
VolVis: A Diversified Volume Visualization System 

Ricardo Avilat, Taosong He*, Fichan Hang*, AI$ Kaufman*, * 
Hanspeter Pfister , Claudio Silva , Lisa Sobierajski , Sidney Wang 

'Howard Hughes Medical Institute 

Stony Brook, NY 11794-5230 

*Department of Computer Science 

Stony Brook, NY 1 1794-4400 
State University of New York at Stony Brook State University of New York at Stony Brook 

Abstract 

VolVis is a diversified, easy to use, extensible, high 
performance, and portable volume visualization system for 
scientists and engineers as well as for visualization 
developers and researchers. VolVis accepts as input 3 0  
scalar volumetric data as well as 3 0  volume-sampled and 
classical geometric models. Interaction with the data is 
controlled by a variety of 3 0  input devices in an input 
device-independent environment. Volvis output includes 
navigation preview, static images, and animation 
sequences. A variety of volume rendering algorithms are 
supported, ranging from fast rough approximations, to 
compression-domain rendering, to accurate volumetric ray 
tracing and radiosity, and irregular grid rendering. 

1. Introduction 

The visualization of volumetric data has aided many 
scientific disciplines ranging from geophysics to the 
biomedical sciences. The diversity of these fields coupled 
with a growing reliance on visualization has spawned the 
creation of a number of specialized visualization systems. 
These systems are usually limited by machine and data 
dependencies and are typically not flexible or extensible. 
A few visualization systems have attempted to overcome 
these dependencies (e.g., AVS, SGI Explorer, Khoros) by 
taking a data-flow approach. However, the added 
computational costs associated with data-flow systems 
results in poor performance. In addition, these systems 
require that the scientist or engineer invest a large amount 
of time understanding the capabilities of each of the 
computational modules and how to effectively link them 
together. 

Volvis is a volume visualization system that unites 
numerous visualization methods within a comprehensive 
visualization system, providing a flexible tool for the 
scientist and engineer as well as the visualization 
developer and researcher. The Volvis system has been 
designed to meet the following key objectives: 

Diversity: Volvis supplies a wide range of 
functionality with numerous methods provided within each 
functional component. For example, Volvis provides 
various projection methods including ray casting, ray 
tracing, radiosity, Marching Cubes, and splatting. 

Ease of use: The Volvis user interface is organized 
into functional components, providing an easy to use 
visualization system. One advantage of this approach over 
data-flow systems is that the user does not have to learn 
how to link numerous modules in order to perform a task. 

Extensibility: The structure of the Volvis system is 
designed to allow a visualization programmer to easily add 
new representations and algorithms. For this purpose, an 
extensible and hierarchical abstract model was developed 
[ 11 which contains definitions for all objects in the system. 

Portability: The Volvis system, written in C, is 
highly portable, running on most Unix workstations 
supporting X/Motif. The system has been tested on Silicon 
Graphics, Sun, Hewlett-Packard, Digital Equipment 
Corporation, and IBM workstations and PCs. 

Freely available: The high cost of most 
visualization systems and difficulties in obtaining their 
source code often lead researchers to write their own tools 
for specific visualization tasks. Volvis is freely available as 
source code. 

2. System Overview 

Figure 1 shows the Volvis pipeline, indicating some 
paths that input data could take through the Volvis system 
in order to produce visualization output. Two of the basic 
input data classes of Volvis are volumetric data and 3D 
geometric data. The input data is processed by the 
Modeling and Filtering components of the system to 
produce either a 3D volume model or a 3D geometric 
surface model of the data. For example, geometric data can 
be converted into a volume model by the Modeling 
component of the system, as described in Section 3, to 
allow for volumetric graphic operations. A geometric 
surface model carr be created from a volume model by the 
process of surface extraction. 

1070-2385/94 $04.00 0 1994 IEEE 
31 



1------- I  I 3D Geometric I 13D Scalar Field I 
I ------- I L _ _ _ _ _ _ I  

\ / 

/x- - - -" 

Figure 1: The VolVis pipeline. 

The Measurement component can be used to obtain 
quantitative information from the data models. Surface 
area, volume, histogram and distance information can be 
extracted from volumes using one of several methods. 
Isosurface volume and surface area measurements can be 
taken either on an entire volume or on a surface-tracked 
section. Additionally, surface areas and volumes can be 
computed using either a simple non-interpolated voxel 
counting method or a Marching Cubes [8] based 
measurement method. For geometric surface models, 
surface area, volume, and distance measurements can be 
performed. 

