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Abstract 

This paper describes a high-performance special-purpose 
system, Cube-J, for displaying and manipulating high- 
resolution volumetric’datasets in real-time. A primary 
goal of Cube-3 is to render 512’, 16-bit per vozel, 
datasets at about 30 frames per second. Cube-3 imple- 
ments a ray-casting algorithm in a highly-pamllel and 
pipelined architecture, using a 30 skewed volume mem- 
ory, a modular fast bus, 2D skewed buffers, 30 inter- 
polation and shading units, and a ray projection cone. 
Cube-3 will allow users to interactively visualize and 
investigate in real-time static (90) and dynamic (40) 
high-resolution volumetric datasets. 

1. Introduction 
A volumetric dataset is typically represented as a 

3D regular grid of voxels (volume elements) represent- 
ing some uniform or piecewise property of an object or 
phenomenon. This 3D dataset is commonly stored in a 
regular cubic frame buffer (CFB), which is a large 3D 
array of voxels (e.g., 128M voxels for a 5123 dataset) 
and is displayed on a raster screen using a direct vol- 
ume rendering technique (see e.g., [14, 91). Alterna- 
tively, the dataset may be represented as a sequence of 
cross-sections or 8s an irregular grid. 

Applications of volume visualization include sam- 
pled, simulated, and modeled datasets in confocal mi- 
croscopy, astro- and geophysical measurements, molec- 
ular structures, finite element models, computational 
fluid dynamics, and 3D reconstructed medical data, to 
name just a few (see [9] Chapter 7). As with other dis- 
play methods of 3D objects, the provision of real-time 
data manipulation rates, typically defined to be more 
than 10 and preferably 30 frames per second, is essential 
for the investigation of 3D static datasets. Furthermore, 
in many dynamic applications, 4D (spatial-temporal) 
real-time visualization is a necessary component of an 
integrated acquisition-visualization system. Examples 

Authors’ Address: Department of Computer Science, State Univer- 

sity of New York at Stony Brook, Stony Brook, NY 11794-4400 

emsil pflsterBcs.sunyrb.edu,ariQlcs.sunysb.edu,chiuehOc~.auny~b.edu 

o-e113~7oe7+95 ~4.00 o 1~9~ IEEE 

are the real-time analysis of an in-vivo specimen under 
a confocal microscope or the real-time study of in-situ 
fluid flow or crack formation in rocks under Computed 
Microtomography (CMT). 

High-bandwidth memory access and high arithmetic 
performance are key elements of real-time volume ren- 
dering and can be met by exploiting parallelism among 
a set of dedicated processors [5, 16, 15, lo] [9, Chapter 
61. Sub-second rendering times for a 1283 dataset have 
been reported by Schriider and Stoll on a Princeton En- 
gine of 1024 processors [18] and by VCzina et al. on a 
16k-PE MasPar MP-1 computer [22]. For higher reso- 
lution datasets, however, the number of processors and 
their interconnection bandwidths must increase, placing 
hard-to-meet requirements on existing general-purpose 
workstations or supercomputers. 

The main objective of the Cube-3 architecture is to 
develop a special-purpose real-time volume visualiza- 
tion system for high-resolution 5123 Is-bit per voxel 
datasets that achieves frame rates over 20 Hz. This 
rendering performance is orders of magnitude higher 
than that of previously reported systems, while requir- 
ing only moderate hardware complexity. Furthermore, 
Cube-3 allows interactive control over a wide variety of 
rendering and segmentation parameters. The availabil- 
ity of such a system will revolutionize the way scientists 
and engineers conduct their studies. 

2. System Overview 
Figure 1 shows the overall organization of two real- 

time volume visualization environments. The host com- 
puter controls the entire environment and runs non 
time-critical parts of the Cube-3 software. It also con- 
tains a frame buffer for the final image display on a color 
monitor. The acquisition device is a sampling device 
such as a confocal microscope, microtomograph, ultra- 
sound, MRI, or CT scanner. Alternatively, the acqui- 
sition device is a computer running either a simulation 
model (e.g., computational fluid dynamics) or synthe- 
sizing (voxelizing) a voxel-based geometric model from 
a display list (e.g., CAD). The sampled, simulated, or 

modeled dataset is either a sequence of cross sections, a 
regular 3D reconstructed volume, or an irregular data 
that has been converted into a regular volume. All these 
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formats can be maintained and archived by the filing 
module of the host software. 
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Figure 1: Real-Time Volume Visualization Systems. 

Figure 1 (a) shows an environment in which the ac- 
quisition and reconstruction are performed in several 
seconds to several minutes on the acquisition device, 
while the visualization and manipulation are running 
on Cube-3 in real-time. Such a system fulfills thee needs 
for static visualiration, where the nature of the acquired 
data is static and Cube-3 allows for interactive control 
of viewing parameters, clipping planes, shading param- 
eters, and data segmentation. Figure 1 (b) shows, the ul- 
timate environment, in which Cube-3 is tightly-coupled 
with the real-time acquisition device to create an inte- 
grated acquisition-visualization system that would al- 
low the real-time 4D (spatial-temporal) visualization of 
dynamic systems. The need for this dynamic visualira- 

tion clearly will arise, since the data rates of emerging 
acquisition devices such as microtomographs will reach 
several complete 3D high-resolution datasets per sec- 
ond well before the end of the decade. In addition to 
controlling the Cube-3 volume visualization engine on a 
device driver level, the host also runs a volume visual- 
ization software system and user interface called. VolVis 
[2], which has been developed at SUNY Stony Brook 
and complements the Cube-3 hardware. 

The next section describes aspects of the Cube-3 
system in detail. Sections 4 and 5 provide estimated 
performance and hardware real-estate. 

