zero through five. These PlotMaps were generated from a data file
with 53,006 points in the mass axis, 322 points in the time axis, a
maximum mass tessellation of 400, and a maximum time tessella-
tion of 50. The computed tessellation was 206 in the mass axis and
40 in the time axis. In this example, the maximum time tessellation
was purposely set too low to force four time levels to illustrate the
level distribution.

Using a flat grid and different colors, Figure 8 shows a ver-
tical view of the data area covered by each PlotMap with this
method. The user-defined mass and time scalings (see Section 8)



Figure 8: PlotMaps LOD with resolution mismatch (method A).

were set to render PlotMap level zero (small green rectangle) ap-
proximately square. Figure 8 shows that this method creates an
exaggerated sampling mismatch between PlotMaps along the mass
axis. PlotMap levels zero though five have PlotMap level six (in
yellow) as neighbors along the horizontal (mass) axis. The differ-
ences in resolution are extremely noticeable during rendering.

Instead of repeating the highest resolution time level, we repeat
the lowest resolution (level three) to solve this problem (Figure 9).
Figure 10 shows a vertical view of the data area covered by each

Figure 9: PlotMap LOD levels (method B).

PlotMap with this method, but only PlotMaps zero through six are
shown in this case. Again, the mass and time user-defined scal-

Figure 10: PlotMaps LOD without mismatch (method B).

ings were set to render PlotMap level zero (in green) approximately
square. Note that all adjacent PlotMaps are only one LOD level
apart. The PlotMap data is stored in an array organized as rows
along the mass axis and columns along the time axis. The number
of columns is the mass tessellation value, and the number of rows
is the time tessellation value. The PlotMap data array is stored in
video memory using Vertex Buffer Objects (VBO) [9].

7 DATA STREAMING

We define three regions within each PlotMap: the memory area,
the draw area, and the hole area (Figure 11). The regions typically

Figure 11: PlotMap regions.

are rectangular. Their relative size in each direction is shown in the
figure. The draw area can be anywhere within the memory area,
and the hole area can be anywhere within the draw area.

The draw area is the region that is actually shown on the screen,
the hole area is the region occupied by the PlotMap of the next LOD
level, and the memory area is the region that the PlotMap keeps in
video memory (i.e., the entire PlotMap data). The memory area is
set to be twice the size of the draw area in each direction. This
allows the PlotMap to draw without delay if the draw area moves
slightly within the memory area. The hole area is by definition
half the size of the draw area in each direction, because adjacent
PlotMap levels vary by a factor of two.

The position of the PlotMap draw area within the entire data
moves with the view frustum. If the movement is small, the
PlotMap draw area moves within the memory area and the drawing
is immediate. However, if the draw area moves too close to or be-
yond the memory area border, the PlotMap moves its memory area
such that it becomes centered with the new draw area (Figure 12).

Figure 12: PlotMap memory area move.

To move the memory area, the PlotMap updates it with new data
from the data structure in main memory. However, the PlotMap
does not refill the memory area entirely; it only updates the new data
that is necessary. The PlotMap uses toroidal addressing to store the
data in the PlotMap data array, and a pair of toroidal offset indices
to keep track of where the memory area origin is within the array.

As stated earlier, the PlotMap data array is organized as rows
along the mass axis and columns along the time axis. When the
array is loaded for the first time, the rows are in time-sequential



order, each row is in mass-sequential order, the memory area origin
coincides with the array origin, and the toroidal offsets are zero.

Figure 13 shows an example of a PlotMap data array with a mass
tessellation of 200 and a time tessellation of 50 that has been up-
dated with new data. The figure shows a mass toroidal offset of

Figure 13: Updated state of a PlotMap data array.

three and a time toroidal offset of two. The memory area origin
(the shaded square) and the array origin do not coincide anymore.

To draw the data in the PlotMap draw area, we use triangle strips
parallel to the mass axis with one triangle strip per time value. To
avoid drawing the hole area, we partition the draw area in four sec-
tors and draws each one of them separately.

