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Abstract

This paper describes an object-order real-time volume rendering
architecture using an adaptive resampling scheme to perform re-
sampling operations in a unified parallel-pipeline manner for both
parallel and perspective projections. Unlike parallel projections,
perspective projections require a variable resampling structure due
to diverging perspective rays. In order to address this issue, we pro-
pose an adaptive pipelined convolution block for resampling op-
erations using the level of resolution to keep the parallel-pipeline
structure regular. We also propose to use multi-resolution datasets
prepared for different levels of grid resolution to bound the con-
volution operations. The proposed convolution block is organized
using a systolic array structure, which works well with a distributed
skewed memory for conflict-free accesses of voxels. We present
the results of some experiments with our software simulators of the
proposed architecture and discuss about important technical issues.
CR Categories and Subject Descriptors:I.3.1 [Computer Graph-
ics]: Hardware Architecture - Graphics Processors; I.3.3 [Computer
Graphics]: Picture/Image Generation - Display Algorithms.
Additional Keywords: Volume Graphics, Volume Rendering,
Raycasting, Raytracing, Parallel Projection, Perspective Projection,
Scientific Visualization, Real-Time, Systolic Array.

1 INTRODUCTION

Volume visualization techniques are becoming available and popu-
lar. This is due to the increasing availability of scientific data gen-
erated by a variety of computer simulations, medical data obtained
by MRI and CT scanners, and geological, oceanographic, and me-
teorological data collected from various sensors, and also due to
the decreasing costs of high-performance computing required for
volume rendering.

One of the notable characteristics shared by these volume data
is the sheer amount of data elements to be processed in rendering.
This requires a huge amount of computing resources for animated
visualization, which is essential to observe some physical phenom-
ena. Another characteristic of the data is that they can not be repre-
sented by surfaces as in the conventional polygon-based graphics;
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the volume data may include complicated internal structures and
shapeless features. Because of these characteristics, fast direct vol-
ume rendering methods are in high demands.

The most popular volume rendering algorithm is the raycasting
algorithm, which casts rays from the center of projection into a vol-
ume, computes samples along the rays, and accumulates the sam-
pled values to determine the pixel values on the screen. In many
cases, each sample is computed from eight voxels surrounding the
sample point by linear interpolations. Each resampling operation is
relatively simple, but the total number of resampling operations is
very large, and the time spent for the operations is dominant in the
rendering time. Because of this, a raycasting-based volume render-
ing system could be considered a resampling machine.

The rendering operations for parallel projections are very reg-
ular and amenable to parallel-pipeline processing. The operations
for perspective projections, however, are variable due to diverging
perspective rays. This processing variability adversely affects the
parallel-pipeline structure for parallel projections and has been a
major obstacle for hardware implementation of a perspective pro-
jection system.

In this paper, we propose a real-time volume rendering archi-
tecture using an adaptive resampling scheme for both parallel and
perspective projections. The proposed architecture is structured as
a sample-parallelmachine to perform resampling operations in a
unified parallel-pipeline manner for both types of projections. The
processing variability issue is addressed by an adaptive pipelined
convolution block for resampling voxels using the level of grid res-
olution. The convolution area can be arbitrarily large because of
diverging perspective rays. Multi-resolution datasets are prepared
for different resolution levels to address this issue.

This paper is organized as follows; section 2 describes related
work, section 3 presents some issues for real-time perspective pro-
jections and the key ideas for the proposed architecture, section 4
shows a proposed hardware structure, section 5 presents some ex-
periments with the architecture simulator, section 6 describes future
work, and section 7 concludes the paper.

2 RELATED WORK

2.1 Rendering Methods

Rendering methods are categorized into two groups: image-order
and object-order. Each method has advantages and disadvantages
for structuring a real-time volume rendering architecture based on
some form of parallel processing.