3. Cube-3 Architecture 

Cube-3 implements a ray-casting algorithm,, a flexi- 
ble and frequently used technique for direct volume ren- 
dering [14]. Figure 2 shows a block diagram of the over- 
all dataflow. In order to meet the high performance 
requirements of real-time ray-casting, the Cu’be-3 ar- 
chitecture is highly-parallel and pipelined. The Cubic 
Frame Buffer (CFB) is a 3D memory organized in n 
dual-access memory modules, each storing n2 voxels. A 
special 3D skewed organization enables the conflict-free 
access to any beam (i.e., a ray parallel to a main axis) 

of n voxels (see Section 3.1). All the rays belonging to 
the same scan line of a parallel or perspective projec- 
tion reside on a slanted plane inside the CFB, termed 
the Projection Ray .Plane (PRP). In order to support 
arbitrary viewing, each PRP is fetched as a sequence 
of voxel beams and stored in consecutive 20 Skewed 
Buffers (2DSB) (see Section 3.2). A high-bandwidth 
interconnection network, the Fast Bus, allows the align- 
ment of the discrete rays on the PRP parallel to a main 
axis in the 2DSB modules (see Section 3.3). 
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Figure 2: Cube-3 System Overview. 

Several 2D Skewed Buffers are used in a pipelined 
fashion to support tri-linear interpolation and gray-level 
shading. Aligned discrete rays from 2DSBs are fetched 
conflict-free and placed into special purpose W-Linear 
Interpolation (TRILIN) units (see Section 3.4). The re- 
sulting continuous projection rays are placed onto ABC 
Shading Units, where each ray sample is converted into 
both an intensity and an associated opacity value ac- 
cording to lighting and data segmentation parameters 
(see Section 3.5). These intensity/opacity ray sam:ples 
are fetched into the leaves of the Ray Projection C’one 
(RPC). The RPC is a folded binary tree that gener- 
ates in parallel and in a pipelined fashion the final ray- 
pixel value using a variety of projection schemes on the 
cone nodes (see Section 3.6). The resulting pixel is 
post-processed (e.g., post-shaded or splatted), 2D trans- 
formed, and stored in the 2D frame-buffer. 

3.1. Parallel Cubic Frame Buffer Organisaticon 

A special 3D skewed organization of the n3 voxel 
CFB enables conflict-free access to any beam of n valxels 
[lo]. The CFB consists of n memory modules, each with 
n2 voxels and its own independent access and addressing 
unit. A voxel with space coordinates (2, y, z) is being 
mapped onto the k-th module by: 

k=(z+y+z)modn O<k,z,y,zsn-1. 

Since two coordinates are always constant along any 
beam, the third coordinate guarantees that one and 
only one voxel from the beam resides in any one off the 
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modules. The internal mapping (i, j) within the module 
is given by: i = 2, j = y. 

This skewing scheme has successfully been employed 
in Cube-l [lo] and Cube-2 [3], first and second gener- 
ation 163 prototype architectures built at SUNY Stony 
Brook. They use a sequence of n processing units, 
which team up to generate the first opaque projec- 
tion along a beam of n voxels in O(log n) time, using 
a voxel multiple-write bus [S, lo]. Consequently, the 
time necessary to generate an orthographic projection 
of n2 pixels is only O(n’logn), rather than the con- 
ventional O(n3) time. However, in this technique pro- 
jections can be generated only from a finite number of 
predetermined directions [4]. The next section describes 
the enhanced architecture used in Cube-3 for arbitrary 
parallel and perspective viewing. 

3.2. Architecture for Arbitrary Viewing 

All the rays belonging to the same scan line of the 
2D frame-buffer reside on the same plane, the PRP (see 
Figure 3). For every parallel and perspective projec- 
tion, all the PRPs can be made parallel to one major 
axis by fixing a degree of freedom in specifying the pro- 
jection parameters. For example, in parallel projection 
the projection plane can be rotated about the viewing 
axis, which can be reversed after projection in the 2D 
frame-buffer. Since there is no direct way to fetch arbi- 
trary discrete rays from the CFB conflict free, a whole 
PRP of beams (which are now parallel to an axis) is in- 
stead fetched in n cycles, beam after beam, and stored 
in a 2D temporary buffer, the ZDSB. 

4 Cubic Frame Buffer 
a-w 

2D Skewed Buffer 
(ZDSB) 

Figure 3: Arbitrary Viewing Mechanism. 

The direction of the viewing ray within the origi- 
nal PRP depends on the observer’s viewing direction. 
When a PRP is moved from the CFB to the SDSB, it 
undergoes a 2D shearing (either to the left or to the 
right) to align all the viewing rays into beams along a 
direction parallel to a 2D axis (e.g., vertical). This step 
is a de-skewing step that is accomplished by the high- 
bandwidth Fast Bus that interconnects the CFB and 
2DSB memory modules. Once the discrete viewing rays 
are aligned vertically within the 2D memory, they can 
be individually fetched and placed at the leaves of the 
ray projection mechanism for interpolation and shad- 

ing. Since there may be up to 2n - 1 parallel viewing 
rays entering the PRP, the 2DSB size is 2n x n voxels. 

The 2DSB thus supports conflict-free storage of hor- 
izontal beams coming from the CFB and conflict-free 
retrieval of vertical discrete rays. The 2DSB is divided 
into n memory modules, each storing 2n voxels, and is 
skewed such that any module appears exactly once in 
every row and every column. To achieve this, the (i, j) 
voxel is mapped onto module (i + j) mod n in location 
i+ j (see also [13], which is a hardware solution for 90° 
rotation and mirroring of bitmaps). 

As an example, assume that a parallel projection 
is performed without loss of generality approximately 
from the +r direction; namely, for each projection ray, 
z grows faster than z and y in absolute value. The 26- 
connected discrete ray representation is pre-generated 
on the host computer using a 3D variation [ll] [9, 
pp. 280-3011 of Bresenham’s algorithm modified for 
non-integer endpoints [7]. First, the representation of 
the projection of the ray along the fetch axis is gen- 
erated. This representation determines which beams to 
fetch from the CFB for each PRP. These viewing param- 
eters are broadcast to the CFB addressing units. Sec- 
ond, the ray parameters within the PRP are calculated, 
determining how much to shear each beam. For paral- 
lel projections all rays have the same slope and thus the 
generalized Bresenham’s steps in both directions have to 
be calculated only once (cf. [23]). These pre-calculated 
slope templates are down-loaded from the host into the 
Fast Bus control units (see Section 3.3). Each PRP con- 
tributes to all pixels of one scanline in the final image 
up to a 2D transformation. 

