
Hanspeter P�ster, Arie Kaufman, and Frank Wessels

State University of New York at Stony Brook

U.S.A. �

Abstract

In this paper we present our research e�orts towards a

scalable volume rendering architecture for the real-time

visualization of dynamically changing high-resolution

datasets. Using a linearly skewed memory interleav-

ing we were able to develop a parallel data
ow model

that leads to local, �xed-bandwidth interconnections be-

tween processing elements. This parallel data
ow model

di�ers from previous work in that it requires no global

communication of data except at the pixel level. Us-

ing this data
ow model we are developing Cube-4, an

architecture that is scalable to very high performances

and allows for modular and extensible hardware imple-

mentations.

1 Introduction

Volume visualization has become a key technology in
the interpretation of the large amounts of volumetric
data generated by acquisition devices such as biomedi-
cal scanners, by supercomputer simulations, or by syn-
thesizing (voxelizing) geometrical models using volume
graphics techniques [9, 11]. It encompasses an array of
techniques for extracting meaningful information from
the datasets and displaying it in a visual form. Of par-
ticular importance for the manipulation and display of
static and dynamic volumetric objects are the inter-
active change of projection and rendering parameters,
real-time display rates, and in many cases the possibil-
ity to view changes of a dynamic dataset over time, a
process that is often called 4D (spatial-temporal) visu-
alization.
Users in modern scienti�c, industrial, and medical

environments often have direct access to acquisition de-
vices for volumetric data, including CT, MRI, and ul-

�Department of Computer Science, State University of New

York at Stony Brook, StonyBrook, NY 11794{4400, U.S.A, email:

p�ster,ari,wessels@cs.sunysb.edu

trasound scanners and confocal microscopes. This war-
rants the development of stand-alone visualization sys-
tems that directly interface to these modalities. These
integrated acquisition-visualization systems will allow
their users to navigate around their 3D static data in
real-time, or to view their temporally changing 4D data
in real-time. Examples are the real-time visualization
of a moving fetus or a beating heart under an ultra-
sound probe, real-time analysis of an in-vivo specimen
under a confocal microscope, or the real-time study
of in-situ 
uid 
ow or crack formation in rocks under
Computed Microtomograph (CMT), which is under de-
velopment by a DOE project and estimated to deliver
400� 256� 256 samples at 15Hz.
The main goal of our research is to develop a special-

purpose real-time volume visualization architecture for
high-resolution datasets that will support 4D volume
visualization. We have set the following design objec-
tives based on what we believe to be important features
of a real-time volume rendering system:

Real-Time Frame Rates: To create the illusion of
smooth motion, the image must be updated a min-
imum of 24 times per second. The architectures
presented in this paper aim at achieving projection
rates of 30 frames per second.

4D Visualization: The architecture has to allow for
the real-time input of volumetric data without pre-
computations. The overall latency of the system
should be no more than one frame time.

High-Resolution Datasets: The architecture has to
be able to visualize dataset resolutions of 5123 vox-
els or higher in real-time.

Scalability: The design should be modular, and the
performance should ideally scale almost linearly in
the number of modules.

High Image Quality: The images must be of high
quality, including surface shading, depth cues, and

1



the provision of transparency. Special care has to
be taken to avoid image artifacts such as spatial or
temporal aliasing.

Flexibility: The algorithm and hardware should be

exible enough to allow for the interactive change
of parameters such as shading, data segmentation,
and projection modes.

As we will explain in Section 2, current general-purpose
systems fall short of achieving these goals. Our research
may yield two important contributions towards real-
time visualization systems for volume data. On the one
hand, we are conducting research towards the design
of add-on volume rendering accelerators for general-
purpose machines. The same way as the special require-
ments of traditional computer graphics led to the pro-
liferation of special-purpose graphics engines, primarily
for accelerating polygon rendering, volume visualiza-
tion lends itself to the development of special-purpose
volume rendering engines. On the other hand, we are
developing special-purpose volume rendering hardware
that can be embedded into modern acquisition devices.
This work may lead to the direct integration of volume
visualization hardware with acquisition devices, much
in the same way as fast signal processing hardware be-
came part of today's scanning devices.

