
An Extended Volume Visualization System for

Arbitrary Parallel Projection

R. Bakalash, A. Kaufman, R. Pacheco, H. P�ster

ABSTRACT We present a special architecture for arbitrary parallel projection for visualiza-
tion of volumetric data. Using a ray-casting technique, parallel memory access, and pipelined
processing of rays in a composition tree, we can achieve interactive rendering rates for a 5123

dataset.

1.1 The Cube Architecture

Cube is a special-purpose computer architecture for volume visualization [1]. The heart of
the architecture is a Cubic Frame Bu�er (CFB), which is a large (e.g., 128M voxels for a 5123

CFB) three-dimensional memory of voxels. The voxel is a quantum unit of volume, which
has a value representing some measurable properties of the real object or phenomenon, such
as the color, 
uorescent level, material, and translucency ratio.

Cube's processing speed is achieved by handling beams of voxels rather than single
voxels. In order to access a full beam of voxels simultaneously, a 3D modular organization
of the CFB has been designed [1]. The special 3D skewed organization of the CFB enables
con
ict-free access to a full beam (axial ray) of n voxels, in any orthographic direction.

The 3D Viewing Processor (VP3) [2] generates 2D shaded orthographic projections of
the CFB images. It casts rays into the CFB in the speci�ed viewing direction, utilizes the
CFB parallel memory organization for con
ict-free retrieval of a beam and then determines
the pixel projection along that beam. It employs a sequence of n processing units which
team up to generate the projection along a beam of n voxels in O(log n) time for a CFB
of n3 voxels. Consequently, the time necessary to generate an orthographic projection of n2

pixels is only O(n2log n), rather than the conventional O(n3) time. The VP3 also shades
the projected pixels concurrently with the projection stage by employing the depth-gradient
congradient shading technique [3].

Arbitrary parallel projections are currently created by �rst rotating the scene and then
viewing it through a principal orthographic direction. However, the CFB image is distorted
every time a rotation is executed. A major goal of the extended Cube architecture project,
presented in this paper, is to develop and prototype an alternative mechanism for parallel
viewing that supports real-time arbitrary viewing.



2

1.2 The Extended Cube Architecture

The new architecture described here is an extension of the existing orthographic projection
mechanism of Cube. It enables arbitrary parallel projection in the same time complexity
as orthographic projection, O(n2log n). Perspective projection can also be generated in a
similar fashion [4], but requires a more complex architecture.

A projection ray, originating at a pixel in the projection plane and cast through the
CFB in an arbitrary direction, is the basic unit of projected data. Two processing stages
are concerned with this data: �rst there is a need to retrieve the data from the CFB, and
then to obtain the projection along the ray. In the original Cube architecture, where only
orthographic viewing is supported, projection rays always coincide with orthographic beams
and are fetched and processed by the beam projection mechanism. However, for arbitrary
viewing there is no direct way to fetch arbitrary discrete rays from the CFB in parallel. The
set of projection rays belonging to the same scan line of the projected 2D frame-bu�er form
a slanted plane, termed the Projection Ray Plane (PRP). For every parallel projection, all
the PRPs can be made parallel to one major axis by �xing a degree of freedom in specifying
the projection parameters, namely, by rotating the projection plane about the viewing axis.
A whole PRP of beams (now parallel to an axis) is fetched in n memory cycles and stored
in a 2D temporary bu�er called the 2D Skewed Bu�er (2DSB).

The direction of the viewing ray within the original PRP depends on the observer's
viewing direction. When a PRP is copied from the CFB to the 2DSB, it undergoes a 2D
shearing to align all the viewing rays into beams along a direction parallel to a 2D axis (e.g.,
vertical). This step is a de-skewing step that is accomplished by a barrel shifting mechanism
(see below). Once the viewing rays are aligned vertically within the 2D memory, they can
be individually fetched and treated by the ray projection mechanism.

This imposes a basic structural condition on the 2D memory. It should be capable of
parallel access for storing \horizontal" beams coming from the PRP, and for parallel retrieval
of \vertical" viewing rays. The structure chosen for the 2D memory is a 2D Skewed Bu�er
(2DSB), described below.