A perspective projection can be generated in a way 
similar to the parallel projection. However, for per- 
spective projections several beams are averaged into a 
single beam that is stored in the 2DSB. The number 
of beams averaged depends on the divergence of the 
perspective rays. Voxels in a given beam are not only 
averaged but also scaled and sheared between the Fast 
Bus and 2DSB. This is equivalent to casting a fan of 
rays, where larger portions of the volume are sampled 
as the fan diverges. Note that the assumption that for 
each projection ray z grows faster than z and y in abso- 
lute value is not always true in perspective projection, 
which may require the separate processing of x-major, 
z-major, and y-major rays. 

3.3. Modular Fast Bus 

The Fast Bus is an interconnection network that al- 
lows the high-bandwidth transfer of data from the n 
CFB modules to the n 2DSB modules. It enables the 
arbitrary shearing and averaging necessary for parallel 
and perspective projections. A set of fast multiplex- 
ers and transceivers with associated control units and 
a multi-channel bus are used to accomplish the data 
transfer speeds necessary for real-time rendering. 
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Figure 4: Fast Bus Configuration for n = 512. 

Figure 4 shows the Fast Bus configuration with 
n = 512 CFB memory modules and 32 bus channels. 
The CFB modules are first divided into 32 groups, of 16 
memory modules each. The data from the 16 modules 
of each group are time-multiplexed onto the designated 
16-bit Fast Bus channel for that group. The data now 
appears on the Fast Bus as illustrated in Table 1. The 
multiplexing is achieved with the bus transceivers asso- 
ciated with each memory module. 

Time Slice 
Channel 00 01 *** 14 15 

00 000 001 *-* 014 015 
01 015 017 **- 030 031 

. . . . . . . . . 
30 480 481 *** 494 495 
31 496 497 a*’ 510 511 

Table 1: Memory Module Data Time-Multiplexed on 
the Fast Bus. 

The 2DSB modules are likewise divided into 32 
groups of 16 modules each. For each group of 2DSB 
modules, data from the 32 channels of the Fast Bus are 
multiplexed into the group of 16 2DSB modules. The 
multiplexers are placed on the backplane of the Fast 
Bus, and de-multiplexing is implemented with the as- 
sociated bus transceivers. Hardware necessary for the 
averaging operation between beams for perspective pro- 
jections can be incorporated between the bus receivers 
and the 2DSB modules. 

Operation of the multiplexers/transceivers is con- 
trolled by lookup tables, called bus channel maps. The 
maps are pre-computed for each projection and down- 
loaded from the host. A change of viewing parameters 
requires re-computation of these maps, but their limited 

size allows for real-time update rates. A requirement of 
the system is that the data intended to reach the 16 
2DSB modules of a channel group are not transmitted 
during the same time step. Note that this is trivially 
satisfied, as all voxels of the beam are kept in a sequence 
and are moving the same amount either left or right. 

We investigated the use of alternative structures 
such as multistage cube/shuffle-exchange networks [26] 
or expanded delta networks with packet routing [l]. 
Although these networks typically require less hard- 
ware, their routing overhead severely limits their perfor- 
mance. Furthermore, the Fast Bus requires only readily 
available, off-the-shelf hardware components. 

3.4. Fast 3D Interpolation 

When sampling in non-grid locations along the ray 
for cornpositing [14], the sampled value is tri-linearly 
interpolated from the values of the eight voxels (called 
a cube) around the sample point. Note that this kind of 
sampling does not necessarily require a regular isotropic 
dataset, and slice data can be accommodated as well. 
In Cube-3 this interpolation is performed at the leaves 
of the Ray Projection Cone with data from the 2DSB. 

Instead of fetching the eight-neighborhood of each 
resampling location, four discrete rays are fetched from 
the 2DSBs, two from each of two consecutive buIIer 
planes. The four rays are subdivided into voxel cubes 
and fed into the tri-linear interpolation units. Because 
of the skewing of the 2DSB, neighboring rays reside in 
adjacent memory modules, requiring a local shit opera- 
tion of voxels between neighboring units. The pipelined 
operation of the tri-linear interpolation accounts for this 
additional latency. 

Due to the discrete line-stepping algorithm and the 
hardware organization into n memory modules, exactly 
n voxels per discrete ray are fetched, independent of 
the viewing direction. Since the maximum viewing an- 
gle difference along a major axis is not more than 45 
degrees up to a 2D rotation, the volume sample rate is 
defined by the diagonal through the cube and is by a 
factor of fi higher for orthographic viewing. For ray- 
cornpositing, this is of no consideration due to the aver- 
aging nature of the cornpositing operator. High-quality 
surface rendering, however, requires the adaptation of 
the stepping distance along the continuous ray accord- 
ing to the view direction. 

TRILIN, the 3D interpolation unit, computes the in- 
terpolated data values of the samples on the projection 
ray as it traverses through the volume data. Suppose 
the relative 3D coordinate of a sample point within a 
cube with respect to the corner voxel closest to the ori- 
gin is (a,b,c) and the data values associated with the 
corner voxels of the cube are Pijk, where i, j, k =: 0 
or 1, then the interpolated data value associated with 
the sample point, P&e, is computed through a tri-linear 
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interpolation process as follows: 

P abc = P&o (1 - a)(1 - b)(l - c) + PI,, a(1 - b)(l - c) + 
Polo (1 - a)b(l - c) + Pool (1 - a)(1 - b)c + 
PIOI a(1 - b)c + Poll (1 - a)bc + 
Pm abc + RIO ab(l - c). 

A brute-force implementation of this formula re- 
quires 13 multiplications and 20 additions for each sam- 
ple point that is not a voxel. We solve this problem by 
making the observation that a tri-linear interpolation 
is actually equivalent to a linear interpolation followed 
by two bi-linear interpolations, and by replacing time- 
consuming arithmetic operations with a table look-up 
(see Figure 5). 

From the above equation it is clear that the only 
part that allows pre-computation is the intermediate 
values involving a, b, and c. With a Is-bit data path 
and n = 512, the number of bits left for fiactionals, 
i.e., relative coordinates within a cube, is seven. With 
a seven-bit resolution, the number of possible combma- 
tions for (u b c) triples becomes 272727 = 221. For each 
triple, there are eight intermediate products, each be- 
ing b-bit wide. Thus, the total size of the look-up table 
of partial products would be 16 MBytes. Such a look- 
up table is needed for the simultaneous computation of 
each interpolated data value. Therefore, it cannot be 
shared and needs to be replicated n times. Simply be- 
cause of the required memory size, this design is clearly 
too expensive and potentially slow. 

