
Cube-3: A Real-Time Architecture for
High-Resolution Volume Visualization

Hanspeter Pfister, Arie Kaufman, and Tzi-cker Chiueh
Department of Computer Science

State University of New York at Stony Brook

Abstract

This paper describes a high-performance special-purpose
system, Cube-J, for displaying and manipulating high-
resolution volumetric’datasets in real-time. A primary
goal of Cube-3 is to render 512’, 16-bit per vozel,
datasets at about 30 frames per second. Cube-3 imple-
ments a ray-casting algorithm in a highly-pamllel and
pipelined architecture, using a 30 skewed volume mem-
ory, a modular fast bus, 2D skewed buffers, 30 inter-
polation and shading units, and a ray projection cone.
Cube-3 will allow users to interactively visualize and
investigate in real-time static (90) and dynamic (40)
high-resolution volumetric datasets.

1. Introduction
A volumetric dataset is typically represented as a

3D regular grid of voxels (volume elements) represent-
ing some uniform or piecewise property of an object or
phenomenon. This 3D dataset is commonly stored in a
regular cubic frame buffer (CFB), which is a large 3D
array of voxels (e.g., 128M voxels for a 5123 dataset)
and is displayed on a raster screen using a direct vol-
ume rendering technique (see e.g., [14, 91). Alterna-
tively, the dataset may be represented as a sequence of
cross-sections or 8s an irregular grid.

Applications of volume visualization include sam-
pled, simulated, and modeled datasets in confocal mi-
croscopy, astro- and geophysical measurements, molec-
ular structures, finite element models, computational
fluid dynamics, and 3D reconstructed medical data, to
name just a few (see [9] Chapter 7). As with other dis-
play methods of 3D objects, the provision of real-time
data manipulation rates, typically defined to be more
than 10 and preferably 30 frames per second, is essential
for the investigation of 3D static datasets. Furthermore,
in many dynamic applications, 4D (spatial-temporal)
real-time visualization is a necessary component of an
integrated acquisition-visualization system. Examples

Authors’ Address: Department of Computer Science, State Univer-

sity of New York at Stony Brook, Stony Brook, NY 11794-4400

emsil pflsterBcs.sunyrb.edu,ariQlcs.sunysb.edu,chiuehOc~.auny~b.edu

o-e113~7oe7+95 ~4.00 o 1~9~ IEEE

are the real-time analysis of an in-vivo specimen under
a confocal microscope or the real-time study of in-situ
fluid flow or crack formation in rocks under Computed
Microtomography (CMT).

High-bandwidth memory access and high arithmetic
performance are key elements of real-time volume ren-
dering and can be met by exploiting parallelism among
a set of dedicated processors [5, 16, 15, lo] [9, Chapter
61. Sub-second rendering times for a 1283 dataset have
been reported by Schriider and Stoll on a Princeton En-
gine of 1024 processors [18] and by VCzina et al. on a
16k-PE MasPar MP-1 computer [22]. For higher reso-
lution datasets, however, the number of processors and
their interconnection bandwidths must increase, placing
hard-to-meet requirements on existing general-purpose
workstations or supercomputers.

The main objective of the Cube-3 architecture is to
develop a special-purpose real-time volume visualiza-
tion system for high-resolution 5123 Is-bit per voxel
datasets that achieves frame rates over 20 Hz. This
rendering performance is orders of magnitude higher
than that of previously reported systems, while requir-
ing only moderate hardware complexity. Furthermore,
Cube-3 allows interactive control over a wide variety of
rendering and segmentation parameters. The availabil-
ity of such a system will revolutionize the way scientists
and engineers conduct their studies.

2. System Overview
Figure 1 shows the overall organization of two real-

time volume visualization environments. The host com-
puter controls the entire environment and runs non
time-critical parts of the Cube-3 software. It also con-
tains a frame buffer for the final image display on a color
monitor. The acquisition device is a sampling device
such as a confocal microscope, microtomograph, ultra-
sound, MRI, or CT scanner. Alternatively, the acqui-
sition device is a computer running either a simulation
model (e.g., computational fluid dynamics) or synthe-
sizing (voxelizing) a voxel-based geometric model from
a display list (e.g., CAD). The sampled, simulated, or

modeled dataset is either a sequence of cross sections, a
regular 3D reconstructed volume, or an irregular data
that has been converted into a regular volume. All these

75

formats can be maintained and archived by the filing
module of the host software.

_ - _ - _ - - - _ - - - - _ - - - _ - - - _ _ . - _ .
1 Real-time 1
Acquisition

Device

3D Input
Device

k fl co101: 0 Screen

(a) Static Data Visualization (b) Dynamic Data Visuallization

Figure 1: Real-Time Volume Visualization Systems.

Figure 1 (a) shows an environment in which the ac-
quisition and reconstruction are performed in several
seconds to several minutes on the acquisition device,
while the visualization and manipulation are running
on Cube-3 in real-time. Such a system fulfills thee needs
for static visualiration, where the nature of the acquired
data is static and Cube-3 allows for interactive control
of viewing parameters, clipping planes, shading param-
eters, and data segmentation. Figure 1 (b) shows, the ul-
timate environment, in which Cube-3 is tightly-coupled
with the real-time acquisition device to create an inte-
grated acquisition-visualization system that would al-
low the real-time 4D (spatial-temporal) visualization of
dynamic systems. The need for this dynamic visualira-

tion clearly will arise, since the data rates of emerging
acquisition devices such as microtomographs will reach
several complete 3D high-resolution datasets per sec-
ond well before the end of the decade. In addition to
controlling the Cube-3 volume visualization engine on a
device driver level, the host also runs a volume visual-
ization software system and user interface called. VolVis
[2], which has been developed at SUNY Stony Brook
and complements the Cube-3 hardware.

The next section describes aspects of the Cube-3
system in detail. Sections 4 and 5 provide estimated
performance and hardware real-estate.

