Biomedical Visualization

2017
Screenit: Visual Analysis of Cellular Screens
Dinkla K, Strobelt H, Genest B, Reiling S, Borowsky M, Pfister H. Screenit: Visual Analysis of Cellular Screens. IEEE Transactions on Visualization and Computer Graphics (InfoVis’16) 2017;PP(99):1-1.

High-throughput and high-content screening enables large scale, cost-effective experiments in which cell cultures are exposed to a wide spectrum of drugs. The resulting multivariate data sets have a large but shallow hierarchical structure. The deepest level of this structure describes cells in terms of numeric features that are derived from image data. The subsequent level describes enveloping cell cultures in terms of imposed experiment conditions (exposure to drugs). We present Screenit, a visual analysis approach designed in close collaboration with screening experts. Screenit enables the navigation and analysis of multivariate data at multiple hierarchy levels and at multiple levels of detail. Screenit integrates the interactive modeling of cell physical states (phenotypes) and the effects of drugs on cell cultures. In addition, quality control is enabled via the detection of anomalies that indicate low-quality data, while providing an interface that is designed to match workflows of screening experts. We demonstrate analyses for a real-world data set, CellMorph, with 6 million cells across 20,000 cell cultures.

2016
Vials: Visualizing Alternative Splicing of Genes
Strobelt H, Alsallakh B, Botros J, Peterson B, Borowsky M, Pfister H, Lex A. Vials: Visualizing Alternative Splicing of Genes. IEEE Transactions on Visualization and Computer Graphics 2016;22(1):399-408.

Alternative splicing is a process by which the same DNA sequence is used to assemble different proteins, called protein isoforms. Alternative splicing works by selectively omitting some of the coding regions (exons) typically associated with a gene. Detection of alternative splicing is difficult and uses a combination of advanced data acquisition methods and statistical inference. Knowledge about the abundance of isoforms is important for understanding both normal processes and diseases and to eventually improve treatment through targeted therapies. The data, however, is complex and current visualizations for isoforms are neither perceptually efficient nor scalable. To remedy this, we developed Vials, a novel visual analysis tool that enables analysts to explore the various datasets that scientists use to make judgments about isoforms: the abundance of reads associated with the coding regions of the gene, evidence for junctions, i.e., edges connecting the coding regions, and predictions of isoform frequencies. Vials is scalable as it allows for the simultaneous analysis of many samples in multiple groups. Our tool thus enables experts to (a) identify patterns of isoform abundance in groups of samples and (b) evaluate the quality of the data. We demonstrate the value of our tool in case studies using publicly available datasets.