The retrieved \vertical" rays must pass through another de-skewing process on their
way to the ray projection mechanism in order to match the physical sequential order of the
modules in the projection mechanism. The latter is a Ray Projection Tree (RPT), which is a
hardware mechanism structured as a hierarchical pipeline, capable of implementing a variety
of projection functions (see below).

The communication mechanism that bridges between the CFB and the 2DSB, and be-
tween the 2DSB and RPT and performs the de-skewing steps, is a unique beam-based barrel-
shifting mechanism, termed the Conveyor [6], and is described below.

Fig. 1.1 illustrates the general architecture of the extended system for arbitrary parallel
viewing comprising of the Cubic Frame Bu�er (CFB), the 2D Skewed Bu�er (2DSB), the
Ray Processing Tree (RPT), and two Conveyors for ray de-skewing.

1.3 The 2D Skewed Bu�er

The 2DSB used for storing the slanted PRP is divided into n modules and is skewed di-
agonally such that any module appears exactly once in every row and every column. This



3

PRT2DSB
Conveyor B

Conveyor A

CFB

slanted PRP

Fig. 1.1. Block diagram of the arbitrary parallel viewing architecture



4

enables parallel access of any row or column of voxel data without memory bus contention
(see Fig. 1.2 ). the Module k containing the voxel located in column i and row j of the 2DSB
is computed as k = (i + j)modn. The slanted PRP is loaded into the 2DSB one beam at
a time, from the closest beam to the furthest. Each beam is shifted to the left or to the
right within the 2DSB in order to align the viewing rays vertically. Since there may be 2n-1
parallel viewing rays entering the slanted PRP (one for each voxel on the visible edges of
the slanted PRP), the 2D memory must be at least 2n-1 columns wide. Once the slanted
PRP has been loaded onto the 2DSB one \horizontal" beam at a time, each vertical ray is
retrieved in turn, and transferred into the RPT for processing. The rays are shifted as they
are transferred into the RPT in order to ensure that the closest voxel in the ray appears at
the desired position in the RPT. The voxels in each ray are processed in parallel to compute

beams
orthogonal

 ray 

CFB

viewing

slanted PRP

viewing
 ray 

2D Skewed Buffer

Fig. 1.2. Transfer of the projection ray plane to 2D skewed bu�er

a pixel value to be displayed for that ray. Certain algorithms require that the values of the
entire neighborhood of up to 26 voxels surrounding a central voxel be used in computing the
pixel value. This requires information from slanted PRPs just above and just below the plane
containing the ray currently being processed. This is accomplished by using multiple parallel
2DSBs and processing rays in a plane only after the succeeding and preceeding slanted PRPs
have been loaded. By using a special skewing scheme, it is also possible to achieve con
ict
free retrieval of the entire 27 connected neighborhood of voxels [7]. The central voxel and its
26 voxel neighborhood may then be extracted and transferred to the RPT for processing in
parallel. Including a fourth plane in the 2DSB allows the concurrent projection of rays and
loading of the next slanted PRP. While three of the planes are used for extracting a 27 voxel



5

cube, the fourth plane is loaded with the next slanted PRP. This conforms to the desired
pipelining scheme.

1.4 The Ray Projection Tree (RPT)

The RPT recieves a set of n voxels as input at the leaves which form a viewing ray and
produces the �nal color for the corresponding pixel at the root. The RPT is a hierarchical
binary tree of n-1 primitive computation nodes called Voxel Combination Units (VCU) (see
Fig. 1.3). Each VCU accepts two voxel values as input and combines them into an output
voxel value in � time units. The n input voxels comprising a ray are fed into n/2 VCUs that
produce n/2 results after � time units. These results are fed into the next stage of the tree
(containing n/4 VCUs) while at the same time the next ray of n voxels is fed into the �rst
stage. After a short period of initialization time (� log n time units), the tree is processing
log n rays simultaneously in a pipeline fashion, producing a new pixel color every � time
units.

Pixel Value

Voxel Beam

Fig. 1.3. Ray Projection Tree organization

Each VCU is capable of combining its two input voxels in a variety of schemes in order
to implement �rst or last opaque projection, maximum or minimum voxel value, weighted
summation, and compositing projection [9].