3. Cube-3 Architecture

Cube-3 implements a ray-casting algorithm,, a flexi-
ble and frequently used technique for direct volume ren-
dering [14]. Figure 2 shows a block diagram of the over-
all dataflow. In order to meet the high performance
requirements of real-time ray-casting, the Cu’be-3 ar-
chitecture is highly-parallel and pipelined. The Cubic
Frame Buffer (CFB) is a 3D memory organized in n
dual-access memory modules, each storing n2 voxels. A
special 3D skewed organization enables the conflict-free
access to any beam (i.e., a ray parallel to a main axis)

of n voxels (see Section 3.1). All the rays belonging to
the same scan line of a parallel or perspective projec-
tion reside on a slanted plane inside the CFB, termed
the Projection Ray .Plane (PRP). In order to support
arbitrary viewing, each PRP is fetched as a sequence
of voxel beams and stored in consecutive 20 Skewed
Buffers (2DSB) (see Section 3.2). A high-bandwidth
interconnection network, the Fast Bus, allows the align-
ment of the discrete rays on the PRP parallel to a main
axis in the 2DSB modules (see Section 3.3).

n PmUelBeamFetch Disaetc Ray Fetch

Cubic Frame Buffer
QW

I

Frame Buffer

2D Skewed Buffer TRILIN
(ZDSB) Tri-Linear [

Ray Projection
Gmc (Rpc)

Interoolation 1

Figure 2: Cube-3 System Overview.

Several 2D Skewed Buffers are used in a pipelined
fashion to support tri-linear interpolation and gray-level
shading. Aligned discrete rays from 2DSBs are fetched
conflict-free and placed into special purpose W-Linear
Interpolation (TRILIN) units (see Section 3.4). The re-
sulting continuous projection rays are placed onto ABC
Shading Units, where each ray sample is converted into
both an intensity and an associated opacity value ac-
cording to lighting and data segmentation parameters
(see Section 3.5). These intensity/opacity ray sam:ples
are fetched into the leaves of the Ray Projection C’one
(RPC). The RPC is a folded binary tree that gener-
ates in parallel and in a pipelined fashion the final ray-
pixel value using a variety of projection schemes on the
cone nodes (see Section 3.6). The resulting pixel is
post-processed (e.g., post-shaded or splatted), 2D trans-
formed, and stored in the 2D frame-buffer.

3.1. Parallel Cubic Frame Buffer Organisaticon

A special 3D skewed organization of the n3 voxel
CFB enables conflict-free access to any beam of n valxels
[lo]. The CFB consists of n memory modules, each with
n2 voxels and its own independent access and addressing
unit. A voxel with space coordinates (2, y, z) is being
mapped onto the k-th module by:

k=(z+y+z)modn O<k,z,y,zsn-1.

Since two coordinates are always constant along any
beam, the third coordinate guarantees that one and
only one voxel from the beam resides in any one off the

76

modules. The internal mapping (i, j) within the module
is given by: i = 2, j = y.

This skewing scheme has successfully been employed
in Cube-l [lo] and Cube-2 [3], first and second gener-
ation 163 prototype architectures built at SUNY Stony
Brook. They use a sequence of n processing units,
which team up to generate the first opaque projec-
tion along a beam of n voxels in O(log n) time, using
a voxel multiple-write bus [S, lo]. Consequently, the
time necessary to generate an orthographic projection
of n2 pixels is only O(n’logn), rather than the con-
ventional O(n3) time. However, in this technique pro-
jections can be generated only from a finite number of
predetermined directions [4]. The next section describes
the enhanced architecture used in Cube-3 for arbitrary
parallel and perspective viewing.

3.2. Architecture for Arbitrary Viewing

All the rays belonging to the same scan line of the
2D frame-buffer reside on the same plane, the PRP (see
Figure 3). For every parallel and perspective projec-
tion, all the PRPs can be made parallel to one major
axis by fixing a degree of freedom in specifying the pro-
jection parameters. For example, in parallel projection
the projection plane can be rotated about the viewing
axis, which can be reversed after projection in the 2D
frame-buffer. Since there is no direct way to fetch arbi-
trary discrete rays from the CFB conflict free, a whole
PRP of beams (which are now parallel to an axis) is in-
stead fetched in n cycles, beam after beam, and stored
in a 2D temporary buffer, the ZDSB.

4 Cubic Frame Buffer
a-w

2D Skewed Buffer
(ZDSB)

Figure 3: Arbitrary Viewing Mechanism.

The direction of the viewing ray within the origi-
nal PRP depends on the observer’s viewing direction.
When a PRP is moved from the CFB to the SDSB, it
undergoes a 2D shearing (either to the left or to the
right) to align all the viewing rays into beams along a
direction parallel to a 2D axis (e.g., vertical). This step
is a de-skewing step that is accomplished by the high-
bandwidth Fast Bus that interconnects the CFB and
2DSB memory modules. Once the discrete viewing rays
are aligned vertically within the 2D memory, they can
be individually fetched and placed at the leaves of the
ray projection mechanism for interpolation and shad-

ing. Since there may be up to 2n - 1 parallel viewing
rays entering the PRP, the 2DSB size is 2n x n voxels.

The 2DSB thus supports conflict-free storage of hor-
izontal beams coming from the CFB and conflict-free
retrieval of vertical discrete rays. The 2DSB is divided
into n memory modules, each storing 2n voxels, and is
skewed such that any module appears exactly once in
every row and every column. To achieve this, the (i, j)
voxel is mapped onto module (i + j) mod n in location
i+ j (see also [13], which is a hardware solution for 90°
rotation and mirroring of bitmaps).

As an example, assume that a parallel projection
is performed without loss of generality approximately
from the +r direction; namely, for each projection ray,
z grows faster than z and y in absolute value. The 26-
connected discrete ray representation is pre-generated
on the host computer using a 3D variation [ll] [9,
pp. 280-3011 of Bresenham’s algorithm modified for
non-integer endpoints [7]. First, the representation of
the projection of the ray along the fetch axis is gen-
erated. This representation determines which beams to
fetch from the CFB for each PRP. These viewing param-
eters are broadcast to the CFB addressing units. Sec-
ond, the ray parameters within the PRP are calculated,
determining how much to shear each beam. For paral-
lel projections all rays have the same slope and thus the
generalized Bresenham’s steps in both directions have to
be calculated only once (cf. [23]). These pre-calculated
slope templates are down-loaded from the host into the
Fast Bus control units (see Section 3.3). Each PRP con-
tributes to all pixels of one scanline in the final image
up to a 2D transformation.

A perspective projection can be generated in a way
similar to the parallel projection. However, for per-
spective projections several beams are averaged into a
single beam that is stored in the 2DSB. The number
of beams averaged depends on the divergence of the
perspective rays. Voxels in a given beam are not only
averaged but also scaled and sheared between the Fast
Bus and 2DSB. This is equivalent to casting a fan of
rays, where larger portions of the volume are sampled
as the fan diverges. Note that the assumption that for
each projection ray z grows faster than z and y in abso-
lute value is not always true in perspective projection,
which may require the separate processing of x-major,
z-major, and y-major rays.