2 Related Work

One way to try to meet the above design objectives
is to employ large-scale parallelism on general-purpose
supercomputers. Advantages of this approach are the

exible programming environment and the ability to
integrate the simulation and the visualization on the
same machine. However, the state-of-the-art in par-
allel volume rendering is in the range of one to (at
most) 10 frames per second of low-resolution datasets
[20, 16, 24, 26]. For interactivity, the image generation
latency (i.e., the time between the request and the re-
ceipt of the completed image) is more important than
the image generation frame rate. Since most volume
rendering algorithms require very little repeated com-
putation per voxel, data movement and interprocessor
communication account for a signi�cant portion of the
overall performance overhead. This greatly impacts the
latency, making current supercomputers inappropriate
for interactive use. Furthermore, supercomputers sel-
dom contain frame bu�ers and due to their high cost
are typically shared by many users. Each user is as-
signed only a partition of the machine, thereby further
inhibiting fast volume rendering rates. Most users have
access through network connections without interactive
data input and output rates.
A few researchers have implemented volume render-

ing algorithms on experimental special-purpose high-

performance graphics systems. A 1024-processor
Princeton Engine [3], a real-time video system simu-
lator, has achieved 30 frames per second for rotations
around the z-axis of 1283 datasets [23]. The Pixel-
Planes 5 multiprocessor graphics system is capable of
rendering 56� 128� 128 datasets at 20 frames per sec-
ond [19, 29, 25]. These machines were specially designed
for real-time video simulations or high-quality render-
ing of large polygonal scenes, respectively. They are
highly-parallel machines, where most of the hardware
resources are spent on video processing, polygon raster-
ization, and z-bu�er image composition [3, 4, 18]. This
high degree of specialization makes them unsuited for
direct volume rendering applications. High-resolution
datasets are unable to �t into the physical memory of
the machines, and their cost and size prevent integra-
tion into desktop or deskside systems.

A recently developed method on a deskside system
uses the texture-memory of a high-end four Raster Man-
ager RalityEngine Onyx with a 150 MHz R4400 to ren-
der unshaded images from a 64�512�512 dataset with
8-bit voxels in 0.1 sec [2]. This approach su�ers from
several limitations. The texture hardware does not sup-
port gradient estimation, and high-resolution datasets
or datasets with more than 8 bits per voxel do not �t
into the texture memory. The limited texture bu�er
bandwidth inhibits real-time input, and the required
texture hardware is large and expensive.

Several researchers have proposed special-purpose
volume rendering architectures [9, Chapter 6]. VOGUE
and VIRIM are more recent ray-casting architectures.
VOGUE [13], a modular add-on accelerator, is es-
timated to achieve 2.5 frames per second for 2563

datasets. VOGUE will require 64 boards and a 5.2
GB/sec ring-connected cubic network to achieve 20
frames per second of 5123 datasets. VIRIM [5], a pro-
grammable ray-casting engine, requires duplication of
data and 16 boards for rendering 128�256�256 datasets
at 10 frames per second.

In this paper we present our �rst steps towards Cube-
4, a scalable volume rendering architecture that meets
all of our design objectives. It will provide users with
real-time viewing from arbitrary parallel and perspec-
tive directions, control of rendering and projection pa-
rameters, and mechanisms for visualizing internal and
surface structures. Cube-4 is based on a data-parallel
algorithm for ray-casting of a volume bu�er of voxels
which is stored as a skewed distributed memory. The
architecture performs interpolation of sampled points
along rays, shading, and compositing of the sampled
points to generate the pixel values. We believe that
this approach will lead to the development of the �rst
scalable volume visualization architecture that will sup-
port real-time, high-quality, volume rendering of high-
resolution (for example 10243) volume data.