The image-order method casts rays from a screen into a volume.
The number of rays to cast is determined by the screen size and res-
olution. The ray-parallel scheme parallelizes rendering operations
on a ray basis [4]. The major disadvantage of this scheme is that
one voxel is accessed by multiple rays for resampling, increasing
the total number of memory accesses. There are some optimiza-
tion techniques available for this scheme. Early ray termination
and coherence encoding are two examples to reduce the number of
memory accesses [6]. However, they require a variable resampling



structure, making the pipeline structure complicated.
The object-order method, on the other hand, maps a volume onto

a screen. The splatting scheme splats each voxel onto the screen
[9]. One of its major disadvantages is that filter kernels of different
sizes are required for perspective projections, The voxel-parallel
scheme reads a voxel once and retains it until all the samples re-
quiring the voxel are computed [8]. The major advantages of this
scheme are the reduction of the memory accesses and the fixed re-
sampling structure. The disadvantage is that there are no major
optimization techniques available for this scheme. The optimiza-
tion techniques for the ray-parallel scheme can not be used for this
object-order scheme, because they break the fixed resampling struc-
ture.

2.2 Shear-Warp Algorithm

The shear-warpalgorithm provides a unified framework for for-
mulating the rendering operations for both parallel and perspective
projections [5].

Given a viewing vector, the algorithm finds the principal view-
ing axis, the axis most parallel to the viewing vector, to permute a
volume so that the principal viewing axis be thez axis. Raycasting
is performed on the permuted volume. The resulting image is an in-
termediate image formed on the base plane, the plane perpendicular
to the viewing vector, which includes the front face of the volume.
It is warped to produce the final screen image.

Raycasting is effectively a shear operation that shears the voxel
grid of the volume to parallelize the rays at the base plane. The
parallelized rays are all perpendicular to the base plane. In parallel
projections, the rays proceed in the sheared voxel grid. In perspec-
tive projections, the rays proceed in the sheared and progressively
scaled voxel grid. The grid scaling depends on the distance be-
tween the center of projection and the resampling position in thez
direction; the grid becomes finer as thez position increases.

Each pixel in the base plane image is computed by compositing
the samples taken along the perspective ray starting at the pixel po-
sition on the base plane. A sample is estimated from the voxels
in its neighborhood. Because of the progressively scaled grid, the
samples along a perspective ray have to be computed from progres-
sively larger groups of voxels.

The shear-warp algorithm can be implemented by both software
and hardware. For hardware implementation, however, there are
several critical issues to be addressed, such as how to compute sam-
ples along perspective rays in the progressively scaled voxel grid
with a fixed amount of hardware resources and how to perform re-
sampling operations in a unified pipeline manner for both parallel
and perspective rays.

2.3 Specialized Hardware

The EM-Cube architecture [7] is a real-time volume rendering ar-
chitecture under development. It is derived from the Cube-4 archi-
tecture [8] with significant modifications and extensions for VLSI
implementation. The architecture is based on the shear-warp algo-
rithm, but supports parallel projections only. It is a voxel-parallel
architecture with the skewed voxel memory for conflict-free voxel
accesses. Each rendering pipeline computes a sample at each slice
of voxels; a slice is defined as a group of voxels with the samez
coordinates in the volume space permuted by the viewing vector. A
rendering pipeline computes samples for different rays at different
slices. The compositor accumulates samples for each ray and stores
the resulting pixels in the pixel memory to generate the base plane
image, which is warped to produce the final screen image.

The rendering operations are performed in a parallel-pipeline
structure with multiple rendering pipelines. The architecture com-
putes samples slice by slice. It is designed to exploit the geometri-
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Figure 1: Proposed sample-parallel architecture.

cal regularity in rendering operations for parallel projections; all the
samples at a slice have the same offsets from the reference points,
since all the rays are parallel and proceed from the points with the
same offsets from the reference points toward the same direction
with the same steps.

The architecture is well organized for parallel projections. It is,
however, not obvious to facilitate perspective projections in this ar-
chitecture, because the variable resampling structure for the per-
spective rays does not fit well in its parallel-pipeline structure.

The ray-slice-sweep algorithm is proposed for parallel and per-
spective projections in the Cube-4L architecture [1]. It is still under
investigation for improvements.