3.3. Modular Fast Bus

The Fast Bus is an interconnection network that al-
lows the high-bandwidth transfer of data from the n
CFB modules to the n 2DSB modules. It enables the
arbitrary shearing and averaging necessary for parallel
and perspective projections. A set of fast multiplex-
ers and transceivers with associated control units and
a multi-channel bus are used to accomplish the data
transfer speeds necessary for real-time rendering.

77

32 Channel Bus ‘r” T

2D Skewed Buffer Memory Modules

Figure 4: Fast Bus Configuration for n = 512.

Figure 4 shows the Fast Bus configuration with
n = 512 CFB memory modules and 32 bus channels.
The CFB modules are first divided into 32 groups, of 16
memory modules each. The data from the 16 modules
of each group are time-multiplexed onto the designated
16-bit Fast Bus channel for that group. The data now
appears on the Fast Bus as illustrated in Table 1. The
multiplexing is achieved with the bus transceivers asso-
ciated with each memory module.

Time Slice
Channel 00 01 *** 14 15

00 000 001 *-* 014 015
01 015 017 **- 030 031

.
30 480 481 *** 494 495
31 496 497 a*’ 510 511

Table 1: Memory Module Data Time-Multiplexed on
the Fast Bus.

The 2DSB modules are likewise divided into 32
groups of 16 modules each. For each group of 2DSB
modules, data from the 32 channels of the Fast Bus are
multiplexed into the group of 16 2DSB modules. The
multiplexers are placed on the backplane of the Fast
Bus, and de-multiplexing is implemented with the as-
sociated bus transceivers. Hardware necessary for the
averaging operation between beams for perspective pro-
jections can be incorporated between the bus receivers
and the 2DSB modules.

Operation of the multiplexers/transceivers is con-
trolled by lookup tables, called bus channel maps. The
maps are pre-computed for each projection and down-
loaded from the host. A change of viewing parameters
requires re-computation of these maps, but their limited

size allows for real-time update rates. A requirement of
the system is that the data intended to reach the 16
2DSB modules of a channel group are not transmitted
during the same time step. Note that this is trivially
satisfied, as all voxels of the beam are kept in a sequence
and are moving the same amount either left or right.

We investigated the use of alternative structures
such as multistage cube/shuffle-exchange networks [26]
or expanded delta networks with packet routing [l].
Although these networks typically require less hard-
ware, their routing overhead severely limits their perfor-
mance. Furthermore, the Fast Bus requires only readily
available, off-the-shelf hardware components.

3.4. Fast 3D Interpolation

When sampling in non-grid locations along the ray
for cornpositing [14], the sampled value is tri-linearly
interpolated from the values of the eight voxels (called
a cube) around the sample point. Note that this kind of
sampling does not necessarily require a regular isotropic
dataset, and slice data can be accommodated as well.
In Cube-3 this interpolation is performed at the leaves
of the Ray Projection Cone with data from the 2DSB.

Instead of fetching the eight-neighborhood of each
resampling location, four discrete rays are fetched from
the 2DSBs, two from each of two consecutive buIIer
planes. The four rays are subdivided into voxel cubes
and fed into the tri-linear interpolation units. Because
of the skewing of the 2DSB, neighboring rays reside in
adjacent memory modules, requiring a local shit opera-
tion of voxels between neighboring units. The pipelined
operation of the tri-linear interpolation accounts for this
additional latency.

Due to the discrete line-stepping algorithm and the
hardware organization into n memory modules, exactly
n voxels per discrete ray are fetched, independent of
the viewing direction. Since the maximum viewing an-
gle difference along a major axis is not more than 45
degrees up to a 2D rotation, the volume sample rate is
defined by the diagonal through the cube and is by a
factor of fi higher for orthographic viewing. For ray-
cornpositing, this is of no consideration due to the aver-
aging nature of the cornpositing operator. High-quality
surface rendering, however, requires the adaptation of
the stepping distance along the continuous ray accord-
ing to the view direction.

TRILIN, the 3D interpolation unit, computes the in-
terpolated data values of the samples on the projection
ray as it traverses through the volume data. Suppose
the relative 3D coordinate of a sample point within a
cube with respect to the corner voxel closest to the ori-
gin is (a,b,c) and the data values associated with the
corner voxels of the cube are Pijk, where i, j, k =: 0
or 1, then the interpolated data value associated with
the sample point, P&e, is computed through a tri-linear

78

interpolation process as follows:

P abc = P&o (1 - a)(1 - b)(l - c) + PI,, a(1 - b)(l - c) +
Polo (1 - a)b(l - c) + Pool (1 - a)(1 - b)c +
PIOI a(1 - b)c + Poll (1 - a)bc +
Pm abc + RIO ab(l - c).

A brute-force implementation of this formula re-
quires 13 multiplications and 20 additions for each sam-
ple point that is not a voxel. We solve this problem by
making the observation that a tri-linear interpolation
is actually equivalent to a linear interpolation followed
by two bi-linear interpolations, and by replacing time-
consuming arithmetic operations with a table look-up
(see Figure 5).

From the above equation it is clear that the only
part that allows pre-computation is the intermediate
values involving a, b, and c. With a Is-bit data path
and n = 512, the number of bits left for fiactionals,
i.e., relative coordinates within a cube, is seven. With
a seven-bit resolution, the number of possible combma-
tions for (u b c) triples becomes 272727 = 221. For each
triple, there are eight intermediate products, each be-
ing b-bit wide. Thus, the total size of the look-up table
of partial products would be 16 MBytes. Such a look-
up table is needed for the simultaneous computation of
each interpolated data value. Therefore, it cannot be
shared and needs to be replicated n times. Simply be-
cause of the required memory size, this design is clearly
too expensive and potentially slow.

Voxels A
Partial
Products A

Partial
Voxels B products B

I I

P

Figure 5: TRILIN: T&Linear Interpolation Unit.

By substituting two bi-linear interpolations followed
by a linear interpolation for a tri-linear interpolation,
the look-up table size is only 64 KBytes. The price we
pay for this design decision is that two more multipli-
cations are needed than in the above equation. Fortu-
nately, the performance overhead associated with these
additional multiplications can be minimized by exploit-
ing parallelism and pipelining.