Most of the interaction in Volvis occurs within the 
Manipulation component of the system. This part of the 
system allows the user to modify object parameters such as 
color, texture, and segmentation, and viewing parameters 
such as image size and field of view. Within the 
Navigation section of the Manipulation component, the 
user can interactively modify the position and orientation 
of the volumes, the light sources, and the view. This is 
closely connected to the Animation section of the 
Manipulation component, which allows the user to specify 
animation sequences either interactively or with a set of 
transformations to be applied to objects in the scene. The 
Manipulation component is described in Section 4. 

The Rendering component encompasses several 
different rendering algorithms, including geometry-based 
techniques such as Marching Cubes, global illumination 
methods such as ray tracing and radiosity, and direct 
volume rendering algorithms such as splatting. The 
Rendering component is described in Section 5. 

The Input Device component of the system maps 
physical input device data into a device independent 
representation that is used by various algorithms requiring 
user interaction. As a result, the Volvis system is input 
device independent, as described in Section 6. 

3. Modeling 

A primary responsibility of the Modeling component 
is the voxelization of geometric data into volumetric model 
representations. Voxelizing a continuous model into a 
volume raster of voxels requires a geometrical sampling 
process which determines the values to be assigned to 
voxels of the volume raster. To reduce object space 
aliasing, we adopt a volume sampling technique [14] that 
estimates the density contribution of the geometric objects 
to the voxels. The density of a voxel is determined by a 
filter weight function which is proportional to the distance 
between the center of the voxel and the geometric 
primitive. In our implementation, precomputed tables of 
densities for a predefined set of geometric primitives are 
used to assign the density value of each voxel. For each 
voxel visited by the voxelization algorithm, the distance to 
the predefined primitive is used as an index into the tables. 

Figure 2: A volumetric ray traced image of a volume- 
sampled geometric wine bottle and glasses. 

(See color plates, page CP-3.) 

32 



Since the voxelized geometric objects are 
represented as volume rasters of density values, we can 
essentially treat them as sampled or simulated volume data 
sets, such as 3D medical imaging data sets, and employ 
one of many volume rendering techniques for image 
generation. One advantage of this approach is that volume 
rendering carries the smoothness of the volume-sampled 
objects from object space over into image space. Hence, 
the silhouette of the objects, reflections, and shadows are 
smooth. Furthermore, by not performing any geometric 
ray-object intersections or geometric surface normal 
calculations, a large amount of rendering time is saved. In 
addition, CSG operations between two volume-sampled 
geometric models are accomplished at the voxel level 
during voxelization, thereby reducing the original problem 
of evaluating a CSG tree of such operations down to a 
Boolean operation between pairs of voxels. Figure 2 
shows a ray traced image of a wine bottle and glasses that 
were modeled by CSG operations on volume-sampled 
geometric objects. The upper right window in Figure 3 
shows a ray traced image of a nut and bolt that were also 
modeled by CSG operations. 

Figure 3: An example VolVis session. The nut and bolt 
are volume-sampled geometric models. 

4. Manipulation 

The Manipulation component of Volvis consists of 
three sections: the Object Control section, the Navigation 
section, and the Animation section. The Navigation and 
Animation sections are also referred to as the Navigator 
and Animator, respectively. Both the Navigator and 
Animator produce output visualization, shown in Figure 1 
as Navigation Preview and Animation, respectively. 

The Object Control section of the system is 
extensive, allowing the user to manipulate parameters of 
the objects in the scene. This includes modifications to the 

color, texture, and shading parameters of each volume, as 
well as more complex operations such as positioning of cut 
planes and data segmentation. The color and position of 
all light sources can be interactively manipulated by the 
user. Also, viewing parameters, such as the final image 
size, and global parameters, such as ambient lighting and 
the background color, can be modified. 

The Navigator allows the user to interactively 
manipulate objects within the system. The user can 
translate, scale and rotate all volumes and light sources, as 
well as the view itself. The Navigator can also be used to 
interactively manipulate the view in a manner similar to a 
flight simulator. To provide interactive navigation speed, a 
fast rendering algorithm was developed which involves 
projecting reduced resolution representations of all objects 
in the scene. This task is relatively simple for geometric 
objects, where calculating, storing, and projecting a 
polygonal approximation requires little overhead. 
However, when considering a volumetric isosurface the 
cost of an additional representation increases considerably. 
A simple and memory efficient method available within 
the Navigator creates a reduced resolution representation 
of an isosurface by uniformly subdividing the volume into 
boxes and projecting the outer faces of all the boxes that 
contain a portion of the isosurface. These subvolumes 
serve a dual purpose in that they are also used by the 
PARC (Polygon Assisted Ray Casting) acceleration 
method [ 11 during ray casting and ray tracing. 