Voxels A 
Partial 
Products A 

Partial 
Voxels B products B 

I I 

P 

Figure 5: TRILIN: T&Linear Interpolation Unit. 

By substituting two bi-linear interpolations followed 
by a linear interpolation for a tri-linear interpolation, 
the look-up table size is only 64 KBytes. The price we 
pay for this design decision is that two more multipli- 
cations are needed than in the above equation. Fortu- 
nately, the performance overhead associated with these 
additional multiplications can be minimized by exploit- 
ing parallelism and pipelining. 

The second key idea in the fast 3D interpolation unit 
design is to exploit the internal structure of a parallel 
multiplier. To a first approximation, a parallel mul- 
tiplier is actually a 2D array of single-bit carry-save 
adders. Therefore, it is possible to integrate a multi- 
plication and an addition operation by inserting an ex- 
tra row of carry-save adders. Moreover, to reduce the 
hardware cost, one can pipeline multiple multiply-add 
operations through such an augmented parallel multi- 
plier. Consequently, it becomes feasible to implement 
the entire 3D-interpolation function in one chip. 

3.5. Volumetric Shading Mechanisms 

A prominent object-based volumetric shading 
method is gray-level gradient shading [8]. It uses the 
gradient of the data values as a measure of surface in- 
clination. The gradient is approximated by the differ- 
ences between the values of the current sample and its 
immediate neighbors. 

In Cube-3 we use the tri-linearly interpolated val- 
ues of neighboring rays to evaluate the gradient field 
inside the dataset. In order to evaluate the gradient at 
a particular point, we need the rays on the immediate 
left, right, above and below, as well as the values in 
the current ray. The left and right point sample values 
can be fetched from neighboring shading units, and the 
above and below samples arrive from the consecutive 
processing of PRPs. Since we need to store complete 
rays, we call the shading units ABC Shaders for their 
above, below, and current ray sample buffers. 

ll+Z n+2 

n+l n+l 

n n 

n-l n-l 

n-2 n-2 . . . . 
m-2 m-l m In+1 III+2 m-2 ml In In+1 In+2 

(a) Corrected lo-neighborhood (b) 26-neighborhood Gradient 
Gradient Estimation Estimation 

Figure 6: Gradient Estimation Schemes. 

Figure 6 illustrates the different gradient estima- 
tion schemes (using a 2D drawing). The simplest ap- 
proach is the g-neighborhood gradient, which uses the 
differences of neighboring sample values along the ray, 
qn,m+l) - qn,m-1) in 2 and ++++I) - +-I,~-I) 
in the ray direction (Figure 6 (a)). Although the left, 
right, above and below ray samples are in the same 
plane and orthogonal to each other, the samples in the 
ray direction are not. More importantly, when a change 
in the viewing direction causes a change in the major 
axis from m to n, the values of P(,+llm) - P(,-l,,) are 

79 



used to calculate the gradient in the x direction. This 
leads to noticeable motion abasing. 

To circumvent this problem we use an additional lin- 
ear interpolation step to resample the rays on correct 
orthogonal positions (Figure 6 (a), black samples). We 
call this approach the IO-neighborhood gradient estima- 
tion, and it adequately solves the problem of switching 
the major axis during object rotations. The linear in- 
terpolation weights are constant along a ray and cor- 
respond to a constant shift of the complete ray in the 
viewing direction. 

We also simulated the use of a 26-neighborhood gra- 
dient (Figure 6 (b)). Instead of fetching sample val- 
ues from four neighboring rays, 26 interpolated samples 
from 8 neighboring rays are fetched and the gradient 
is estimated by taking weighted sums inside and. differ- 
ences between adjacent planes. This method leads to 
better overall image quality, but the switching of ma- 
jor axis is still noticeable, although less than with the 
6-neighborhood gradient. 

In the case of perspective projections, the front of 
each PRP is uniformly sampled with n rays one unit 
apart. As the rays diverge towards the back of the 
volume, the distance between rays increases, a,nd the 
averaged values described above are used instead. 

With the gradient estimation and a light vector 
lookup table, the sample intensity is generated using 
a variety of shading methods (e.g., using an integrated 
Phong Shader [12]). Opacity values for compositing are 
generated using a transfer function represented as a 2D 
lookup table indexed by sample density. 

3.6. R.ay Projection Mechanism 

The pipelined hardware mechanism for ray projec- 
tion is the RPC, which can generate one projected pixel 
value per clock cycle using a rich variety of projection 
schemes. The cone is a folded (circular) cross-linked 
binary tree with n leaves, which can be dyna:mically 
mapped onto a tree with its leftmost leaf at an.y arbi- 
trary end-node on the cone (see Figure 7). This allows 
the processing of a ray of voxels starting from any leaf 
of the cone. This in turn allows the cone to be hard- 
wired to the outputs of the 2DSB modules containing 
the voxels. Such a configuration eliminates the need for 
a set of n n-to-l switching units or a barrel shifter for 
de-skewing of the 2DSB. The leaves of the cone contain 
the TRILIN interpolation and the ABC Shading units. 

The cone accepts as input a set of n samples along 
the viewing ray and produces the final value for the cor- 
responding pixel. The cone is a hierarchical pipfeline of 
n - 1 primitive computation nodes called Voxel Combi- 
nation Units (VCU). Each VCU accepts two consecutive 
intensity/opacity pairs as input and combines them into 
an output value. At any given snapshot the cone: is pro- 
cessing log n rays simultaneously in a pipelined fashion, 
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Figure 7: Folded Binary Cone Tree (n = 8 Leaf Nodes). 

producing a new pixel color every clock cycle. Section- 
ing and clipping can be implemented on the RPC by 
discarding voxels according to user specified clip-planes. 

Each VCU is capable of combining its two input 
samples in a variety of ways in order to implement view- 
ing schemes such as first or last opaque projection, max- 
imum or minimum voxel value, weighted summation, 
and a-cornpositing. Accordingly, each VCU selects as 
input the left and center or center and right datapat,hs, 
each one consisting of color C and opacity a of the cur- 
rent ray sample. 