2



3 Ray-Casting in Real-Time

Ray-casting is the volume visualization algorithm un-
derlying our research e�orts. It is the most commonly
used volume rendering technique. It simulates optical
projections of light rays through the dataset (see [17]
for a description of the underlying optical models). In
a typical algorithm rays are cast from the viewpoint
through each pixel of the view-plane into the volume
data. At sample locations along each ray the data is
usually tri-linearly interpolated using values of eight
surrounding voxels. Central di�erences of voxels around
the sample point yield a gradient as a surface normal ap-
proximation. Using the gradient and the interpolated
sample value, a local shading model is applied and a
sample opacity is assigned. This opacity classi�cation
allows for interactive data segmentation without any
pre-computations. Samples along the ray are compos-
ited into pixel color values to produce an image [15].
However, the high computational cost of ray-casting

makes it di�cult for sequential implementations on
general-purpose computers to deliver the targeted level
of performance. This situation is aggravated by the
continuing trend towards higher and higher resolution
datasets. For example, to render a high-resolution
dataset of 10243 16-bit voxels at 30 Hz requires 2
GBytes of storage, a memory transfer rate of 60 GBytes
per second, and approximately 300 billion instructions
per second, assuming 10 instructions per voxel per pro-
jection.
The fastest single-chip processors currently available

compute approximately 300 million 
oating-point or in-
teger operations per second, and the fastest DRAM
memory systems have cycle times of approximately
70ns. The performance requirements for this modest
example, therefore, exceed by far the capabilities of
a single processor or single memory system. Conse-
quently, it is imperative to use parallelism, both in the
form of pipelining and unit replication, for a system
that tries to achieve real-time performance. The four
most compute-intensive parts of ray-casting are dataset
traversal, interpolation, gradient estimation and shad-
ing, and compositing. A high-performance ray-casting
engine must perform all of them in parallel.
To access the data in parallel requires a distributed

memory system. Cube-1, a �rst generation hardware
prototype, is based on a specially organized cubic frame
bu�er (CFB) [10], which has also been used in all sub-
sequent generations of the Cube architecture developed
at SUNY Stony Brook. It uses a simple linear memory
skewing, where a voxel with space coordinates (x; y; z)
is being mapped onto the k-th memory module by:

k = (x+ y + z) mod n 0 � k; x; y; z � n� 1:

This 3D skewed organization of the n3 voxel CFB en-
ables con
ict-free access to any beam (i.e., a ray par-

allel to a main axis) of n voxels. A fully operational
printed circuit board (PCB) implementation of Cube-1
is capable of generating orthographic projections of 163

datasets from a �nite number of predetermined direc-
tions in real-time. Cube-2 is a single-chip VLSI imple-
mentation of this prototype. An extension of the ortho-
graphic projection mechanism enables arbitrary parallel
projections at a predicted performance of 16 frames per
second for 5123 datasets [1].

One important problem that inhibits real-time ray-
casting is the very frequent and mostly random ac-
cesses to the volume memory. The same voxel has to be
fetched several times for each projection. The reasons
for these multiple accesses are twofold. First, it is the
non-uniform mapping of sample point onto voxels. Due
to either a small sampling step along a ray or a high
pixel density, multiple samples along the same ray or of
neighboring rays may map onto the same voxel. Second,
it is the overlap of voxel neighborhoods for tri-linear in-
terpolation and gradient estimation calculations, that
is, the same voxel may be involved in multiple calcu-
lations. This leads to multiple and redundant data ac-
cesses to the volume memory. In message passing com-
putation models it also leads to excessive interprocessor
communication.