Although the PARC subvolume representation can 
be stored as a compact list of subvolume indices, the 
resulting images are boxy and uninformative for many data 
sets. To overcome this problem, another method is 
provided which utilizes a reduced resolution Marching 
Cubes representation of an isosurface. In order to reduce 
the amount of data required for this representation, edge 
intersections used to compute triangle vertices are 
restricted to one of four possible locations. This results in 
much smoother images which are typically more 
informative than the uniform subdivision method. The 
Navigator also supports the other Volvis rendering 
techniques that are described in Section 5 ,  although 
interactive projection rates with these methods can be 
achieved only on high-end workstations. 

The Animator also allows the user to specify 
transformations to be applied to objects within the scene, 
but as opposed to the Navigator which is used to apply a 
single transformation at a time, the Animator can be used 
to specify a sequence of transformations to produce an 
animation. The user can preview the animation using one 
of the fast rendering techniques within the Navigator. The 
user can then select a more accurate and time consuming 
rendering technique, such as volumetric ray tracing, to 

33 



create a hgh  quality animation. In addition to simple 
rotation, translation and scaling animations, the Navigator 
can be used to interactively specify a “flight path”, which 
can then be passed to the Animator, and rendered to create 
an animation. 

An example session of the VolVis system is shown in 
Figure 3. The long window on the left is the main VolVis 
interface window, with buttons for each of the major 
components of the system. The current scene is displayed 
in the Navigator window on the left, and in the Rendering 
image window on the right. A low resolution Marching 
Cubes technique was used in the Navigator, while a ray 
casting technique using the PARC acceleration method 
was employed during rendering. 

5. Rendering 

Rendering is one of the most important and 
extensive components of the VolVis system. For the user, 
speed and accuracy are both important, yet often 
conflicting aspects of the rendering process. For this 
reason, a variety of rendering techniques have been 
implemented within the VolVis system, ranging from the 
fast, rough approximation of the final image, to the 
comparatively slow, accurate rendering within a global 
illumination model. Also, each rendering algorithm itself 
supports several levels of accuracy, giving the user an even 
greater amount of control. In this section, a few of the 
rendering techniques developed for the VolVis system are 
discussed. 

Two of the VolVis rendering techniques, volumetric 
ray tracing, and volumetric radiosity, are built upon global 
illumination models. Standard volume rendering 
techniques, which are also supported by Volvis, typically 
employ only a local illumination model for shading, and 
therefore produce images without global effects. Including 
a global illumination model within a visualization system 
has several advantages. First, global effects can often be 
desirable in scientific applications. For example, by 
placing mirrors in the scene, a single image can show 
several views of an object in a natural, intuitive manner 
leading to a better understanding of the 3D nature of the 
scene. Also, complex surfaces are often easier to render 
when represented volumetrically than when represented by 
high-order functions or geometric primitives, as described 
in Section 3 .  Volumetric ray tracing is described in 
Section 5.1 and volumetric radiosity is discussed in 
Section 5.2. 

In order to reduce the large storage and transmission 
overhead as well as the volume rendering time for 
volumetric data sets, a data compression technique is 
incorporated into the Volvis system. This technique allows 

volume rendering to be directly performed on the 
compressed data and is described in Section 5.3. 

Although many scanning devices create data sets 
that are inherently rectilinear, this restriction poses 
problems for fields in which an irregular data 
representation is necessary. These fields include 
computational fluid dynamics, finite element analysis, and 
meteorology. Therefore, support was added for irregularly 
gridded data formats in the VoZVis system, as discussed in 
Section 5.4. 

5.1. Volumetric Ray Tracing 

The volumetric ray tracer provided within the Volvis 
system is intended to produce accurate, informative images 
[ll]. In classical ray tracing, the rendering algorithm is 
designed to generate images that are accurate according to 
the laws of optics. In VOWS, the ray tracer must handle 
classical geometric objects as well as volumetric data, and 
strict adherence to the laws of optics is not always 
desirable. For example, a scientist may wish to view the 
maximum value along the segment of a ray passing 
through a volume, instead of the optically-correct 
composited value. Figure 4 illustrates the importance of 
including global effects in a maximum-value projection of 
a hippocampal pyramidal neuron data set which was 
obtained using a laser-scanning confocal microscope. 
Since maximum-value projections do not give depth 
information, a floor is placed below the cell, and a light 
source above the cell. This results in a shadow of the cell 
on the floor, adding back the depth information lost by the 
maximum-value projection. 