The opacity of the voxel is either pre-stored with 
every voxel or provided through a look-up table otf a 
transfer function inside the ABC Shading Unit at the 
leaves of the cone. The VCU produces an output voxel 
V’ by performing one of the following operations: 

First opaque: if (a~ is opaque ) V’ = Vi; 
else v’ = VR 

Maximum value: if (CL < CR) v’ = VR 
else v’ = y; 

Weighted sum: c’=c&+wkcR 

where W is the weighting factor and k is the cone level. 
Wk is pre-computed and pre-loaded into the VCUs. 
Weighted sum is useful for depth cueing, bright field, 
and x-ray projections. 

Compositing: C’ = CL + (I- a&)CR 

a’ = aZ, + (1 - cu)QR 

where the first level VCUs compute Cr = Crar, assum- 
ing the values are gray-levels or RGB. This is actually 
a parallel implementation of the front-to-back (or back- 
to-front) cornpositing. The pixel output is transmitted, 



for example, to the host, where post-processing, such 
as post-shading, splatting, and 2D transformation or 
warping, is performed. A frame buffer outputs the final 
image to a color display. 

4. Performance Estimation 

The parallel conflict-free memory architecture of 
Cube-3 reduces the memory access bottleneck from 
O(n3) per projection to O(n2) and allows for very high 
data throughput. Due to the highly pipelined architec- 
ture, the frame rate is limited only by the data-transfer 
rate on the Fast Bus. If we assume a dataset size of n3, 
one resample location per volume element, and a final 
screen resolution of n2 pixels, we need to transfer a dis- 
crete ray of n voxels on the Fast Bus in & seconds. 
f is the frame rate in updates per seconds. Since the 
Fast Bus operates in a time-multiplexed fashion with 

1 m tune-shces, we need n’fm seconds per transfer or a 
clock speed on the bus of n2 f m. 

256 x 256 x 256 30 He 33 MHz 
512 x 512 x 512 15 He 66 MHe 
512 x 512 x 512 30 He 125 MHe 

Table 2: Fast-Bus Performance Requirements (m = 16). 

Table 2 gives some examples of required bus per- 
formance for a multiplexing rate of m = 16. High- 
bandwidth buses have been used by other researchers 
[16], and technologies and driving chip sets are readily 
available for most bus speed requirements [19, 211. We 
believe that a high-resolution cornpositing projection of 
a 512’ dataset can be generated in Cube-3 with about 
30 frames per second. 

5. Hardware Estimation 

Figure 8 shows the overall hardware structure of 
Cube-3. It is a modular design that is scalable to higher 
resolution datasets. The CFB boards contain several 
CFB modules, each consisting of a memory module, an 
addressing and bus control unit, and a bus transceiver. 
Using off-the-shelf components such as SIMMs (Sin- 
gle Inline Memory Modules) and FPGAs (Field Pro- 
grammable Gate Arrays), it is possible to fit up to 128 
CFB modules together with I/O hardware and I/O bus 
access logic on a single board. The CFB modules on 
each board can be connected to the acquisition device 
by high-speed parallel input channels. 

Each 2DSB consists of a Fast Bus transceiver, a 
memory module, and a special purpose LEAF chip. 
This chip contains the addressing and bus control units, 
the TRILIN interpolator, and the ABC shading unit. A 
special purpose VCU chip contains several VCUs of the 

CFB: Cubic Frame B 
2DSB: 2D Skewed Buffers 
LEAF: TRILIN/AFK Shading U 
VCUs: Voxel Combination Units 

Figure 8: Cube-3 Hardware Architecture. 

RPC. Each individual VCU has only modest complex- 
ity, so that the number of VCUs per chip is determined 
by the width of the I/O datapath. Assuming an I/O pin 
count of 260 pins and Is-bit datapaths, it is feasible to 
put 8 VCU units per chip. Sixteen VCU chips together 
with 128 %DSB/LEAF units fit on a single board. 

The CFB and 2DSB boards are connected through 
the high-bandwidth Fast Bus on the backplane, which is 
the main technological challenge in Cube-3. Assuming 
a voxel resolution of 16-bit and a 5123 dataset, the back- 
plane contains a 512-bit wide bus at clock-speeds possi- 
bly over lOOMHe. Furthermore, the backplane contains 
a separate I/O bus for LEAF node and host connec- 
tions. 

With the above board estimations, a Cube-3 sys- 
tem for 5123 Is-bit per voxel datasets would require 8 
boards and a custom fabricated backplane. This board 
layout and chip count may change depending on off-the- 
shelf chip availability, pin count, package size, and bus 
interface technology. 

6. Conclusions 

Cube-3 is a scalable, high-resolution volume vi- 
sualization architecture that exploits parallelism and 
pipeliuing to achieve real-time performance. It will pro- 
vide the following capabilities to the scientist and re- 
searcher: viewing from any parallel and perspective di- 
rection, control of shading and projection parameters 
(e.g., first opaque, max value, x-ray, cornpositing), pro- 
grammable color segmentation and thresholdiug, and 
control over translucency, sectioning, and slicing. 

We have simulated the Cube-3 architecture in C and 
iu Verilog, and are designing the general layout of a 
5123 Is-bit per voxel prototype implementation. We are 
currently simulating the effects of the lo-neighborhood 
gradient estimation for perspective projections. Future 



For each triangle, the color and opacity are interpolated linearly 
from the three vertex values to the interior, usually along the 
edges and then across scan lines, as in Gouraud shading. Then 
the interpolated color Ci and opacity ai are composited over the 
old pixel color Cold to give the new color C,,, by the formula: 
C new = O$Ci + (1 - C$)C,,d . Often the linear interpolation and 
cornpositing steps can be performed by special purpose hardware 
available in the rendering engines of a graphics workstation. 

The projected tetrahedra algorithm has several artifacts which 
produce incorrect colors, or Mach bands revealing the 
subdivision into tetrahedra. The first artifact comes from the 
linear interpolation of the color and opacity across the tetrahedra. 
This interpolation is not C’ across the faces, and can produce 
Mach bands, particularly at faces which are parallel to the 
viewing direction and project to lines. The only cure is higher 
order interpolation, which is not available in hardware on most 
workstations. 