In our previous work we have studied and developed
a template-based (lookup-table based) ray-casting ap-
proach for which there is a one-to-one mapping of sam-
ple locations onto voxels [28]. 26-connected discrete
rays are pre-generated from continuous rays using a 3D
variation of Bresenham's algorithm modi�ed for non-
integer endpoints [9]. This algorithm guarantees con-
stant stepping with a unit increment along the major
viewing direction. The stepping in the two non-major
directions is stored in lookup tables, so-called x- and
y-templates. This approach allows for e�cient projec-
tions onto the base-plane, which is the face of the vol-
ume memory that is most perpendicular to the view-
ing direction. The resulting distorted image on the
base-plane is then 2D warped onto the image plane.
Schr�oder and Stoll [23] and Lacroute and Levoy [14]
have used similar approaches on massively parallel ma-
chines and graphic workstations, respectively. These
implementations achieve interactive performances for
low-resolution datasets. However, they use a pre-
processing step and data duplication to calculate the
gradient �eld or to generate color and opacity volumes
and are thus unsuitable for high-resolution 4D visual-
ization.

Consequently, we extended our template-based ap-
proach to include new methods for tri-linear interpola-
tion and gradient estimation in order to access every
voxel exactly once per projection. In Cube-3, we intro-
duced a way to perform tri-linear interpolation using
the template-generated discrete voxel rays. Because of

3



the discrete steps along the rays, the voxel neighbor-
hood around each sample location may be non-cubic
or sheared. We avoid fetching any additional voxels
from the volume memory using sheared tri-linear inter-
polation [22]. Instead of specifying the sample location
with respect to a corner voxel of the interpolation neigh-
borhood, we factor the tri-linear interpolation into four
linear and one bi-linear interpolation using the possibly
sheared voxel neighborhood between rays. The interpo-
lation weights can be pre-computed and stored in the
x- and y-templates.

We conducted several experiments with the sheared
tri-linear interpolation method using a CT study of a
cadaver head of size 256 � 256 � 225 voxels at 8-bit
per voxel (dataset provided courtesy of North Carolina
Memorial Hospital). As error measure for the compar-
ison between the �nal images of traditional tri-linear
interpolation and sheared tri-linear we use the average
Euclidean distance of RGB values between correspond-
ing pixels. During a full rotation of the dataset the
average error in percentage stays below 0.3 %. (See [22]
for more detailed results).

We also developed new ways of gradient estima-
tion using interpolated samples from neighboring rays
above, below, and along the current ray. This so-called
ABC gradient estimation avoids any additional fetch-
ing of voxels from the volumetric dataset [22]. Tradi-
tional gradient estimation techniques compute a gray-
level gradient by taking local di�erences between voxel
values in all three dimensions at the original grid points
[7]. Tri-linear interpolation is used to obtain a gradient
at the sample location. In order to avoid these addi-
tional memory accesses to the dataset, we use central
di�erences between the tri-linearly interpolated sample
values on rays on the immediate left, right, above and
below, as well as the values along the current ray.

After we investigated several ABC gradient estima-
tion methods using 6, 10, or 26 samples of neighbor-
ing rays [22], we developed the following so called 12-
neighborhood gradient method. It allows to calculate
highly accurate gradients that are parallel to the pri-
mary axes of the volume memory. Figure 1 shows the
basic idea using a two-dimensional drawing. The lightly
shaded samples are interpolated using linear interpola-
tion of voxels from the current ray and the left and right
ray, respectively. This is indicated by dashed lines in
Figure 1. Whereas in 2D only two linear interpolations
are performed, we need two bi-linear interpolations in
3D, involving a total of 12 samples in the calculations.

For an analysis of the error due to di�erent ABC gra-
dient estimation techniques we used a dataset of a vox-
elized sphere. The sphere was scan-converted using the
volume sampling method described in [27]. The surface
intersection points during ray-casting are obtained by
thresholding, i.e., as soon as a certain sample value is

Vertical Base-Plane
(a) 12-neighborhood,

Horizontal Base-Plane
(b) 12-neighborhood,

Figure 1: 12-neighborhood Gradient.

exceeded we calculate the gradient at that point. Each
gradient is compared to the true geometric surface nor-
mal. As error measure we use the magnitude of angular
di�erence between the two vectors averaged over all sur-
face intersection points.