VIRIM is a real-time parallel rendering system for perspective
projections [2]. It uses a Gaussian filter mask to compute samples
from 8 � 8 � 8 neighboring voxels. The resampling operations
are performed in the rotator board and the resulting samples are
sent to the multi-DSP board for raytracing. It is a parallel system,
but not organized in a complete parallel-pipeline structure for VLSI
implementation.

3 PROPOSED ARCHITECTURE

3.1 Sample-Parallel Architecture

The EM-Cube architecture is a voxel-parallel architecture that pro-
vides continuous streams of voxels from the voxel memory and
feeds them to multiple rendering pipelines, each performing resam-
pling operations. Its parallel-pipeline structure is tuned for parallel
projections. The architecture’s basic assumption is that a sample
can always be computed from two neighboring voxels in one di-
mension, a notable characteristic of the parallel rays. This assump-
tion does not hold for perspective projections, because the number
of voxels required for resampling increases as the distance of the
resampling point from the center of projection increases. It is not
easy to include in the architecture the variable resampling structure
required for perspective projections.

In order to address this issue, we shift a focus from voxels to
samples and reorganize the rendering architecture as asample-
parallel architecture to provide a unified parallel-pipeline structure
for both parallel and perspective projections. As shown in Fig. 1,
the proposed architecture places a resampling module between the
voxel memory and rendering pipelines. This module is special-
ized for resampling with a variable number of voxels in the re-
sampling area. All the resampling functions are moved from the
rendering pipelines to this resampling module to organize the ren-
dering pipelines in a fixed parallel-pipeline structure for the other
rendering operations.
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Figure 2: Shearing and scaling in perspective projections.

Figure 3: Sheared and scaled grid of a163 dataset.

3.2 Perspective Projections

The shear-warp algorithm produces a base plane image as an inter-
mediate image, which is warped to produce the final screen image.
The warping operations are different from those for parallel projec-
tions due to diverging perspective rays. Fig. 2 shows the perspective
rays parallelized at the base plane by a shearing matrixH. They are
parallel to the principal viewing axis and perpendicular to the base
plane. The base plane image is produced by the parallelized per-
spective rays.

The shearing transformation shears and progressively scales the
voxel grid as shown in Fig. 3, where the voxel grid becomes finer
as the distance from the base plane increases. Starting from a posi-
tion in the first slice, a parallelized perspective ray proceeds in the
progressively scaled grid to compute a sample at each slice. The
computed samples are accumulated by a compositor to produce the
final pixel value in the base plane image. One of the simple re-
sampling operations is to average the values of the voxels in the
neighborhood of a sample point. A more general operation is con-
volution over the voxels in the resampling area.

There are two important issues for the pipeline implementation
of the convolver: convolution area and structure. The convolution
area is determined by the resolution of the scaled voxel grid at the
resampling point. The convolution area sizeW in one dimension is
computed by:

W = 1 + k=Z0; (1)

wherek is the slice number or the distance from the base plane and
Z0 the distance between the eye position (the center of projection)
and the base plane. The size of convolution area is equivalent to the
distance between the two neighboring perspective rays at slicek. It
can be arbitrarily large with large values ofk and/or small values of
Z0. This is illustrated in Fig. 4(a). Since the hardware implemen-
tation can only use a fixed amount of resources for convolution, it
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Figure 4: Convolution with multi-resolution datasets.

has to ignore the voxels outside the convolution area, producing a
low-quality or aliased base plane image.

The convolution structure is another issue. The underlining ar-
chitecture pairs a memory module and a rendering pipeline so that
each pipeline can take one voxel along with a neighboring voxel
through a sideway communication and produce one sample com-
puted from the two voxels in each dimension. In this structure,
the number of inputs (voxels) is equal to the number of outputs
(computed samples). This holds for parallel projections, but not for
perspective projections. Because of the progressively scaled grid,
the number of outputs is equal to or less than the number of inputs,
requiring a variable convolution structure, as illustrated in Fig. 4(b).