6

1.5 The Conveyor

The Conveyor is a modular barrel-shifting mechanism based on a special 
ow-through net-
work that interconnects the n modules [6]. Its basic component is a modular barrel-switch
unit which is serving s pairs of input and output clients receiving from each input, a single
bit of data (s bits in total), barrel-shifting it onward, and storing it in the output client.
Every two neighbors of the m = n/s switch units are linked by an s-bit communication
path. A general width of w bits of data requires w duplicates of the Conveyor. This layout
provides modularity and 
exibility of the entire network. The network is extendible in its
overall length, by serially connecting arbitrary numbers of switch units, and in data width,
by stacking up any number of Conveyors, one layer per data bit [5].

A method of combining the two conveyors, Conveyor A and Conveyor B, into one physical
conveyor is being used to conserve resources and optimize pipelined operation. We are able
to �t the two into one conveyor chip without compromising system parallelization. This is
done by interleaving the use of the shift lines and sharing the data I/O lines. The output of
each conveyor is connected to the input of the other. This allows data to be loaded into or
read from both conveyors at the same time. The double conveyor is also designed to allow
the reading and writing of new data without interfering with data already in the shifting
mechanism. This is useful for minimizing the time of the pipeline stages by overlapping
memory access and shifting times. This feature greatly increases the speed of the the system
by contracting the pipeline segments. Cycle interleaving allows the use of multiplexed shift
lines to reduce the number of interconnect lines needed for implementation with little e�ect
on the overall shift cycle time.

1.6 Practical Limitations

A system constructed for a cube space of 5123 requires 512 parallel processing units with
512 memory modules each using a 16 bit data bus and a 19 bit address bus as well as control
lines. This amounts to an order of 18,000 lines of information operating in parallel. This is
clearly a serious consideration for implementation. Another size consideration is the amount
of intermodule communication required by the system. Each conveyor is connected to its
neighboring equivalent by 256 lines (16 bits x 16 shift places). A third consideration involves
the connection of the conveyors to the modules' data lines. The modules' data lines are
grouped by module and the conveyor data lines are grouped by bit position. This presents
routing considerations. One more consideration involving physical dimension is the number
of chips needed to implement the system. The memory modules alone may require as many
as 1,024 chips. Implementation of the system includes the use of custom ASICs as well as
programmable gate arrays such as Xilinx [8]. The amount of board space necessary to contain
such a system is of serious concern as well as the inter-board communication tra�c.

1.7 Acknowledgments

This project has been supported by the National Science Foundation under grant MIP-
8805130 and a grant from Hewlett Packard.



7

1.8 References

[1] Kaufman, A., and Bakalash, R., \Memory and Processing Architecture for 3D Voxel-Based Imagery",
IEEE Computer Graphics and Applications, 8, 6, November 1988, 10-23.

[2] Kaufman, A., Bakalash, R., and Cohen, D., \Viewing and Rendering Processor for a Volume Visu-
alization System", in Advances in Graphics Hardware IV, R. L. Grimsdale and W. Strasser, (eds.),
Springer-Verlag, Berlin, 1991, 171-178.

[3] Cohen, D., Kaufman, A., Bakalash, R. and Bergman, S., \Real-Time Discrete Shading", The Visual

Computer, 6, 1 (February 1990), 16-27.

[4] Kaufman, A. and Shimony, E., \Arbitrary Parallel and Perspective Projection Architecture for Voxel
Images", Technical Report 89/21, Computer Science, Stony Brook, 1989.

[5] Bakalash, R. and Xu, Z., \Barrel Shift Microsystem for Parallel Processing", Proc. Micro 23, 23rd

Symposium and Workshop on Microprogramming and Microarchitecture, Orlando, Florida, November
1990.

[6] Cohen, D. and Bakalash, R., \The Conveyor - an Interconnection Device for Parallel Volumetric Trans-
formations", 6th EG Workshop on Graphics Hardware, Vienna, Austria, September 1991.

[7] Chor, B., Leiserson, C. E., and Rivest, R. L., \An application of number theory to the organization
of raster-graphics memory", Conf. Rec. 23rd Annual IEEE Symp. Foundations of Computer Science,
Chicago, 1982, 92-99.

[8] Xilinx, Inc., The Programmable Gate Array Data Book, 1989.

[9] Levoy, M., \Display of Surfaces from Volume Data", it IEEE Computer Graphics and Applications, 8,
5, May 1988, 29-37.