Figure 2 shows the results of rotating the sphere
around a vertical axis between 00 and 900 in steps of
50. During the rotation of the sphere the average error

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 E
rr

or
 M

ag
ni

tu
de

 (
D

eg
re

es
)

Degrees Rotation

Gradient Average Error

26-Grad
6-Grad

Zero Order
10-Grad
12-Grad

Figure 2: Average error magnitude of comparing di�er-
ent ABC gradient estimation schemes to the true ana-
lytic normal on a voxelized sphere.

for 12-neighborhood gradient estimation stayed below
30 when compared to the analytic normal. This error
is substantially lower than for other ABC gradient es-
timation techniques or for zero-order central di�erence
gradients.

Both the sheared tri-linear interpolation and the
ABC gradient estimation method do not require any
pre-computation, reduce the number of accesses to the
volume memory to one per voxel per projection, and
allow for e�cient hardware implementations [21, 6].

4



4 Parallel Ray-Casting

In order to attain the memory bandwidth required for
real-time ray-casting, we developed data parallel ver-
sions of the real-time algorithms presented so far. The
parallelism exploited by these algorithms is best de-
scribed as ray-parallel and beam-parallel. Figure 3 com-
pares the two approaches. In the ray-parallel approach,

b) Beam-Parallela) Ray-Parallel

Figure 3: Two di�erent approaches to parallel ray-
casting. Shaded voxels are processed simultaneously.
The dashed arrows indicate the direction the algorithm
proceeds in subsequent timesteps.

shown in Figure 3a, voxels and samples of a single ray
are processed simultaneously. Using a pipelined imple-
mentation a base-plane pixel is completed every iter-
ation. The Cube-3 architecture [21, 22] is a highly-
pipelined implementation of this ray-parallel approach.
Figure 4a gives an overview of the conceptual architec-
ture of Cube-3. It uses the same linear skewing of the
CFB as in Cube-1 and Cube-2. A high-speed global
communication network, the Fast Bus, aligns and dis-
tributes voxels from the CFB to tri-linear interpolation
units (TRILIN). Using coherency among neighboring
rays, special shading units (Shaders) estimate the gra-
dient at each sample location and assign color and opac-
ity to the samples. A circular cross-linked binary tree
of voxel combination units (VCUs) composites all sam-
ples into the �nal pixel color. Estimated performance
for arbitrary parallel and perspective projections is 30
frames per second for 5123 datasets.
The global communication network in Cube-3, how-

ever, limits its scalability. For each projection all
dataset voxels have to be transmitted over the Fast Bus.
The required bus bandwidth is high and increases with
O(n3), n being the dataset resolution. The interconnec-
tion of VCUs in a wrap-around binary tree fashion leads
to problems at chip and board boundaries for higher
resolution datasets. It has been our goal to address
these issues, mainly to simplify the datapath and con-
trol logic, decrease the machine size, and enhance the
scalability.
We developed a new data-parallel approach to ray-

casting shown in Figure 3b. Instead of processing in-

dividual rays it simultaneously manipulates a group of
rays. We call this approach beam-parallel, because the
beams intersected by the viewing rays of a base-plane
scanline are fetched consecutively in the direction of
the major viewing axis. The n pixels of a base-plane
scanline are completed after n steps, after which the
following scanline is processed.

The data is stored in a linearly skewed cubic frame
bu�er that allows for con
ict-free parallel access to any
beam of voxels. All rays corresponding to a scanline
on the base-plane reside inside a so called projection
ray plane (PRP). To generate the scanline pixels corre-
sponding to each PRP, we �rst fetch all voxels of a PRP
using the con
ict-free beam access mechanism. The
next step is to compute beams of interpolated contin-
uous ray samples using the voxels of four beams com-
ing from two adjacent PRPs. In order to be able to
fetch beams from both PRPs during the same timestep
we need to bu�er one of them, which can trivially be
accomplished by using a �rst-in-�rst-out (FIFO) bu�er
connected to the memory modules. After two timesteps
a total of four beams has been fetched from the memory
and FIFOs, and a beam of interpolated samples can be
computed.