3.3 Multi-Resolution Datasets

The control of the variable convolution area is a critical issue for
the hardware implementation of the convolver. In order to address
the issue, we propose to usemulti-resolution datasetsprepared for
different levels of grid resolution. It is a 3D version of the mip-
mapping scheme for texture mapping [10]. As shown in Fig. 4(a),
a data in a multi-resolution dataset represents the area covered by
a certain number of original voxels. The covered area is larger in
a coarse dataset than in a finer dataset. The use of multi-resolution
datasets can reduce the number of data required for convolution. By
selecting an appropriate multi-resolution dataset depending on the
resolution of the scaled voxel grid, the architecture can always use
a bounded number of data for resampling regardless of the num-
ber of original voxels covering the same convolution area. It also
makes the pipeline convolver simple because the number of outputs
is equal to the number of inputs as shown in Fig. 4(b). Fig. 5 shows
the effect of using the multi-resolution datasets for the volume of
the same size in Fig. 3.

It is not necessary, but very practical, to use powers of 2 for
multi-resolution data, as illustrated in Fig. 6, where L0 is the finest,
and L3 the coarsest. The memory overhead to store multi-resolution
datasets for a volume of sizen3 is less thann3=7, which is not
considered a very large overhead.



Figure 5: Sheared and scaled grid with multi-resolution datasets.
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3.4 Skewed Memory

The skewed memory organization is a technique to store voxels in
separate memory modules so that voxels in a slice can be accessed
in parallel without any memory conflict regardless of the viewing
direction [3]. It does not require multiple volume copies. The pro-
posed architecture uses it to store multi-resolution datasets.

Consider a system withNp rendering pipelines for a volume of
sizen3. Since each pipeline is connected one-to-one to a memory
module, the number of memory modules is equal to the number of
pipelines. Let(x; y; z) be a position index set of a data. Then the
memory module numbernp and the memory module addressip for
the data are computed as follows:

m = (x+ y + z) mod n; (2)

np = mmodNp; (3)

ip = bm=Npc+ yn=Np + zn2=Np; (4)

wheren is a multiple ofNp. It guarantees that voxels in any slice
denoted by(�; y; z), (x; �; z), or (x; y; �) can be accessed in paral-
lel with no memory conflict.

For the multi-resolution skewed memory, a memory address is
specified by(L; x; y; z), whereL is the resolution level. Each
multi-resolution dataset can be stored in the skewed memory as if it
were an original volume dataset. Multi-resolution data are accessed
by the following addressing scheme:

m = (x0 + y0 + z0) mod n0; (5)

np = mmodNp; (6)

ip = bm=Npc+ y0n0=Np + z0n02=Np; (7)

where

K = 2L; x0 = b x
K
c; y0 = b y

K
c; z0 = b z

K
c; n0 = b n

K
c: (8)
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3.5 Convolution Area

The resolution level is an indicator of the convolution area size at
each slice in the progressively scaled voxel grid to choose an ap-
propriate multi-resolution dataset. The power-of-2-based resolution
level is defined by

L = b log2W c; (9)

whereW is the convolution area size in equation (1).
We use four 2D coordinate systems and transformations be-

tween them to determine the convolution area for a given resolu-
tion level. The four coordinate systems are the normalized, shear-
shrink, scale-up, and compositing coordinate systems, as illustrated
in Fig. 7. The normalized coordinate system defines the original
voxel grid at slice 0. It is equivalent to the base plane coordinate
system. The shear-shrink coordinate system defines the voxel grid
sheared and scaled by a shear-shrink matrix. The scale-up coordi-
nate system defines a grid scaled up by a scaling factorK. This
is the effect of using multi-resolution datasets; a dataset covering a
larger area effectively scales up the grid. The compositing coordi-
nate system defines a pixel grid which coincides with the original
voxel grid in the normalized coordinate system.