The PlotMap needs to locate the draw area data origin within
the PlotMap data array, and dereference the toroidal addressing.
Dereferencing the toroidal addressing along the time axis deter-
mines which triangle strip inside the array is going to be drawn,
and dereferencing the toroidal addressing in the mass axis deter-
mines where within the triangle strip the drawing should start.

We use different methods to dereference the time and the mass
axes. For the time axis, we add the toroidal time offset to the po-
sition of the triangle strip and apply the modulo operand to get the
actual position inside the data array. For the mass axis, we use the
indices that are used to draw the triangle strips. Normally the in-
dices need to be re-computed as the toroidal offset changes. We use
a simple approach to avoid this re-computation (Figure 14). The

Figure 14: Repeated triangle strip indices.

size of the array of indices is doubled and the same index sequence
is repeated. Now, instead of starting the indices from the beginning
of the array, we start at the location that corresponds to the toroidal
mass offset. The triangles from that point to the end of the strip are
produced by the indices in the first part of the array of indices, and
the rest of the triangles are produced by the indices in the second
part of the array of indices.

8 RENDERING

The system controls the LOD on every view frustum move and
communicates to each of the PlotMaps the location of the draw area,
the location of the hole area, if it should have a hole, and if it should
be visible. As mentioned earlier, each PlotMap is responsible for
the location of its memory area based on the requested draw area
and determines if it needs a memory update to honor the new draw
area request.

The lowest resolution PlotMap does not need memory updates
because by definition its draw area covers the entire data. The sec-
ond lowest resolution PlotMap does not need memory updates ei-
ther because its memory area covers the entire data. Recall that
the memory area is twice the size of the draw area in each direc-
tion. Consequently, the two lowest resolution PlotMaps are always
ready for immediate drawing.

The LOD pyramid is centered at the point of the view frustum
intersection with the mass-time plane that has the shortest distance
to the camera eye position. The width of the frustum intersection
at that point is used to determine which is the highest resolution
PlotMap that should be visible.

If a PlotMap determines that an update is necessary, it declares it-
self as unloaded and blocks drawing. The system uses a background
task to perform the updates. In the meantime, new drawing request
may be arriving. In this case, the system checks which PlotMaps are
available for drawing (not declared as unloaded) among those de-
clared as visible, and performs the drawing with them. At least we
know that the two lowest resolution PlotMaps are always available
for drawing. The background task performs the PlotMap updates
and triggers a re-draw after each PlotMap is updated. Because the
PlotMaps are processed from the lowest level upwards, this auto-
matically results in progressive refinement of the mesh.

The system translates and scales the entire 3D plot from object
space to world space such that it is enclosed in a unit-cube bounding
box. This transformations helps to handle the camera without hav-
ing to deal with the size of the data or the data aspect ratio in object
space. This default transformation, however, may distort the aspect
ratio of the data to a point where the user has difficulty recognizing
the features of the data that he or she is expecting. To solve this
issue, we allow the user to enter a custom scaling for each of the
three axes.

Each PlotMap uses a fragment program and pixel buffers to com-
pute the normals on every update and stores them in Pixel Buffer
Objects (PBO). Phong lighting is done per fragment for smoother
shading, and the lighting computations are done in world space
rather than in object space due to the strong scaling of the time
and mass axes. The color of each point in the 3D plot is a func-
tion of the intensity value at that point. This function is stored in a
1D texture that the fragment program uses in conjunction with the
lighting computations.

We provide the user with the ability to interactively pick the ob-
ject space coordinates of any point of the 3D plot on the screen. We
use the depth buffer and inverse transformations to compute these
coordinates.

9 RESULTS

For our tests we used a PC with a 3.4GHz Pentium IV CPU, 2
GB of main memory, and an NVIDIA 6800 Ultra 256MB graphics
card. We used different types of LCMS data at the extremes of the
typical size range. The small datasets have about 15 million points
with file sizes in the order of 1 MB, and the large datasets have
about 1 billion points with file sizes between 750 MB and 1.1 GB.