The interpolated beams are forwarded to the gradi-
ent estimation units, where they are stored inside ABC
bu�ers. These ABC bu�ers can easily be implemented
using a similar FIFO bu�ering as for the PRPs. Since
the above samples come directly from the tri-linear in-
terpolation units we do not need to store them, but we
need only two FIFO bu�ers for the current and below
planes. To estimate the gradient around a given sample
location of the current bu�er we use samples along the
direction of the ray from the current bu�er, samples in-
side the current plane perpendicular to the direction of
the ray from neighboring gradient estimation units, and
samples from the above and below bu�ers. These sam-
ples are used for a 12-neighborhood grey-level gradient
estimation. Using a pipelined implementation of the
12-neighborhood gradient and n ABC gradient units in
parallel we can estimate n gradients around the n sam-
ple locations of the current bu�er at every timestep.

After the gradient estimation follows the shading of
the samples. With the gradient and the light vector de-
scription we produce n shaded samples of n continuous
rays per timestep. This assumes that we can perfectly
pipeline the shading calculations, which may be non-
trivial for higher order, e.g., Phong, shading models.
However, our simulations show very satisfactory results
using a simple di�use shading model. Other researchers
have proposed fully pipelined Phong shading architec-
tures [12].

In order to generate the �nal base-plane pixel values
corresponding to the current PRP, we perform alpha
blending or compositing using an opacity lookup table

5



CFB

Shader

CFB

TRILIN

Shader

TRILIN

VCU

VCU

CFB

Shader

TRILIN

CFB

TRILIN

VCU Compos

CFB

Shader Shader

Compos

CFB

TRILIN

Shader

Compos

TRILIN

To Host To Host

Pixel Bus

b)a)

Fast Bus

CFB = Cubic Frame Buffer TRILIN = Tri-Linear Interpolation Unit

Compos = Compositing UnitVCU = Voxel Combination Unit

Figure 4: The Cube-3 (a) and Cube-4 (b) conceptual architectures.

(transfer function) and the shaded sample value. We
use simple accumulating adders to perform the com-
positing, yielding n �nal base-plane pixel values every
n timesteps. Operations like �rst/last opaque, maxi-
mum or average projection can also be implemented in
the compositors. As a last step we have to transmit
the base-plane pixels to the host where the transforma-
tion and resampling onto the view-plane is performed.
Since in our example we get n base-plane pixels every n

timesteps we can easily transmit one pixel per timestep
to the host where they are bu�ered before the �nal 2D
warp.

Our next generation architecture, called Cube-4, is a
hardware implementation of this beam-parallel data
ow
model. In order to allow con
ict-free access to any
beam, Cube-4 uses the same skewed memory organi-
zation as the previous Cube architectures. Due to this
skewing the data is not directly forwarded to the nearest
neighbor processing element, but with localized, �xed-
bandwidth connections between memory, tri-linear in-
terpolation, shading and compositing units. This is
conceptually illustrated in Figure 4b. Instead of pro-
cessing individual rays, we manipulate groups of rays
in a beam-parallel fashion. As a result, the rendering
pipeline is directly connected to the memory. Accumu-
lating compositors replace the binary compositing tree.
A pixel-bus collects and aligns the pixel output from
the compositors.

Because only O(n2) pixels per projection are being
globally transferred, the Cube-4 architecture is scalable

to high dataset resolutions. Instead of global voxel com-
munication over a Fast Bus it uses a simple, easy to
implement pixel bus with only moderate bandwidth re-
quirements. The lack of global communication between
n parallel units at the same timestep allows for inexpen-
sive implementations and high packing densities. The
estimated performance and scalability of Cube-4 will be
discussed in further detail in the following section.