The sequence of transformations from the normalized coordinate
system to the compositing coordinate system entails the sequence
of grid changes. The procedure to determine the convolution area
is described as a sequence of transformations between the coordi-
nate systems as follows: 1) transform a grid point at(i; j; k) in the
normalized coordinate system into a grid point at(i�; j�; k�) by
the shear-shrink matrix; 2) scale up the grid point at(i�; j�; k�) us-
ing the scaling factorK to a grid point at(iy; jy; ky); and 3) apply
the floor operation to the grid position(iy; jy; ky) to get the final
position(̂i; ĵ; k̂). The scaling factorK is given in equation (8).

The multi-resolution datavyi;j;k for convolution are addressed by
(L; bi=Kc; bj=Kc; bk=Kc), as shown in equations (5)-(8). Note
that their geometrical positions are given by(iy; jy; ky).
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Figure 9: 2D convolution.

The grids in the scale-up and compositing coordinate systems are
shown in Fig. 8, whereLs andLc are the grid spacings in the scale-
up and compositing coordinate systems, respectively. Note thatLc

is equal to the original voxel spacing. Because of the power-of-2
multi-resolution datasets, the following condition holds:

Ls � Lc < 2Ls: (10)

3.6 Sample Estimation

Sample values are estimated by convolution over voxels or multi-
resolution data in the convolution area. We assume that the con-
volution kernel or the set of weights is symmetric for i, j, and k
directions and separable; that is,wijk = wiwjwk.

ConsiderM �M data for sample estimation. We apply a 1D
convolution toi and j directions independently, as illustrated in
Fig. 9. For simplicity, we assume thatM = 3. In 1D, a sample
valuesi can be computed by

si = w1v
y
i�1 + w2v

y
i + w3v

y
i+1; (11)

wherevyi�1, vyi , andvyi+1 are data in the convolution area andwm

are weight functions defined by

wm = wm (̂i� iym); form = 0; 1; 2 (12)

wherêi is the sample position andiym the data position.
The independent application of the 1D convolution toi and j

directions simplifies the 2D convolution structure. First, three 1D
convolutions in thei direction are computed:"

si;j�1
si;j
si;j+1

#
=

2
4 vyi�1;j�1 vyi;j�1 vyi+1;j�1

vyi�1;j vyi;j vyi+1;j
vyi�1;j+1 vyi;j+1 vyi+1;j+1

3
5
"
w1

w2

w3

#
:

(13)
Then a 1D convolution for thej direction is performed to compute
the final sample valuêsi;j :

ŝi;j = w4si;j�1 + w5si;j +w6si;j+1: (14)
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Figure 10: Pipelined 2D convolver.

The set of weights depends on the filter function chosen for con-
volution. Depending on the viewing direction, the distance between
sample positions varies from 1 to3

p
3 in both parallel and perspec-

tive projections. To make corrections for this variable distance, an
opacity table can be used to provide corrected opacity values by
using the distance as an address, as described in [5].

4 HARDWARE STRUCTURE

4.1 Pipelined 2D Convolver

Fig. 10 illustrates an implementation of a pipelined 2D convolution
for a 3 � 3 convolution area. The operations are divided into two
groups: one group for thei direction and the other for thej di-
rection. In this example, the dataset size in one dimension and the
number of pipelines are both 4.

Table 1 shows several snap shots of the pipeline operations of
the 1D convolution for thei-direction. In this example, one slice of
4 � 4 voxels is processed with the skewed memory organization.
The 1D convolution structure for thej direction is the same, but
has different time delays due to the different timings of neighboring
voxels in thej direction.

4.2 Convolution Kernels

The previous pipelined 2D convolver works fine for parallel pro-
jections. However, it does not work for perspective projections be-
cause of the misalignment of the position of the voxel group for
convolution with the position of the kernel center, as shown in
Fig. 11(a). Because of this misalignment, the convolver does not
produce the correct samples for perspective projections. Fig. 11(b)



Table 1: Snap shots of pipeline data flow.
Out Pipe 0 Pipe 1 Pipe 2 Pipe 3

Mem a0 b0 c0 d0

Mem d1 a1 b1 c1

W1 (a0; 0; 0) (b0; 0; 0) (c0; 0; 0) (d0; 0; 0)