However, there is a more serious problem with the algorithm, 
which occurs even when the color C and extinction coefficient 7 
are constant. The problem is easiest to understand when the 
color is zero, so that the image shows an opacity cloud hiding the 
background, and in 2-D, where the tetrahedra become triangles. 
Consider a strip of triangles To, T,, TZ and T3 of a constant 
thickness 1 as shown in Figure 2(a), projected vertically to a scan 
line. In triangle T,, C is the “thick” vertex, where the opacity 
a = 1 -exp(-TI), and a=0 at B and D. Figure 2(b) is a graph of 
the transparency tl (x) = 1 -a,(x) along the scan line, which is 
used to multiply the background color during compositing of 
triangle T,. It is piecewise linear, because the opacity a:(x) has 
been linearly interpolated across the scan line segments BC and 
CD. Similarly, Figure 2(c) shows the transparency t.+) from 
triangle T,. The final transparency along the segment CD, 
resulting from cornpositing both triangles on top of the 
background is the product t(x)=t,(x)t,(x), shown as the quadratic 
polynomial segment above CD in Figure 2(d). 

To derive the form of this quadratic polynomial, let x=sD+( 1-s)C 
be the point a fraction s of the way from C to D. 

Then 

rl(x)= I-al(x) 
=s+(1-s)-[[s~O+(1-s)(1-exp(-~l)] 
=s+(l-s)exp(-TZ) 

and similarly 

t*(x) = 1 - a2(x) 
=s+(l--S)-[s.(I-exp(-Zf)+(I--s).O]. 
=s.exp(-zl)+(l-s) 

Thus 

t(x) = exp(-zf)+s.(l-s)[l -exp(-21)]* 

The transparency should actually be exp(-zl), so the quadratic 
term ~(1 - $)[I- exp(-zl)J* represents the error due to 
approximating r,(x) and ttz(x) linearly. 
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Other similar quadratic segments come from other projected 
diagonal edges, and the final intensity, proportional to the 
transparency if the background is uniform, is not C’. In three 
dimensions, the corresponding effect produces Mach bands along 
the projections of edges of the tetrahedra. 

The solution to this problem is to define a,(x) correctly as 
1 - exp(-szl) . This requires a linear interpolation of the quantity 
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~1, and then an exponential per pixel, which is not commonly 
available in hardware. Instead, we have used a texture map table 
on our SGI OnyxTM system. For the case of constant ‘T per 
tetrahedron, as in our flow volume application, we put the 
quantity 1 -exp(-u) in a one dimensional texture table, indexed 
by u as described in [3]. The texture coordinate u was set to zero 
at the thin vertices of each triangle, and to 71 at the thick vertex, 
and was interpolated by the shading hardware before being used 
as an address to the texture table. 

If z varies linearly within each tetrahedron the product ~1 varies 
quadratically inside each triangle. Quadratic interpolation of 
texture coordinates was implemented in hardware on the Apollo 
DNlOOOOVS [2], but was not available on our OnyxTM. 
Therefore we used a 2-D texture table, with coordinates r and 1, 
and put 1 - exp(-zl) in the table. At places, like the edges of a 
rotated cube where the derivative of the thickness changes 
suddenly, Mach bands will remain when using our table-based 
exponential-per-pixel method, but there they are physically 
appropriate and give useful cues about the object shape. 

Now consider the case when the color also varies linearly across 
the tetrahedron. The Shirley-Tuchman approximation (Cu+C,)/2 
for the color of the thick vertex is not precise; it weighs the two 
colors equally. The frontmost color should have greater weight, 
because the opacity along the ray segment hides the rear color 
more than the front one. Williams and Max [lo] have found an 
exact formula for the color in this case, which they implement 
with the aid of table Iookups. However, the supplementary 
arithmetic required goes far beyond what is practical in hardware 
computation at each pixel. As a compromise, we have used the 
exact analytic form of the color of the thick vertex, and then used 
the hardware to interpolate the color across each triangle. The 
colors of the thin vertices come from the original color 
specification, and the opacity is determined, as above, from a 
texture table. This compromise can be implemented entirely in 
hardware, and gives a fairly smooth color variation that seems to 
move appropriately when a colored volume density rotates. 

Figures 7(a) and (b), 8(b), and 9(a) and (b) all use texture 
mapping for the opacity. Figures 7(a) and (b) show a triangular 
prism divided into three tetrahedra. Figure 7(a) uses the average 
color (Cu+C,)/2 at the thick vertices, while Figure 7(b) uses the 
more accurate color integration of Williams and Max [lo]. Note 
that in Figure 7(b) the color of the yellow-orange vertex closest 
to the viewer is more prominent because this colored region 
partially hides the differently colored regions behind it. The blue 
“band” in Figure 7(b) is due to the linear interpolation of the 
colors from the “thick’ vertex to the other vertices Figure S(a) 
shows a 2x2x2 array of cubes, each divided into five tetrahedra, 
and rendered by linearly interpolated opacities. Notice the Mach 
Bands predicted in Figure 2. Figure 8(b) shows the same volume 
using the texture mapping for more accurate opacities, and is 
much improved. Figure 9 illustrates an irregular tetrahedral 
mesh using the improved color interpolation and hardware 
texture mapping. Figure 10 shows the turbulence behind a 
simulated submarine fairwater. This data set is an irregular 
brick mesh and uses the improved color interpolation with 
texture mapping. 

The Sorting Algorithm 

Most volume rendering algorithms use point sampling methods 
to calculate the color and intensity. Because the Shirley- 
Tuchman algorithm allows us to scan convert entire polyhedra 
very quickly, we needed to devise an efficient algorithm that 
would sort unstructured meshed elements in a back to front 
order. Our implementation will correctly sort arbitrarily shaped 
convex elements in a back to front order as long as there are no 
cycles or intersections in the data set. Each polyhedron can then 
be subdivided into a set of tetrahedra for rendering. If a convex 
mesh is structured so that cells meet on common faces, and this 
topological information is stored in an adjacency graph, then the 
adjacency graph can be used to produce a back-to-front sort (see 
[4] or [l 11). However, we wanted to handle unstructured meshes 
where this information is unavailable. Such examples are sliding 
interfaces, where cells meet on only part of their faces, and non- 
convex meshes, such as those with cavities, Figure 3 shows such 
features in a mesh of a piston inside a cylinder. We extended 
the Newell, Newell and Sancha sort for polygons to correctly 
handle convex polyhedra. The sort will not perform subdivisions 
in the case of intersecting polyhedra or cycles, instead it will 
render them in an arbitrary order discussed later. 