The second key idea in the fast 3D interpolation unit
design is to exploit the internal structure of a parallel
multiplier. To a first approximation, a parallel mul-
tiplier is actually a 2D array of single-bit carry-save
adders. Therefore, it is possible to integrate a multi-
plication and an addition operation by inserting an ex-
tra row of carry-save adders. Moreover, to reduce the
hardware cost, one can pipeline multiple multiply-add
operations through such an augmented parallel multi-
plier. Consequently, it becomes feasible to implement
the entire 3D-interpolation function in one chip.

3.5. Volumetric Shading Mechanisms

A prominent object-based volumetric shading
method is gray-level gradient shading [8]. It uses the
gradient of the data values as a measure of surface in-
clination. The gradient is approximated by the differ-
ences between the values of the current sample and its
immediate neighbors.

In Cube-3 we use the tri-linearly interpolated val-
ues of neighboring rays to evaluate the gradient field
inside the dataset. In order to evaluate the gradient at
a particular point, we need the rays on the immediate
left, right, above and below, as well as the values in
the current ray. The left and right point sample values
can be fetched from neighboring shading units, and the
above and below samples arrive from the consecutive
processing of PRPs. Since we need to store complete
rays, we call the shading units ABC Shaders for their
above, below, and current ray sample buffers.

ll+Z n+2

n+l n+l

n n

n-l n-l

n-2 n-2
m-2 m-l m In+1 III+2 m-2 ml In In+1 In+2

(a) Corrected lo-neighborhood (b) 26-neighborhood Gradient
Gradient Estimation Estimation

Figure 6: Gradient Estimation Schemes.

Figure 6 illustrates the different gradient estima-
tion schemes (using a 2D drawing). The simplest ap-
proach is the g-neighborhood gradient, which uses the
differences of neighboring sample values along the ray,
qn,m+l) - qn,m-1) in 2 and ++++I) - +-I,~-I)
in the ray direction (Figure 6 (a)). Although the left,
right, above and below ray samples are in the same
plane and orthogonal to each other, the samples in the
ray direction are not. More importantly, when a change
in the viewing direction causes a change in the major
axis from m to n, the values of P(,+llm) - P(,-l,,) are

79

used to calculate the gradient in the x direction. This
leads to noticeable motion abasing.

To circumvent this problem we use an additional lin-
ear interpolation step to resample the rays on correct
orthogonal positions (Figure 6 (a), black samples). We
call this approach the IO-neighborhood gradient estima-
tion, and it adequately solves the problem of switching
the major axis during object rotations. The linear in-
terpolation weights are constant along a ray and cor-
respond to a constant shift of the complete ray in the
viewing direction.

We also simulated the use of a 26-neighborhood gra-
dient (Figure 6 (b)). Instead of fetching sample val-
ues from four neighboring rays, 26 interpolated samples
from 8 neighboring rays are fetched and the gradient
is estimated by taking weighted sums inside and. differ-
ences between adjacent planes. This method leads to
better overall image quality, but the switching of ma-
jor axis is still noticeable, although less than with the
6-neighborhood gradient.

In the case of perspective projections, the front of
each PRP is uniformly sampled with n rays one unit
apart. As the rays diverge towards the back of the
volume, the distance between rays increases, a,nd the
averaged values described above are used instead.

With the gradient estimation and a light vector
lookup table, the sample intensity is generated using
a variety of shading methods (e.g., using an integrated
Phong Shader [12]). Opacity values for compositing are
generated using a transfer function represented as a 2D
lookup table indexed by sample density.

3.6. R.ay Projection Mechanism

The pipelined hardware mechanism for ray projec-
tion is the RPC, which can generate one projected pixel
value per clock cycle using a rich variety of projection
schemes. The cone is a folded (circular) cross-linked
binary tree with n leaves, which can be dyna:mically
mapped onto a tree with its leftmost leaf at an.y arbi-
trary end-node on the cone (see Figure 7). This allows
the processing of a ray of voxels starting from any leaf
of the cone. This in turn allows the cone to be hard-
wired to the outputs of the 2DSB modules containing
the voxels. Such a configuration eliminates the need for
a set of n n-to-l switching units or a barrel shifter for
de-skewing of the 2DSB. The leaves of the cone contain
the TRILIN interpolation and the ABC Shading units.

The cone accepts as input a set of n samples along
the viewing ray and produces the final value for the cor-
responding pixel. The cone is a hierarchical pipfeline of
n - 1 primitive computation nodes called Voxel Combi-
nation Units (VCU). Each VCU accepts two consecutive
intensity/opacity pairs as input and combines them into
an output value. At any given snapshot the cone: is pro-
cessing log n rays simultaneously in a pipelined fashion,

80

ZD Skewed Btier Memory Modules

J” i

LEAF Unit
“,“’ -***

0 (TRlL.IN/ABc shading)
--*.**

-..... c

n %&x&m Unit (VCU)

a-.... . ..+

“‘- Switchable Datapath #
- constant Datapatb Oulpd
- LEAF Unit Neighbor Connection (to Host)

Figure 7: Folded Binary Cone Tree (n = 8 Leaf Nodes).

producing a new pixel color every clock cycle. Section-
ing and clipping can be implemented on the RPC by
discarding voxels according to user specified clip-planes.

Each VCU is capable of combining its two input
samples in a variety of ways in order to implement view-
ing schemes such as first or last opaque projection, max-
imum or minimum voxel value, weighted summation,
and a-cornpositing. Accordingly, each VCU selects as
input the left and center or center and right datapat,hs,
each one consisting of color C and opacity a of the cur-
rent ray sample.

The opacity of the voxel is either pre-stored with
every voxel or provided through a look-up table otf a
transfer function inside the ABC Shading Unit at the
leaves of the cone. The VCU produces an output voxel
V’ by performing one of the following operations:

First opaque: if (a~ is opaque) V’ = Vi;
else v’ = VR

Maximum value: if (CL < CR) v’ = VR
else v’ = y;

Weighted sum: c’=c&+wkcR

where W is the weighting factor and k is the cone level.
Wk is pre-computed and pre-loaded into the VCUs.
Weighted sum is useful for depth cueing, bright field,
and x-ray projections.

Compositing: C’ = CL + (I- a&)CR

a’ = aZ, + (1 - cu)QR

where the first level VCUs compute Cr = Crar, assum-
ing the values are gray-levels or RGB. This is actually
a parallel implementation of the front-to-back (or back-
to-front) cornpositing. The pixel output is transmitted,

for example, to the host, where post-processing, such
as post-shading, splatting, and 2D transformation or
warping, is performed. A frame buffer outputs the final
image to a color display.