Mem c2 d2 a2 b2

W1 (d1; 0; 0) (a1; 0; 0) (b1; 0; 0) (c1; 0; 0)

W2 (a0; b0; 0) (b0; c0; 0) (c0; d0; 0) (d0; a0; 0)

Mem b3 c3 d3 a3

W1 (c2; 0; 0) (d2; 0; 0) (a2; 0; 0) (b2; 0; 0)

W2 (d1; a1; 0) (a1; b1; 0) (b1; c1; 0) (c1; d1; 0)

W3 (a0; b0; c0) (b0; c0; d0) (c0; d0; a0) (d0; a0; b0)

Mem a4 b4 c4 d4

W1 (b3; 0; 0) (c3; 0; 0) (d3; 0; 0) (a3; 0; 0)

W2 (c2; d2; 0) (d2; a2; 0) (a2; b2; 0) (b2; c2; 0)

W3 (d1; a1; b1) (a1; b1; c1) (b1; c1; d1) (c1; d1; a1)

(p; q; r) = pW1 + qW2 + rW3

shows a pipelined convolver that produces correct samples. Table
2 also shows the two convolvers. In this example, 1D convolutions
over 3 voxels are performed for 4 pipelines.

In the worst case, the grid spacingLs in the scale-up coordinate
system is half the grid spacingLc in the compositing coordinate
system, when we use power-of-2 multi-resolution datasets. In this
case, the convolver takingN voxels produces onlyN=2 samples.

Given the kernel center position, which corresponds to the base
plane memory address, and the slice number, it is possible to com-
pute the positions of voxels in the convolution area in advance or on
the fly. The order of voxel reads cannot be controlled, but the po-
sition of the kernel center can be controlled by choosing one of the
voxel positions in the convolution area as the position of the kernel
center. For example, the leftmost voxel position can be the kernel
center position. Since each voxel position corresponds to a ren-
dering pipeline, the rendering pipeline corresponding to the kernel
center position receives a valid sample; the other pipelines receive
invalid samples. This is illustrated in Table 2. To control this situ-
ation, a valid/invalid flag is attached to each sample, indicating the
validity of the sample to the receiving pipeline. Invalid samples are
discarded at the composition stage.

Convolution centers are not necessarily aligned with the sam-
ple positions. It causes an error if a fixed set of weights is used.
This misalignment error can be corrected by computing convolu-
tion weights using a look-up table addressed by the offsets of sam-
ple positions.

4.3 Adaptive Pipelined Convolvers

Fig. 12 shows a block diagram of an adaptive 2D convolver. Letn
be the size of a dataset in one dimension, which is generally greater
than the number of pipelinesNp. The selector is controlled by the
status of pipeline 0, that is, whether or not the pipeline is process-
ing the leftmost voxel in the current group of voxels. The delay of
n=Np is used to delay the operation for the time for one scanline of
voxels. It is actually configured as a variable delay element for dif-
ferent resolution levels. For a given scaling factorK representing a
resolution level, this delay element causes a delay of(n=K)=Np.

Fig. 13 illustrates an adaptive 3D convolver. The structure is a
direct extension of the adaptive 2D convolver with the k-direction
1D convolver added at the output of the 2D convolver with a delay
of n2=Np. This delay element is also a variable delay element that
causes a delay of(n=K)2=Np for the scaling factorK.

The variable delay element can be implemented using a FIFO
memory addressed in a circular manner by a single pointer for both
read and write operations. The cycle time from one location to
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Figure 11: Voxel positions vs. kernel centers.

Table 2: Kernel centers and voxel groups.
Convolver 1 (naive) Convolver 2 (correct)

Kernel voxels kernel voxels
center center

1 v1; v2; v3 1 v1; v2; v3

2 v2; v3; v4 2 v2; v3; v4

3 v3; v4; v5 -
4 v4; v5; v6 3 v4; v5; v6

5 v5; v6; v7 -
6 v6; v7; v8 4 v6; v7; v8

7 v7; v8; v9 -
8 v8; v9; v10 5 v8; v9; v10

9 v9; v10; v11 -
10 v10; v11; v12 6 v10; v11; v12

11 v11; v12; v13 -
12 v12; v13; v14 7 v12; v13; v14

13 v13; v14; v15 -
14 v14; v15; v16 8 v14; v15; v16

15 v15; v16 -
16 v16 9 v15; v16

the same location determines the delay time, which can be easily
changed by changing the maximum address value.