Our data compression method to store the data in main memory
reduces the data by 35% with respect to the file size. This reduction
varies, of course, with the data contents. Due to the overhead of



the mass and time arrays, the compression ratio becomes smaller
for smaller files and finally becomes negative for the smallest files.
We compared our compression method to the well known zip com-
pression algorithm. Table 1 summarizes the results. The results

Method Data Size Compress Decompress
Our 682.5 MB 3 min 35 sec 23 sec
Zip 497.7 MB 13 min 40 sec 1 min 14 sec

Table 1: Compression comparison. Original file size: 1,073.7 MB

show that zip compression is more effective but took much longer
time to compress and decompress, which is not acceptable for our
application.

Figures 1 (LCMS 0) and 15 (LCMS 1 through LCMS 4) show
sample views of different datasets. The window size was 640×480
in all cases. Table 2 lists the relevant parameters for each dataset.
The number of vertices reported is the actual number of distinct
vertices in the draw area of the currently visible PlotMaps that are
sent to the GPU.

The performance of our system varies between 4 and 130 fps.
On average we render about 55 million triangles per second. Be-
cause we are currently not doing frustum culling, the number of
processed vertices increases as the number of visible PlotMaps in-
creases. Therefore, the performance is in inverse proportion to the
size of the data and to the proximity of the view. Large datasets
need more PlotMap levels, and when the data is viewed close up all
PlotMaps may be visible. The size of the display window has only
a minor impact on the performance because we are doing lighting
computations in the fragment program.

The time to update each PlotMap from main memory is inversely
proportional to the PlotMap resolution. This is due to the fact that
all PlotMaps fill their data from the same data structure in main
memory, and lower resolution PlotMaps need to read proportionally
large areas of the data. The time to load the entire highest resolution
PlotMap for a pyramid with 8 levels with a mass tessellation of 414
and a time tessellation of 322 is 190 milliseconds.

10 CONCLUSIONS AND FUTURE WORK

We have presented an approach to interactively visualize LCMS
datasets in 3D using modern graphics hardware. The response from
a small group of LCMS practitioners has been very positive and en-
thusiastic. A user mentioned that the system is useful because he
was able to confirm the existence of small peaks that were predicted
by some numerical tool. Another user said that the system will be
very useful to detect sequences of peaks that are related by mass
and time simultaneously, which is difficult to see using 2D plots.
The detection of peak clusters near the noise level was mentioned
by another user as one of the advantages, especially since quanti-
tative peak information can be easily obtained using a click with
the mouse. Another user mentioned that he was surprised by the
density of the data and how he could appreciate the signal-to-noise
ratio of the data using the system.

There are two immediate enhancements that will increase the
rendering speed and overall responsiveness of the system. One is
view-frustum culling. With view-frustum culling, as implemented
by Losasso and Hoppe [15], the number of vertices sent to the GPU
is greatly reduced with a corresponding increase in performance.
The other improvement involves the data layout in main memory.
Instead of having just one data structure from which all LOD levels
fill their data, we could use one data structure per LOD level. This
will substantially improve memory updates, especially for the lower
resolution LOD levels.

T-junction removal is another opportunity for future work. De-
spite the fact that the irregular nature of the LCMS data is masking

this effect, it would be beneficial in certain cases. Another feature
desired by some users is the ability to instruct the system to go
to a particular point with given coordinates. This would be useful
to judge the relations between peaks that are quite distant to each
other. A minor enhancement is a peak information feature that pro-
vides quantitative peak apex data rather than information about the
clicked point location.

11 ACKNOWLEDGEMENTS

We would like to thank Marc Gorenstein and Chris Stumpf from
Waters Corporation for providing us with the LCMS data samples
and for their enthusiastic comments and Jennifer Roderick Pfister
for proofreading the paper.