4. Performance Estimation

The parallel conflict-free memory architecture of
Cube-3 reduces the memory access bottleneck from
O(n3) per projection to O(n2) and allows for very high
data throughput. Due to the highly pipelined architec-
ture, the frame rate is limited only by the data-transfer
rate on the Fast Bus. If we assume a dataset size of n3,
one resample location per volume element, and a final
screen resolution of n2 pixels, we need to transfer a dis-
crete ray of n voxels on the Fast Bus in & seconds.
f is the frame rate in updates per seconds. Since the
Fast Bus operates in a time-multiplexed fashion with

1 m tune-shces, we need n’fm seconds per transfer or a
clock speed on the bus of n2 f m.

256 x 256 x 256 30 He 33 MHz
512 x 512 x 512 15 He 66 MHe
512 x 512 x 512 30 He 125 MHe

Table 2: Fast-Bus Performance Requirements (m = 16).

Table 2 gives some examples of required bus per-
formance for a multiplexing rate of m = 16. High-
bandwidth buses have been used by other researchers
[16], and technologies and driving chip sets are readily
available for most bus speed requirements [19, 211. We
believe that a high-resolution cornpositing projection of
a 512’ dataset can be generated in Cube-3 with about
30 frames per second.

5. Hardware Estimation

Figure 8 shows the overall hardware structure of
Cube-3. It is a modular design that is scalable to higher
resolution datasets. The CFB boards contain several
CFB modules, each consisting of a memory module, an
addressing and bus control unit, and a bus transceiver.
Using off-the-shelf components such as SIMMs (Sin-
gle Inline Memory Modules) and FPGAs (Field Pro-
grammable Gate Arrays), it is possible to fit up to 128
CFB modules together with I/O hardware and I/O bus
access logic on a single board. The CFB modules on
each board can be connected to the acquisition device
by high-speed parallel input channels.

Each 2DSB consists of a Fast Bus transceiver, a
memory module, and a special purpose LEAF chip.
This chip contains the addressing and bus control units,
the TRILIN interpolator, and the ABC shading unit. A
special purpose VCU chip contains several VCUs of the

CFB: Cubic Frame B
2DSB: 2D Skewed Buffers
LEAF: TRILIN/AFK Shading U
VCUs: Voxel Combination Units

Figure 8: Cube-3 Hardware Architecture.

RPC. Each individual VCU has only modest complex-
ity, so that the number of VCUs per chip is determined
by the width of the I/O datapath. Assuming an I/O pin
count of 260 pins and Is-bit datapaths, it is feasible to
put 8 VCU units per chip. Sixteen VCU chips together
with 128 %DSB/LEAF units fit on a single board.

The CFB and 2DSB boards are connected through
the high-bandwidth Fast Bus on the backplane, which is
the main technological challenge in Cube-3. Assuming
a voxel resolution of 16-bit and a 5123 dataset, the back-
plane contains a 512-bit wide bus at clock-speeds possi-
bly over lOOMHe. Furthermore, the backplane contains
a separate I/O bus for LEAF node and host connec-
tions.

With the above board estimations, a Cube-3 sys-
tem for 5123 Is-bit per voxel datasets would require 8
boards and a custom fabricated backplane. This board
layout and chip count may change depending on off-the-
shelf chip availability, pin count, package size, and bus
interface technology.

6. Conclusions

Cube-3 is a scalable, high-resolution volume vi-
sualization architecture that exploits parallelism and
pipeliuing to achieve real-time performance. It will pro-
vide the following capabilities to the scientist and re-
searcher: viewing from any parallel and perspective di-
rection, control of shading and projection parameters
(e.g., first opaque, max value, x-ray, cornpositing), pro-
grammable color segmentation and thresholdiug, and
control over translucency, sectioning, and slicing.

We have simulated the Cube-3 architecture in C and
iu Verilog, and are designing the general layout of a
5123 Is-bit per voxel prototype implementation. We are
currently simulating the effects of the lo-neighborhood
gradient estimation for perspective projections. Future

For each triangle, the color and opacity are interpolated linearly
from the three vertex values to the interior, usually along the
edges and then across scan lines, as in Gouraud shading. Then
the interpolated color Ci and opacity ai are composited over the
old pixel color Cold to give the new color C,,, by the formula:
C new = O$Ci + (1 - C$)C,,d . Often the linear interpolation and
cornpositing steps can be performed by special purpose hardware
available in the rendering engines of a graphics workstation.

The projected tetrahedra algorithm has several artifacts which
produce incorrect colors, or Mach bands revealing the
subdivision into tetrahedra. The first artifact comes from the
linear interpolation of the color and opacity across the tetrahedra.
This interpolation is not C’ across the faces, and can produce
Mach bands, particularly at faces which are parallel to the
viewing direction and project to lines. The only cure is higher
order interpolation, which is not available in hardware on most
workstations.

However, there is a more serious problem with the algorithm,
which occurs even when the color C and extinction coefficient 7
are constant. The problem is easiest to understand when the
color is zero, so that the image shows an opacity cloud hiding the
background, and in 2-D, where the tetrahedra become triangles.
Consider a strip of triangles To, T,, TZ and T3 of a constant
thickness 1 as shown in Figure 2(a), projected vertically to a scan
line. In triangle T,, C is the “thick” vertex, where the opacity
a = 1 -exp(-TI), and a=0 at B and D. Figure 2(b) is a graph of
the transparency tl (x) = 1 -a,(x) along the scan line, which is
used to multiply the background color during compositing of
triangle T,. It is piecewise linear, because the opacity a:(x) has
been linearly interpolated across the scan line segments BC and
CD. Similarly, Figure 2(c) shows the transparency t.+) from
triangle T,. The final transparency along the segment CD,
resulting from cornpositing both triangles on top of the
background is the product t(x)=t,(x)t,(x), shown as the quadratic
polynomial segment above CD in Figure 2(d).

To derive the form of this quadratic polynomial, let x=sD+(1-s)C
be the point a fraction s of the way from C to D.