-* sliding -, interfaces 

Figure 3. 

This algorithm is a three dimensional extension of the Newell, 
Newell and Sancha painter’s algorithm [1,5,6,7] and operates on 
the volumes after having performed all of the perspective 
transformation operations. Once the elements have been sorted 
in back-to-front order, they can be fed to the volume renderer for 
scan conversion and cornpositing, using the techniques described 
in the previous sections. 

There are three stages to the sorting process. The first applies all 
viewing transformations on the vertices to obtain the screen 
coordinates with a perspective corrected Z. The second obtains a 
preliminary sorting of the polyhedra based on the rearmost Z 
component of each element. Since we have applied the viewing 
transformation to all vertices and have scaled Z so as to correct 
for perspective, we would like to sort by increasing Z (the eye 
looks down the Z axis towards negative infinity in a right-handed 
coordinate system). In our implementation, this preliminary 
sort was obtained through an O(nlogn) QuickSort. The third 
stage, or “tine tuning” of the sort, is a bit more complicated. 
However, like the painter’s algorithm approach, it is also broken 
down into multiple steps with each one increasing in 
computational complexity, in hopes that a majority of the 
polyhedra will pass the earlier and less expensive tests. 
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The goal of the fine tuning is to find a separating plane between 
two polyhedra, P and Q, in order to determine whether or not P 
can be safely drawn before Q. The tine tuning process is broken 
down into five steps in order to efficiently find this separating 
plane. Given a list H of polyhedra exactly sorted in back to front 
order by increasing Z coordinate of the farthest vertex (called 
ZW~TIOS~), let polyhedron P be at the head of the list. IP can be 
safely rendered if, for all polyhedra Q in the list II whose 
ZWW~OS is less than (behind) P’s Z~~nmosr, the following 
function returns a value of True: 

Test-Polyhedra (P, Q) 
{ 
(1) if (P and Q do not have 

overlapping X extents) return True 
(2) else if (P and Q do not have 

overlapping Y extents) 
return True 

(3) else if (P is behind a 
back-plane of Q) return True 

(4) else if (Q is in front of a 
front-plane of P) return True 

else if 
(5) (Q!=EdgeIntersection(P,Q)) 

return True 
else return False 

The function EdgeIntersection (P, Q) returns the 
polyhedron which it determines to be in back. It makes this 
decision by looking for intersections between the edges of P’s 
screen projection and the edges of Q’s screen projection. For 
each projected edge in one polyhedra we test all of the projected 
edges in the other polyhedra for intersections. lf one is found, it 
finds the Z component of that intersection point for P’s edge and 
for Q’s edge, and returns the polyhedron whose Zintersection is 
farther from the eye. EdgeIntersection ( ) will not test the 
remaining edges. ln the case that they are both equal, then we 
continue searching for intersections looking for an inequality 
between the two Zintersecrion components. 

Figure 4. 

If Test-Polyhedra0 returns False, thenpolyhedra1PandQ 
are considered to be in the wrong order and Q should be: moved 
to the head of the list and the tests should be repeated with Q 
becoming the new P. It is possible that the list H could contain a 
cycle. For instance, if polyhedron A obscures B, and B obscures 
C, and C, in turn, obscures A, then there is no correct ordering 
for the polyhedra involved. Figure 4 illustrates a cycle for three 

polyhedra. The existence of a cycle is easily determined by 
tagging polyhedron Q before inserting it at the head of the list 
afterthe Test-Polyhedra0 function fails. If Qhas already 
been tagged, then a cycle exists and it will need to be addressed. 

If polyhedron P passes the tests for all polyhedra Q where 
Qre=most is less than Fjwma, then polyhedron P is free to be 
rendered; the tests have determined that P will not obscure any 
polyhedra which are considered to be in front of it. P is then 
shipped to the renderer and the next polyhedron in the list is 
chosen for the new P. 

The tirst two tests check the bounding boxes of the two 
polyhedra in the X and ‘Y plane. The main thrust of the third and 
fourth tests is to find a separating plane between P and Q. lf 
such a plane exists, then P can safely be considered to lie behind 
Q. To simplify the third and fourth tests, we can mark each face 
of every polyhedron as being either a front-facing polygon (it 
faces the eye) or a back-facing polygon. This is easily 
determined because the algorithm stores an outward pointing 
normal for each face. Therefore, a simple query as to the sign of 
the Z component of a face’s normal is enough to determine 
whether the face is front facing or not. A positive Z, in a right- 
handed coordinate system, is front facing. Otherwise it is back- 
facing. This pre-processing is all performed while reading in the 
meshed topology. 

The third test then simplifies to testing whether all of P’s 
vertices lie behind a plane defined by any one of Q’s back-facing 
polygons. If this is true, then the face under consideration foims 
a separating plane between P and Q and therefore we can 
conclude that P is behind Q. Performing this test is a matter of 
making sure that for at least one back-facing polygon of Q, the 
sign of f(xj, yj,zj) for all vertices j in P is non-negative for 
that particular face of Q. The plane equation, f, is based on the 
outward pointing normals for that face. If this test fails, then the 
algorithm will proceed to the fourth test and try to determine 
whether the plane specified by a front-facing polygon belonging 
to P separates P from Q. 

This fourth test is very similar to the third test. In determining 
whether Q lies entirely in front of P, one must make sure that for 
at least one front-facing polygon of P, f(xi, yj,zj) is positive 
for all vertices j in polyhedron Q. This time, f is the phme 
equation for a front-facing polygon of P, again based on outward 
pointing normals. lf this test passes, then Q lies entirely in front 
of at least one of the front-facing polygons of P and it can be 
concluded that P lies behind Q. 

The fifth test, EdgeIntersectionO, returns either the 
index of the polyhedra which is in back, or an error condition if it 
cannot detect any intersecting edges. The two cases where this 
test can fail are shown in Figure 5. As we will see, this does :not 
jeopardize the correctness of our algorithm. 