REFERENCES

[1] R. E. Ardrey. Liquid Chromatography Mass Spectrometry: An Intro-
duction. John Wiley & Sons, West Sussex, England, 2003.

[2] A. Asirvatham and H. Hoppe. GPU Gems 2, chapter Terrain rendering
using GPU-based geometry clipmaps. Addison-Wesley, March 2005.

[3] A. Bogomjakov and C. Gotsman. Gpu-assisted z-field simplification.
In International Symposium on 3D Data Processing, Visualization and
Transmission, pages 673–679, 2004.

[4] P. Cignoni, E. Puppo, and R. Scopigno. Representation and visualiza-
tion of terrain surfaces at variable resolution. The Visual Computer,
13(5):199–217, 1997.

[5] D. Cohen-Or and Y. Levanoni. Temporal continuity of levels of detail
in delaunay triangulated terrain. In IEEE Visualization, pages 37–42,
1996.

[6] W. H. de Boer. Fast terrain rendering using geometrical mipmapping.
FlipCode, http://www.flipcode.com/articles/article geomipmaps.pdf,
2000. Cited March, 2005.

[7] M. Duchaineau, M. Wolinski, D. E. Sigeti, M. C. Miller, C. Aldrich,
and M. B. Mineev-Weinstein. Roaming terrain: Real-time, optimally
adapting meshes. In Visualization ’97, pages 81–88, October 1997.

[8] J. El-Sana and A. Varshney. Generalized view-dependent simplifica-
tion. In Eurographics, pages 83–94, 1999.

[9] R. Fernando. Using vertex buffer objects (VBOs).
http://developer.nvidia.com/. Cited March, 2005.

[10] P. Gates and P. Skelton. Cambridge university mass spectrometry
WWW server. http://www-methods.ch.cam.ac.uk/meth/ms/. Cited
August, 2005.

[11] H. Hoppe. Smooth view-dependent level-of-detail control and its ap-
plication to terrain rendering. In IEEE Visualization, pages 35–42,
1998.

[12] Waters Informatics. Masslynx mass spectrometry software.
http://www.watersinformatics.net/. Cited August, 2005.

[13] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and
G. Turner. Real-time, continuous level of detail rendering of height
fields. In ACM SIGGRAPH, pages 109–118, 1996.

[14] P. Lindstrom and V. Pascucci. Terrain simplification simplified:
A general framework for view-dependent out-of-core visualization.
IEEE TVCG, 8(3):239–254, 2002.

[15] F. Losasso and H. Hoppe. Geometry clipmaps: Terrain rendering us-
ing nested regular grids. ACM Transactions on Graphics, 24(3):769–
776, 2004.

[16] M. McGuire and P. G. Sibley. A heightfield on an isometric grid.
Poster presentation, SIGGRAPH 2004, July 2004.

[17] W. M. A. Niessen. Liquid Chromatography Mass Spectrometry. Mar-
cel Dekker, New York, 1999.

[18] R. P. W. Scott. Liquid Chromatography for the Analyst. Marcel
Dekker, New York, 1994.



Figure 15: 3D LCMS visualizations for datasets LCMS 1 through LCMS 4 (clockwise from upper left). Dataset LCMS 0 is shown in Figure 1.

Data File Size Data Points Tessellation LOD Vertices Avg. fps
Mass Time Mass Time Levels

LCMS 0 0.9 MB 52,993 322 414 322 8 134,045 134
LCMS 1 0.9 MB 51,713 322 404 322 8 327,037 62.5
LCMS 2 757.6 MB 355,329 2,669 694 1,334 10 5,798,901 5
LCMS 3 757.6 MB 354,305 2,669 346 1,334 11 2,895,276 14.5
LCMS 4 560 MB 355,329 1,567 694 1,567 10 8,445,640 3.5

Table 2: Performance comparison for various datasets. Numbers under mass and time are number of data points and tessellation, respectively.