Then

rl(x)= I-al(x)
=s+(1-s)-[[s~O+(1-s)(1-exp(-~l)]
=s+(l-s)exp(-TZ)

and similarly

t*(x) = 1 - a2(x)
=s+(l--S)-[s.(I-exp(-Zf)+(I--s).O].
=s.exp(-zl)+(l-s)

Thus

t(x) = exp(-zf)+s.(l-s)[l -exp(-21)]*

The transparency should actually be exp(-zl), so the quadratic
term ~(1 - $)[I- exp(-zl)J* represents the error due to
approximating r,(x) and ttz(x) linearly.

a> I

A

Transparency T,

C
t

E

6
Eye

b) ‘It\/-
O-

A B C x D E F

Transparency T,

4 ‘I\/-

A B C X D E F

Transparency T0T,TT3

4 ‘q

O\
A B C x D E F

Figure 2

Other similar quadratic segments come from other projected
diagonal edges, and the final intensity, proportional to the
transparency if the background is uniform, is not C’. In three
dimensions, the corresponding effect produces Mach bands along
the projections of edges of the tetrahedra.

The solution to this problem is to define a,(x) correctly as
1 - exp(-szl) . This requires a linear interpolation of the quantity

84

~1, and then an exponential per pixel, which is not commonly
available in hardware. Instead, we have used a texture map table
on our SGI OnyxTM system. For the case of constant ‘T per
tetrahedron, as in our flow volume application, we put the
quantity 1 -exp(-u) in a one dimensional texture table, indexed
by u as described in [3]. The texture coordinate u was set to zero
at the thin vertices of each triangle, and to 71 at the thick vertex,
and was interpolated by the shading hardware before being used
as an address to the texture table.

If z varies linearly within each tetrahedron the product ~1 varies
quadratically inside each triangle. Quadratic interpolation of
texture coordinates was implemented in hardware on the Apollo
DNlOOOOVS [2], but was not available on our OnyxTM.
Therefore we used a 2-D texture table, with coordinates r and 1,
and put 1 - exp(-zl) in the table. At places, like the edges of a
rotated cube where the derivative of the thickness changes
suddenly, Mach bands will remain when using our table-based
exponential-per-pixel method, but there they are physically
appropriate and give useful cues about the object shape.

Now consider the case when the color also varies linearly across
the tetrahedron. The Shirley-Tuchman approximation (Cu+C,)/2
for the color of the thick vertex is not precise; it weighs the two
colors equally. The frontmost color should have greater weight,
because the opacity along the ray segment hides the rear color
more than the front one. Williams and Max [lo] have found an
exact formula for the color in this case, which they implement
with the aid of table Iookups. However, the supplementary
arithmetic required goes far beyond what is practical in hardware
computation at each pixel. As a compromise, we have used the
exact analytic form of the color of the thick vertex, and then used
the hardware to interpolate the color across each triangle. The
colors of the thin vertices come from the original color
specification, and the opacity is determined, as above, from a
texture table. This compromise can be implemented entirely in
hardware, and gives a fairly smooth color variation that seems to
move appropriately when a colored volume density rotates.

Figures 7(a) and (b), 8(b), and 9(a) and (b) all use texture
mapping for the opacity. Figures 7(a) and (b) show a triangular
prism divided into three tetrahedra. Figure 7(a) uses the average
color (Cu+C,)/2 at the thick vertices, while Figure 7(b) uses the
more accurate color integration of Williams and Max [lo]. Note
that in Figure 7(b) the color of the yellow-orange vertex closest
to the viewer is more prominent because this colored region
partially hides the differently colored regions behind it. The blue
“band” in Figure 7(b) is due to the linear interpolation of the
colors from the “thick’ vertex to the other vertices Figure S(a)
shows a 2x2x2 array of cubes, each divided into five tetrahedra,
and rendered by linearly interpolated opacities. Notice the Mach
Bands predicted in Figure 2. Figure 8(b) shows the same volume
using the texture mapping for more accurate opacities, and is
much improved. Figure 9 illustrates an irregular tetrahedral
mesh using the improved color interpolation and hardware
texture mapping. Figure 10 shows the turbulence behind a
simulated submarine fairwater. This data set is an irregular
brick mesh and uses the improved color interpolation with
texture mapping.

The Sorting Algorithm

Most volume rendering algorithms use point sampling methods
to calculate the color and intensity. Because the Shirley-
Tuchman algorithm allows us to scan convert entire polyhedra
very quickly, we needed to devise an efficient algorithm that
would sort unstructured meshed elements in a back to front
order. Our implementation will correctly sort arbitrarily shaped
convex elements in a back to front order as long as there are no
cycles or intersections in the data set. Each polyhedron can then
be subdivided into a set of tetrahedra for rendering. If a convex
mesh is structured so that cells meet on common faces, and this
topological information is stored in an adjacency graph, then the
adjacency graph can be used to produce a back-to-front sort (see
[4] or [l 11). However, we wanted to handle unstructured meshes
where this information is unavailable. Such examples are sliding
interfaces, where cells meet on only part of their faces, and non-
convex meshes, such as those with cavities, Figure 3 shows such
features in a mesh of a piston inside a cylinder. We extended
the Newell, Newell and Sancha sort for polygons to correctly
handle convex polyhedra. The sort will not perform subdivisions
in the case of intersecting polyhedra or cycles, instead it will
render them in an arbitrary order discussed later.

-* sliding -, interfaces

Figure 3.

This algorithm is a three dimensional extension of the Newell,
Newell and Sancha painter’s algorithm [1,5,6,7] and operates on
the volumes after having performed all of the perspective
transformation operations. Once the elements have been sorted
in back-to-front order, they can be fed to the volume renderer for
scan conversion and cornpositing, using the techniques described
in the previous sections.

There are three stages to the sorting process. The first applies all
viewing transformations on the vertices to obtain the screen
coordinates with a perspective corrected Z. The second obtains a
preliminary sorting of the polyhedra based on the rearmost Z
component of each element. Since we have applied the viewing
transformation to all vertices and have scaled Z so as to correct
for perspective, we would like to sort by increasing Z (the eye
looks down the Z axis towards negative infinity in a right-handed
coordinate system). In our implementation, this preliminary
sort was obtained through an O(nlogn) QuickSort. The third
stage, or “tine tuning” of the sort, is a bit more complicated.
However, like the painter’s algorithm approach, it is also broken
down into multiple steps with each one increasing in
computational complexity, in hopes that a majority of the
polyhedra will pass the earlier and less expensive tests.