5 Performance Estimation

The �xed datapath connections and the simple control
make it easy to exploit parallelism and pipelining at
every stage of Cube-4. The performance is thereby
solely limited by the speed of the memory. Com-
mercial DRAMs typically have a random access fre-
quency of fd = 8:33 MHz (assuming 120 ns cycle time).
This allows for 30 projections per second with dataset
dimensions n � 512, using n o�-the-shelf standard
DRAMs. High-resolution implementations require the
higher memory access speeds delivered by synchronous
DRAMs (SDRAMs) or enhanced DRAMs (EDRAMs)
[8]. Currently, these high-speed memory devices achieve
an average access frequency of fd = 33 MHz, allowing
for 10243 implementations.

By clocking the DRAMs at their maximum frequency
fd it is possible to reduce the number of physical mem-
ory chips, each of them storing more of the data. As an
example, a 1283 machine using standard DRAMs with

6



p

64

32

16

8 16 32 64 128 256 512 1024

3 3

3

512

256

128

8 256 512

1024

f
Processing Frequency

Number of Units per Pipeline Stage 

Figure 5: Scalability curves for 30 projections per sec-
ond.

fd = 8:33 MHz requires only 8 physical memory chips
instead of 128 for the fully parallel version. Each of
the chips stores 16 times the data of the fully parallel
version.
In order to further reduce the hardware complexity,

we can increase the processing frequency and use fewer
processing units that operate on multiple data items
in a time-sliced fashion. Figure 5 shows the tradeo�
between the number of processing units per pipeline
stage, n

m
, and the processing frequency, fp, for three

dataset resolutions. Depending on available technol-
ogy it is possible to combine two or more stages of the
pipeline into one physical unit. It can be seen from
Figure 5 that 32 units per pipeline stage running at 128
MHz su�ce to implement a 5123 machine. Using fast
DRAMs such a design could be implemented using 128
memory chips, bringing it into the realm of VME board
sizes. Similarly, we can achieve EISA board implemen-
tations for 2563 datasets using 8 units per pipeline stage
running at 64 MHz and 16 fast DRAMs. Note that we
assume true real-time projection rates of 30 frames per
second.

6 Conclusions and Future Work

We have presented our design objectives and �rst steps
towards a special-purpose scalable architecture that
can deliver real-time high-quality ray casting of high-
resolution datasets. Using a novel data-parallel volume
rendering algorithm called beam-parallel ray-casting we
are able to avoid any global communication of voxels,
and only require a pixel-bus of moderate bandwidth.

The resulting Cube-4 architecture is scalable, modu-
lar in design, and has the potential of rendering high-
resolution datasets, such as 10243 16-bit voxels, at 30
frames per second. Using sheared tri-linear interpo-
lation and 12-neighborhood ABC gradient estimation
avoids any pre-computations and allows for 4D visual-
ization of dynamically changing data.
We will continue the development of e�cient algo-

rithms and scalable real-time architectures for volume
rendering. Our future research has two main compo-
nents. First, the further development and analysis of
beam-parallel ray-casting algorithms and the resulting
Cube-4 architecture. Second, the implementation of a
reduced resolution Cube-4 prototype to test our algo-
rithms and architectural studies.

References

[1]
An extended volume visual-

ization system for arbitrary parallel projection. In
Proceedings of the 1992 Eurographics Workshop on

Graphics Hardware (Cambridge, UK, Sept. 1992).

[2] Accel-
erated volume rendering and tomographic recon-
struction using texture mapping hardware. In In
1994 Workshop on Volume Visualization (Wash-
ington, DC, Oct. 1994), pp. 91{98.

[3]
The princeton engine: A real-

time video system simulator. IEEE Transactions

on Consumer Electronics 34, 2 (1988), 285{297.

[4]

Pixel-
Planes 5: A heterogeneous multiprocessor graphics
system using processor-enhanced memories. Com-

puter Graphics 23, No. 3 (July 1989), 79{88.

[5]

VIRIM: A massively parallel proces-
sor for real-time volume visualization in medicine.
In Proceedings of the 9th Eurographics Hardware

Workshop (Oslo, Norway, Sept. 1994), pp. 103{
108.