The illustrations (a) and (b) in Figure 5, which both represent 
screen projections, both fail the EdgeIntersection ( ) 
function because neither have intersecting edges in their 
projections. However, in case (a) the order in which the two 
tetrahedra are rendered makes no difference since they (are 
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completely disjoint in the screen projection and therefore an error 
condition can correctly be treated as if polyhedron P were in 
front of polyhedron Q. On the other hand, this is not necessarily 
the situation in case (b). We can rest assured that this [case (b)] 
will never cause a sorting glitch because the front face of the 
brick (assuming the tetrahedron is in front of the brick) is a front- 
facing separating plane and would have been caught in the fourth 
test. This fifth test is a more efficient alternative to the linear 
programming method proposed by Newell [6]. If the fifth test 
fails, then polygon Q should be moved to the front of the list and 
the whole process should be repeated. 

.P I \ , . 4 I . c I s ’ - - q Qn v 
- - h - - - _ - - 

Figure 5. 

With the exception of the fifth, these tests are very easy to 
perform. When reading in the topological data-set, one must 
store the plane equation coefficients, with respect to an outward 
pointing normal, in the polyhedral database. From these pre- 
computed coefficients, determining which side of a face a point j 
lies is as simple as finding the sign of Mj + byi + czj + d. We 
have not addressed the issue of degenerate faces. 

In the case that all of the tests fail and we have a cycle, the 
program will render first whichever of P and Q has a Zfrontmost 

further from the eye. 

Non-planar Faces 

The algorithm described works correctly for convex polyhedra 
with planar faces and no cycles or intersections. Unfortunately, 
it is quite possible, in finite element codes, for the faces to skew 
slightly yielding non-planar faces. Fortunately, the faces will be 
mostly planar because highly non-planar . faces can lead to 
instabilities in the modeling code. Figure 6 illustrates an 
exaggeration of what could possibly happen. Even if the face 
were mildly non-planar, it is still enough to cause the tests to 
fail. To accommodate slightly non-planar faces, we have 
introduced an error tolerance 6. 

In order to sort convex polyhedra with non-planar faces as shown 
in Figure 4, the algorithm first calculates an average outward 
pointing normal, (a&c), for each face. This is done using 
Newell’s method as follows [7,9]: 

UC c ” (Yi-Yj)(Zi+Zj) 
i=l 

~=~(Zi- 

i=l 
n 

C= 
c 

'. (Xi-Xj)(Yi +Yj) 

i=l 

where:j=(i+l) mod n 
and rr is the number of vertices per polygon 

The last coefficient of the plane equation, d, can be calculated 
by picking some point on the average plane. We chose the center 
of gravity of the face for this point as follows: 

To determine on which side of a plane a point lies, an error 
tolerance is used. This is needed because with non-planar faces 
the algorithm could return vertex u of polyhedron Q as being 
contained inside of P, which would ultimately result in a cycle 
(see Figure 6). This is not the case. In fact, if vertex a were 
actually touching a plane of polyhedron P, machine round-off 
might place a on the wrong side of that face which, again, would 
result in a cycle. Therefore a tolerance, 6, is used to represent an 

P 

Q 

- eye 

Figure 6. 

acceptable distance from a vertex to a face. In other words, the 
third and fourth tests should consider vertex a to be on the 
outside of a face (the plane equation evaluated at point a should 
yield a non-negative value) if point a is within 6 units away from 
the plane under consideration, regardless of which side of the 
face point a actually lies. We can rationalize the existence of 
this 6 tolerance as follows: if a comer of polyhedron Q happens 
to intersect a planar face of polyhedron P by the amount 6, for a 
suitably small 6, the visual impact will be minimal, if perceptible 
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at all. Our implementation uses a unique 6 for each fac:e, based 
on the maximum deviation of a vertex from its corresponding 
average plane. 

Discussion 

The line-tuning sort described runs in O(n2jwith respect to the 
number of polyhedra sorted. However, this quadratic running 
time is an upper bound and would only be found in the most 
pathological cases where all polyhedra have overlapping Z 
extents. The average running times for normal data sets should 
be lower. While the first and second tests run in constant time 
assuming the bounding boxes are known ahead of time, the third 
and fourth tests run in O(FiEj) and O(EiFj) time where 1Ti and fj 
correspond to the number of edges for polyhedra 1: and J, 

respectively, and Fi and F. are the number of faces. The fifth test 
runs in O(EiEd Again, A’ is is a worst case running time and it 
should be su stantially better in practice since the function 
terminates once a suitable intersection in the two projections is 
found. 

The algorithm was implemented in Ctt and has been used to 
sort those primitives found in the SGI Explorer pyramid type. 
The volume primitives are all subclasses of a general primitive 
C+t class. These subclasses are as follows: the teuahedra, 
pyramid, prism, wedge and brick. We can easily extend the 
system to include others. 

Table 1 shows some timing data using the complete sort on an 
SGI Indigo2m. As contrast, the QuickSort can sort 24,000 
elements in 4 seconds, and 157,000 elements in 27 seconds. 

Complete Sort 

0 

seconds 

0 5ooo 10000 15ooo 2oooo 25000 

elements 

Table 1. 

We present no new approaches to cycle breaking. If a cycle is 
detected during the sorting, then the polyhedron with the vertex 
farthest from the eye would be removed from the list and 
rendered. The most common form of a cycle the algorithm would 
detect in a data set would probably be two non-planar faced 
polyhedra “intersecting” each other. However, the 6 overlapping 
tolerance should eliminate most of these situations. The 
traditional, but slower method for removing cycles, such as the 
type illustrated in Figure 4, would be to pass one or more 
cutting planes through the offending polyhedra. [ 1 l] describes 
methods for breaking cycles by re-triangulating with a Delaunay 
triangulation. 

Conclusion 

This paper presents extensions to the Shirley-Tuchman 
algorithm for cornpositing semi-transparent and colored elements 
with hardware assisted texture mapping. We have also presented 
extensions to the Newell, Newell, and Sancha sort for use with 
unstructured data. For quick interaction or still frames, 
QuickSorting alone is adequate. For a final animation, the full 
sort is necessary because popping will become apparent if the 
rendering order suddenly becomes incorrect. 
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