4.4 Rendering Timings

The proposed rendering architecture is organized with the resam-
pling module consisting of the pipelined convolvers, the multi-
resolution skewed memory, the rendering pipelines, and the pixel
memory. Since the real-time processing capability of the proposed
architecture depends on its rendering performance, we estimate the
timings for rendering volumes of practical sizes. The rendering
time is directly related to the number of resampling operations to
perform, which can be reduced by the use of multi-resolution data.
It is upper-bounded by the total number of resampling operations
without multi-resolution datasets, that is, only with original voxels.

Since the resampling and other rendering operations can be fully
pipelined, the pipeline cycle time can be equal to the memory ac-
cess timeTm. For a given set of rendering parameters is chosen, ac-
cesses to the voxel memory are regular and deterministic. A double
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Figure 12: Adaptive pipelined 2D convolver.

buffering technique can be used to provide continuous data streams
from the voxel memory to the resampling module and rendering
pipelines. The pixel memory does not require much bandwidth on
average, because the pixel write operations are bursty but intermit-
tent. A simple pixel buffering technique with a FIFO memory will
be enough for pixel write operations. The voxel and pixel memo-
ries can be implemented by SDRAM (Synchronous DRAM) chips
to exploit their burst access mode.

Letn3,Np, andNf be the volume size, the number of rendering
pipelines, and the number of image frames generated per second.
The total number of samplesNs to compute in each pipeline for
one second is given by

Ns = n3Nf=Np: (15)

For each second,
NsTm � 1: (16)

For a given set of parametersTm, Nf , andNp, the maximum di-
mension of volume that can be rendered is given by

n � 3

p
Np=(NfTm): (17)

Assuming thatTm = 8 ns as in a 125-MHz SDRAM chip and
Nf = 30 frames/second, the volume dimensions computed for sev-
eral values ofNf andNp are shown in Table 3. These values verify
that the proposed architecture can render volumes of practical sizes
in real-time.

Voxel loading, rendering, and pixel reading can be pipelined us-
ing a double-buffering technique for the voxel and pixel memories.
This allows the proposed architecture to render time-varying vol-
ume datasets in real-time.

Table 3: Maximum volume dimensions.
Nf Np (# pipelines)

(frames/sec) 2 4 8 16 32 64
30 203 255 322 405 511 644
20 232 292 368 464 585 737
10 292 368 464 585 737 928
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Figure 13: Adaptive pipelined 3D convolver.

Multi-resolution datasets are generated before a volume dataset
is loaded into the voxel memory. They can be generated off-line by
software. The set of operations to compute a single data from eight
data at a lower level includes seven additions, one division (shift),
and eight memory reads, and one memory write;n2(n � 1)2=4
sets of operations are required for a volume ofn3. Although the
number of operations can be reduced by using some optimization
techniques, such as buffering and pipelining, it seems still difficult
to perform these operations on the fly with the current technologies.
It may be reasonable, however, to perform these operations using
several frame periods for practical applications.

4.5 Scalability

Adding rendering pipelines increases the volume size for a fixed
frame rate or the frame rate for a volume of fixed size. There are
no architectural problems in adding rendering pipelines, because 1)
in the voxel memory interface, each memory module in the voxel
memory is connected one-to-one to a pipeline in the resampling
module; 2) in the resampling module, the resampling pipelines
communicate only with the left and right pipelines; 3) in the inter-
face between the resampling module and rendering pipelines, each
rendering pipeline is connected to one resampling pipeline; 4) in
inter-pipeline communications, each pipeline communicates only
with the left and right pipelines; and 5) in the pixel memory inter-
face, the number of pixels to write is independent of the number of
pipelines. Therefore, the proposed architecture is scalable.