85

The goal of the fine tuning is to find a separating plane between
two polyhedra, P and Q, in order to determine whether or not P
can be safely drawn before Q. The tine tuning process is broken
down into five steps in order to efficiently find this separating
plane. Given a list H of polyhedra exactly sorted in back to front
order by increasing Z coordinate of the farthest vertex (called
ZW~TIOS~), let polyhedron P be at the head of the list. IP can be
safely rendered if, for all polyhedra Q in the list II whose
ZWW~OS is less than (behind) P’s Z~~nmosr, the following
function returns a value of True:

Test-Polyhedra (P, Q)
{
(1) if (P and Q do not have

overlapping X extents) return True
(2) else if (P and Q do not have

overlapping Y extents)
return True

(3) else if (P is behind a
back-plane of Q) return True

(4) else if (Q is in front of a
front-plane of P) return True

else if
(5) (Q!=EdgeIntersection(P,Q))

return True
else return False

The function EdgeIntersection (P, Q) returns the
polyhedron which it determines to be in back. It makes this
decision by looking for intersections between the edges of P’s
screen projection and the edges of Q’s screen projection. For
each projected edge in one polyhedra we test all of the projected
edges in the other polyhedra for intersections. lf one is found, it
finds the Z component of that intersection point for P’s edge and
for Q’s edge, and returns the polyhedron whose Zintersection is
farther from the eye. EdgeIntersection () will not test the
remaining edges. ln the case that they are both equal, then we
continue searching for intersections looking for an inequality
between the two Zintersecrion components.

Figure 4.

If Test-Polyhedra0 returns False, thenpolyhedra1PandQ
are considered to be in the wrong order and Q should be: moved
to the head of the list and the tests should be repeated with Q
becoming the new P. It is possible that the list H could contain a
cycle. For instance, if polyhedron A obscures B, and B obscures
C, and C, in turn, obscures A, then there is no correct ordering
for the polyhedra involved. Figure 4 illustrates a cycle for three

polyhedra. The existence of a cycle is easily determined by
tagging polyhedron Q before inserting it at the head of the list
afterthe Test-Polyhedra0 function fails. If Qhas already
been tagged, then a cycle exists and it will need to be addressed.

If polyhedron P passes the tests for all polyhedra Q where
Qre=most is less than Fjwma, then polyhedron P is free to be
rendered; the tests have determined that P will not obscure any
polyhedra which are considered to be in front of it. P is then
shipped to the renderer and the next polyhedron in the list is
chosen for the new P.

The tirst two tests check the bounding boxes of the two
polyhedra in the X and ‘Y plane. The main thrust of the third and
fourth tests is to find a separating plane between P and Q. lf
such a plane exists, then P can safely be considered to lie behind
Q. To simplify the third and fourth tests, we can mark each face
of every polyhedron as being either a front-facing polygon (it
faces the eye) or a back-facing polygon. This is easily
determined because the algorithm stores an outward pointing
normal for each face. Therefore, a simple query as to the sign of
the Z component of a face’s normal is enough to determine
whether the face is front facing or not. A positive Z, in a right-
handed coordinate system, is front facing. Otherwise it is back-
facing. This pre-processing is all performed while reading in the
meshed topology.

The third test then simplifies to testing whether all of P’s
vertices lie behind a plane defined by any one of Q’s back-facing
polygons. If this is true, then the face under consideration foims
a separating plane between P and Q and therefore we can
conclude that P is behind Q. Performing this test is a matter of
making sure that for at least one back-facing polygon of Q, the
sign of f(xj, yj,zj) for all vertices j in P is non-negative for
that particular face of Q. The plane equation, f, is based on the
outward pointing normals for that face. If this test fails, then the
algorithm will proceed to the fourth test and try to determine
whether the plane specified by a front-facing polygon belonging
to P separates P from Q.

This fourth test is very similar to the third test. In determining
whether Q lies entirely in front of P, one must make sure that for
at least one front-facing polygon of P, f(xi, yj,zj) is positive
for all vertices j in polyhedron Q. This time, f is the phme
equation for a front-facing polygon of P, again based on outward
pointing normals. lf this test passes, then Q lies entirely in front
of at least one of the front-facing polygons of P and it can be
concluded that P lies behind Q.

The fifth test, EdgeIntersectionO, returns either the
index of the polyhedra which is in back, or an error condition if it
cannot detect any intersecting edges. The two cases where this
test can fail are shown in Figure 5. As we will see, this does :not
jeopardize the correctness of our algorithm.

The illustrations (a) and (b) in Figure 5, which both represent
screen projections, both fail the EdgeIntersection ()
function because neither have intersecting edges in their
projections. However, in case (a) the order in which the two
tetrahedra are rendered makes no difference since they (are

86

completely disjoint in the screen projection and therefore an error
condition can correctly be treated as if polyhedron P were in
front of polyhedron Q. On the other hand, this is not necessarily
the situation in case (b). We can rest assured that this [case (b)]
will never cause a sorting glitch because the front face of the
brick (assuming the tetrahedron is in front of the brick) is a front-
facing separating plane and would have been caught in the fourth
test. This fifth test is a more efficient alternative to the linear
programming method proposed by Newell [6]. If the fifth test
fails, then polygon Q should be moved to the front of the list and
the whole process should be repeated.

.P I \ , . 4 I . c I s ’ - - q Qn v
- - h - - - _ - -

Figure 5.

With the exception of the fifth, these tests are very easy to
perform. When reading in the topological data-set, one must
store the plane equation coefficients, with respect to an outward
pointing normal, in the polyhedral database. From these pre-
computed coefficients, determining which side of a face a point j
lies is as simple as finding the sign of Mj + byi + czj + d. We
have not addressed the issue of degenerate faces.

In the case that all of the tests fail and we have a cycle, the
program will render first whichever of P and Q has a Zfrontmost

further from the eye.

Non-planar Faces

The algorithm described works correctly for convex polyhedra
with planar faces and no cycles or intersections. Unfortunately,
it is quite possible, in finite element codes, for the faces to skew
slightly yielding non-planar faces. Fortunately, the faces will be
mostly planar because highly non-planar . faces can lead to
instabilities in the modeling code. Figure 6 illustrates an
exaggeration of what could possibly happen. Even if the face
were mildly non-planar, it is still enough to cause the tests to
fail. To accommodate slightly non-planar faces, we have
introduced an error tolerance 6.