[6]

Three architectures for volume rendering. In To
appear in Proceedings of Eurographics '95 (Maas-
tricht, The Netherlands, Sept. 1995), European
Computer Graphics Association.

7



[7] Shading 3D-
images from CT using gray-level gradients. IEEE
Transactions on Medical Imaging MI-5, 1 (Mar.
1986), 45{47.

[8] Special report on high-speed DRAMs. IEEE Spec-

trum 29, 10 (Oct. 1992), 34{57.

[9] Volume Visualization. IEEE CS
Press Tutorial, Los Alamitos, CA, 1991.

[10] Memory
and processing architecture for 3D voxel-based im-
agery. IEEE Computer Graphics & Applications

8, 6 (Nov. 1988), 10{23. Also in Japanese, Nikkei
Computer Graphics, 3, No. 30, March 1989, pp.
148{160.

[11] Vol-
ume graphics. IEEE Computer 26, 7 (July 1993),
51{64.

[12] VERVE: Voxel engine for real-
time visualization and examination. In In Com-

puter Graphics Forum (Sept. 1993), vol. 12, No. 3,
pp. 37{48.

[13] A compact
volume rendering accelerator. In In 1994 Workshop

on Volume Visualization (Washington, DC, Oct.
1994), pp. 67{74.

[14] Fast volume ren-
dering using a shear-warp factorization of the view-
ing transform. Computer Graphics, Proceedings of

SIGGRAPH '94 (July 1994), 451{457.

[15] Display of surfaces from volume
data. IEEE Computer Graphics & Applications 8,
5 (May 1988), 29{37.

[16]
Parallel volume rendering using binary-swap

compositing. IEEE Computer Graphics & Appli-

cations 14, 4 (1994), 59{68.

[17] Optical models for direct volume ren-
dering. IEEE Transactions on Visualization and

Computer Graphics 1, 2 (June 1995), 99{108.

[18] Pix-
el
ow: High-speed rendering using image compo-
sition. Computer Graphics 26, 2 (July 1992), 231{
240.

[19] Interactive volume rendering on a
multicomputer. In 1992 Symposium on Interactive

3D Graphics (Cambridge, MA, Mar. 1992), ACM
Computer Graphics, pp. 87{93.

[20] Volume rendering
on scalable shared-memory MIMD architectures.
Workshop on Volume Visualization (Oct. 1992),
17{24.

[21]
Cube-3: A Real-Time Architecture for High-
Resolution Volume Visualization. In Volume Vi-

sualization Symp. Proc. (Wash., DC, Oct. 1994),
pp. 75{83.

[22]
Sheared interpolation and gradient estimation for
real-time volume rendering. In Proceedings of the

9th Eurographics Hardware Workshop (Oslo, Nor-
way, Sept. 1994), pp. 70{79.

[23] Data parallel vol-
ume rendering as line drawing. In In 1992 Work-

shop on Volume Visualization (Boston, MA, Oct.
1992), pp. 25{31.

[24] Par-
allel visualization algorithms: Performance and ar-
chitectural implications. IEEE Computer 27, 7
(1994), 45{55.

[25]

Interactive volume visualization on
a heterogeneous message-passing multicomputer.
In 1995 Symposium on Interactive 3D Graphics

(Monterey, CA, Apr. 1995), pp. 69{74.

[26]
Volume rendering on the MasPar MP-1. In In

1992 Workshop on Volume Visualization (Boston,
MA, Oct. 1992), pp. 3{8.

[27] Volume sampled
voxelization of geometric primitives. In In Pro-

ceedings of Visualization '93 (San Jos�e, CA, Oct.
1993), pp. 78{84.

[28] Template-based
volume viewing. Computer Graphics Forum, Pro-

ceedings Eurographics 11, 3 (Sept. 1992), 153{167.

[29]

Direct visualization of volume
data. IEEE Computer Graphics & Appl. 12, 4
(July 1992), 63{71.

8