In order to incorporate both geometric and 
volumetric objects into one scene, the classical ray tracing 
intensity equation, which is evaluated only at surface 
locations, must be extended to include volumetric effects. 
The intensity of light, Zn(x ,  d), for a given wavelength A, 
arriving at a position x, from the direction d, can be 
computed by: 

where x’ is the first surface intersection point encountered 
along the ray d originating at x. Zsn(x’, d) is the intensity 
of light at this surface location, and can be computed with 
a stahdard ray tracing illumination equation [ 151. 
Zvl(x, x’) is the volumetric contribution to the intensity 
along the ray from x to x’, and zA(x,  x’) is the attenuation 
of Zsl(x’, d) by any intervening volumes. These values are 
determined using volume rendering techniques, based on a 
transport theory model of light propagation [7]. The basic 
idea is similar to classical ray tracing, in that rays are cast 
from the eye into the scene, and surface shading is 
performed on the closest surface intersection point. The 

34 



difference is that shading must be performed for all 
volumetric data that are encountered along the ray while 
traveling to the closest surface intersection point. 

Figure 4: A volumetric ray traced image of a cell using 
a maximum-value projection. 

For photo-realistic rendering, the user typically 
wants to include all of the shading effects that can be 
calculated within a given time limit. However, 
visualization users may find it necessary to view 
volumetric data with no shading effects, such as when 
using a maximum-value projection. In Volvis, the user has 
control over the illumination equations for both volumetric 
and geometric objects, and can specify, for each object in 
the scene, which shading effects should be computed. For 
example, in Figure 4 no shading effects were included for 
the maximum-value projection of the cell, while all parts 
of the illumination equation were considered when shading 
the geometric polygon. In another example, the user may 
place a mirror behind a volumetric object in a scene in 
order to capture two views in one image, but may not want 
the volumetric object to cast a shadow on the mirror, as 
shown in Figure 5.  The head was obtained using magnetic 
resonance imaging, with the brain segmented from the 
same data set. The mirror is a volume-sampled polygon 
that was created using the modeling technique described in 
Section 3. 

5.2. Volumetric Radiosity 

The ray tracing algorithm described in the previous 
section can be used to capture specular interactions 
between objects in a scene. In reality, most scenes are 
dominated by diffuse interactions, which are not accounted 
for in the standard ray tracing illumination model. For this 
reason, VolVis also contains a radiosity algorithm for 

volumetric data. Volumetric radiosity includes the 
classical surface “patch” element as well as a “voxel” 
element. As opposed to previous methods that use 
participating media to augment geometric scenes [lo], this 
method is intended to render scenes that may solely consist 
of volumetric data. Each patch or voxel element can emit, 
absorb, scatter, and transmit light. Both isotropic and 
diffuse emission and scattering of light are allowed, where 
“isotropic” implies directional independence, and 
“diffuse” implies Lambertian reflection (i.e., dependent on 
normal or gradient). Light entering an element that is not 
absorbed or scattered by the element is transmitted 
unchanged. 

Figure 5: A volumetric ray traced image of a human head. 

In order to cope with the high number of voxel 
interactions required, a hierarchical technique similar to 
[SI is used. An iterative algorithm [2] is then used to shoot 
voxel radiosities, where several factors govern the highest 
level in the hierarchy at which two voxels can interact. 
These factors include the distance between the two voxels, 
the radiosity of the shooting voxel, and the reflectance and 
scattering coefficients of the voxel receiving the radiosity. 
This hierarchical technique can reduce the number of 
interactions required to converge on a solution by more 
than four orders of magnitude. 

After the view-independent radiosities have been 
calculated, a view-dependent image is generated using a 
ray casting technique, where the final pixel value is 
determined by compositing radiosity values along the ray. 
Figure 6 shows a scene containing a volumetric sphere, 
polygon, and light source. The light source isotropically 
emits light, and both the sphere and the polygon diffusely 
reflect light. The light source is above the sphere and 
directly illuminates the top half of the sphere. The bottom 
half of the sphere is indirectly illuminated by light 
diffusely reflected from the red polygon. 

(See color plates, page CP-3.) 