In order to sort convex polyhedra with non-planar faces as shown
in Figure 4, the algorithm first calculates an average outward
pointing normal, (a&c), for each face. This is done using
Newell’s method as follows [7,9]:

UC c ” (Yi-Yj)(Zi+Zj)
i=l

~=~(Zi-

i=l
n

C=
c

'. (Xi-Xj)(Yi +Yj)

i=l

where:j=(i+l) mod n
and rr is the number of vertices per polygon

The last coefficient of the plane equation, d, can be calculated
by picking some point on the average plane. We chose the center
of gravity of the face for this point as follows:

To determine on which side of a plane a point lies, an error
tolerance is used. This is needed because with non-planar faces
the algorithm could return vertex u of polyhedron Q as being
contained inside of P, which would ultimately result in a cycle
(see Figure 6). This is not the case. In fact, if vertex a were
actually touching a plane of polyhedron P, machine round-off
might place a on the wrong side of that face which, again, would
result in a cycle. Therefore a tolerance, 6, is used to represent an

P

Q

- eye

Figure 6.

acceptable distance from a vertex to a face. In other words, the
third and fourth tests should consider vertex a to be on the
outside of a face (the plane equation evaluated at point a should
yield a non-negative value) if point a is within 6 units away from
the plane under consideration, regardless of which side of the
face point a actually lies. We can rationalize the existence of
this 6 tolerance as follows: if a comer of polyhedron Q happens
to intersect a planar face of polyhedron P by the amount 6, for a
suitably small 6, the visual impact will be minimal, if perceptible

87

at all. Our implementation uses a unique 6 for each fac:e, based
on the maximum deviation of a vertex from its corresponding
average plane.

Discussion

The line-tuning sort described runs in O(n2jwith respect to the
number of polyhedra sorted. However, this quadratic running
time is an upper bound and would only be found in the most
pathological cases where all polyhedra have overlapping Z
extents. The average running times for normal data sets should
be lower. While the first and second tests run in constant time
assuming the bounding boxes are known ahead of time, the third
and fourth tests run in O(FiEj) and O(EiFj) time where 1Ti and fj
correspond to the number of edges for polyhedra 1: and J,

respectively, and Fi and F. are the number of faces. The fifth test
runs in O(EiEd Again, A’ is is a worst case running time and it
should be su stantially better in practice since the function
terminates once a suitable intersection in the two projections is
found.

The algorithm was implemented in Ctt and has been used to
sort those primitives found in the SGI Explorer pyramid type.
The volume primitives are all subclasses of a general primitive
C+t class. These subclasses are as follows: the teuahedra,
pyramid, prism, wedge and brick. We can easily extend the
system to include others.

Table 1 shows some timing data using the complete sort on an
SGI Indigo2m. As contrast, the QuickSort can sort 24,000
elements in 4 seconds, and 157,000 elements in 27 seconds.

Complete Sort

0

seconds

0 5ooo 10000 15ooo 2oooo 25000

elements

Table 1.

We present no new approaches to cycle breaking. If a cycle is
detected during the sorting, then the polyhedron with the vertex
farthest from the eye would be removed from the list and
rendered. The most common form of a cycle the algorithm would
detect in a data set would probably be two non-planar faced
polyhedra “intersecting” each other. However, the 6 overlapping
tolerance should eliminate most of these situations. The
traditional, but slower method for removing cycles, such as the
type illustrated in Figure 4, would be to pass one or more
cutting planes through the offending polyhedra. [1 l] describes
methods for breaking cycles by re-triangulating with a Delaunay
triangulation.

Conclusion

This paper presents extensions to the Shirley-Tuchman
algorithm for cornpositing semi-transparent and colored elements
with hardware assisted texture mapping. We have also presented
extensions to the Newell, Newell, and Sancha sort for use with
unstructured data. For quick interaction or still frames,
QuickSorting alone is adequate. For a final animation, the full
sort is necessary because popping will become apparent if the
rendering order suddenly becomes incorrect.

Acknowledgments

We would like to thank Roger Crawlis and Peter Williams for all
of their help and suggestions. We would also like to thank the
people at Silicon Graphics for their advice and help in creating
our Explorer modules. The data set in Figure 10 was provided
by Mark Christon from the Lawrence Livermore National
Laboratory, whom we would also like to thank.

This work was performed under the auspices of the U. S.
Department of Energy by Lawrence Livermore National
Laboratory under contract No. W-7405-ENG-48.

References

1.

2.

3.

4.

5.

6.

7.

8.

Foley, James D., Andries van Dam, Steven K. Feiner, and
John F. Hughes, Computer Graphics Principles land
Practice, 2nd Edition, Addison-Wesley, Reading,
Massachusetts, 1990.

Kirk, David and Douglas Voorhies, “The Rendering
Architecture of the DNIOOOOVS”, Proceedings of
SIGGRAPH ‘90 (Dallas, Texas, August 6-10, 1990). In
Computer Graphics 24,4 (August 1990). 299-307.

Max, Nelson, Barry Becker, and Roger Crawfis, “Flow
Volumes for Interactive Vector Field Visualization”,
Proceedings of Visualization ‘93, (October 1993), pp. 19-
25.

Max, N., P. Hanrahan, and R. Crawlis, “Area and Volume
Coherence for Efficient Visualization of 3-D Scalar
Functions”, Computer Graphics, Vol. 24, No. 5 (November
1990), pp. 27-33.

Newell, M. E., R. G. Newell, and T. L. Sancha, “A
Solution to the Hidden Surface Problem.” Proceedings of
the ACM National Conference 1972, pp. 443-450.

Newell, M. E.“The Utilization of Procedure Models in
Digital Image Synthesis”, Ph.D. Thesis, University of
Utah, 1974 (UTEC-CSc-76-218 and NTIS AD/A 039
008/LL).

Rogers, David F., Procedural Elements for Computer
Graphics, McGraw-Hill, New York. 1985.

Shirley, Peter and Allan Tuchman, “A Polygonal Approach
to Direct Scalar Volume Rendering”, Computer Graphics,
Vol. 24, No. 5 (November 1990), pp 63-70.

88

-

9. Sutherland, I. E., R. F. Sproull, and R. A. Schumaker, “A
Characterization of Ten Hidden-Surface Algorithms”,
Computing Surveys, Vol. 6, 1974, pp. l-55.

10. Williams, Peter and Nelson Max, “A Volume Density
Optical Model”, Proceedings of the 1992 Workshop on
Volume Visualization (Boston, MA, October 19-20, 1992),
special issue of Computer Graphics, ACM SIGGRAPH,
New York, 1992.

11. Williams, Peter “Visibility Ordering of Meshed
Polyhedra”, ACM Transactions on Graphics, Vol. 11, No.
2, (April 1992), pp.103-126.

89