5 EXPERIMENTS

We built a software simulator to simulate the pipeline data flow of
the proposed architecture and verify the concept for both parallel
and perspective projections. To compare images, we also built a
screen-to-object raycasting renderer to simulate a texture mapping
method that computes slices of samples perpendicular to the view-
ing vector and accumulates them to produce the final image. We
conducted several rendering experiments with these simulators.

Fig. 14 shows a perspective image rendered from an opaque cube
of size643 to verify the perspective projection. The filter kernel
based on the2 � 2 � 2 Lagrange formula is used in resampling.

Figs. 15 and 16 show two perspective images rendered from an
opaque checker-board cube of size1283 (spatial frequency of 64
Hz) to explore the aliasing problem; a fully opaque dataset gives
the worst case for aliasing. The image in Fig. 15 is generated by
using the nearest neighbor voxel values in resampling, showing the
aliasing problem clearly. The image in Fig. 16 is generated by using
a3�3�3 box filter kernel in resampling, showing the antialiasing
effect by convolution using multi-resolution datasets.

Figs. 17, 18, and 19 show the images rendered from the engine
block of size2563 used in Lacroute’s rendering experiments [5]
with a manually adjusted opacity table. Fig. 17 shows a perspective-
projection image, and Fig. 18 shows a parallel-projection image for
a comparison purpose. These two images are generated by using a
kernel based on the3� 3� 3 Lagrange formula.

Fig. 19 is a perspective-projection image generated by the
screen-to-object raycasting renderer with interpolations using
multi-resolution datasets. The number of the slices taken for this
image is 258, about the same number of slices (256) used in Fig. 17.
The two images in Figs. 17 and 19 look comparable in quality.

6 FUTURE WORK

The proposed architecture provides a freedom for adjusting the con-
volution kernel. Choosing a convolution kernel for the best image
is a challenging problem. Especially, it is an important topic to find
the kernel to maximize the antialiasing effect.

The current architecture simulator computes samples only at in-
tegral slice positions. Subslicing, that is, taking samples between
integral slice positions, is expected to improve the image quality.
How much can the subslicing improve the image quality? What is
the limitation of subslicing?

Similarly, the image quality can be improved by additional sam-
pling in thex and y directions. Since the proposed architecture
casts a fixed number of rays, images generated by rays starting at
different offsets need to be blended. This is an interesting technique
worth exploring for the improvement of image quality.

Error analysis is an essential work for hardware implementation,
which is most likely to use fixed-point arithmetic. The application
of resampling by convolution to rendering a class of irregular vol-
umes is another topic for study.

7 CONCLUSION

We have proposed a real-time volume rendering architecture using
an adaptive resampling module for both parallel and perspective
projections. It is organized as a sample-parallel architecture with
a unified parallel-pipeline structure. The architecture can be eas-
ily organized in a systolic array structure for implementation on
an ASIC chip. The resampling module is the key feature of the
proposed architecture to address the processing variability problem
caused by the diverging perspective rays. It is placed between the
voxel memory and the rendering pipelines for resampling by con-
volutions over groups of data to make the parallel-pipeline structure

regular. The use of multi-resolution datasets is another key feature
to reduce the number of resampling operations. We have demon-
strated that it also contributes to antialiasing.

We have shown that pipelined 2D and 3D convolvers can be im-
plemented with2M and3M elements, respectively, by exploiting
the properties of the sheared and scaled grids. They are a contrast
toM2 andM3 elements required to implement general 2D and 3D
convolvers. We have also described the adaptive convolvers with
variable delays.
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Figure 14: Perspective projection with2� 2� 2 convolution.

Figure 15: Perspective projection by resampling the nearest neigh-
bor voxels.

Figure 16: Perspective projection with3� 3� 3 convolution.

Figure 17: Perspective projection with3� 3� 3 convolution.

Figure 18: Parallel projection with3� 3� 3 convolution.

Figure 19: Screen-to-Object perspective projection by interpola-
tions using multi-resolution datasets.