35 



5.3. Compression Domain Volume Rendering 

Another rendering method incorporated in VolVis is 
a data compression technique for volume rendering. Our 
volume compression technique is a 3D generalization of 
the JPEG still image compression algorithm [13] , with 
one important exception: the transform is a discrete Fourier 
transform rather than a discrete cosine transform. The 
original 3D data is subdivided into M x M x M  subcubes, 
where each subcube is Fourier transformed to the 
frequency domain through a 3D discrete Fourier transform. 
Each of the 3D Fourier coefficients in each subcube is then 
quantized, and the resulting 3D quantized frequency 
coefficients are organized as a linear sequence through a 
3D zig-zag order. The resulting sequence of Fourier 
transform coefficients is then fed into an entropy encoder 
that consists of run-length coding and Huffman coding. 

Figure 6: A volumetric radiosity projection of a 
voxelized sphere and polygon. 

To render in the compressed domain, we use a new 
class of volume rendering algorithms [3, 9, 121 that are 
based on the Fourier projection slice theorem. It states that 
a projection of the 3D data volume from a certain direction 
can be obtained by extracting a 2D slice perpendicular to 
the view direction out of the 3D Fourier spectrum and then 
applying an inverse Fourier transform. In our approach we 
apply the Fourier projection slice theorem to each subcube 
in the Fourier domain, which results in a set of 2D planes 
in the spatial domain called subimages that are composited 
using spatial compositing to get the final projection of the 
original 3D data set. 

Using our compression-domain rendering approach, 
we were able to achieve high compression ratios while 
maintaining image quality. Figure 7 shows a CT scan of a 
lobster that was rendered in the compressed domain. 

We are currently investigating the adaptation of 
subcube sizes to various spatial or frequency domain 
criteria, such as subcube AC coefficient energy, which is a 
measure of subcube activity, sample density, and 
coefficient distribution. 

Figure 7: Compression domain volume rendering of a 
lobster. 

5.4. Irregular Grid Rendering 

An intuitive way to visualize irregularly gridded data 
sets is to resample the data into a regular grid format. 
Unfortunately, it is quite difficult to find a resampling 
method that preserves details yet does not require a large 
amount of memory. Consequently, we chose to extend the 
traditional volume rendering algorithms to process the 
irregularly gridded data directly. For example, we have 
extended the ray tracing algorithms in VolVis to visualize 
data represented in a spherical coordinate system, with 
grids that are unevenly spaced in r, evenly spaced in 8, and 
unevenly spaced in $. When rendering, we could cast rays 
into the scene, uniformly stepping and compositing along 
each ray. A problem with uniform stepping is that it 
inevitably misses detailed information. To avoid this 
problem, we traverse the ray cell by cell in the volume, in a 
method similar to Garrity [4]. 

6. Input Devices 

The Input Device component of the VolVis system 
allows the user to control a variety of input devices in an 
input device independent environment. For example, to 
control the Navigator, the user can utilize a variety of 
physical input devices such as a keyboard, a mouse, a 
Spaceball, and a DataGlove. To achieve this, we have 
developed the device unijied interface (DUI) [6], which is 
a generalized and easily expandable protocol for 
communication between applications and input devices. 

(See color plates, page CP-3.) 

36 



The key idea of the DUI is to convert raw data 
received from different input sources into unified format 
parameters of a “virtual input device”. Depending on the 
requirements of the application, the parameters may 
include a number of 3D positions and orientations as well 
as abstract actions. The abstract actions include direct and 
simple actions like mouse or Spaceball button clicks , and 
complex dynamic actions like two hand gestures or “snap- 
dragging”. The conversion from the real device operations 
to abstract actions is performed by the selected simulation 
methods which are incorporated into the DUI. 

The most important advantage of employing the 
virtual input device paradigm is input device 
independence. In the DUI, each application is interactively 
assigned a virtual input device, whose configuration is also 
interactively decided. Modification of either the input 
device component or the application does not affect other 
parts of the system. The simulation methods used to 
convert different kinds of raw information into the unified 
format are often difficult to design. For example, the 
recognition of dynamic gestures of a DataGlove is fairly 
difficult. By using the DUI, new simulation methods can 
be easily incorporated and tested with no adverse effect on 
the application or the other parts of the Input Device 
component. 

However, in order to fully utilize the capability of 
different devices, a virtual input device should not totally 
hide the device dependent information since different 
devices are suitable for different applications. For 
example, it is harder to control the Navigator with the 
Spaceball than with the DataGlove, since the six degrees of 
freedom provided by the Spaceball are not entirely 
independent as they are in the DataGlove. In the DUI, a 
device information-base is associated with each virtual 
input device. All of the device dependent information 
related to a virtual device is classified and stored in an 
abstract form, which is then queried by an application 
when necessary [6]. 

We are currently working on the expansion of the 
DUI into a general-purpose interaction model. The model 
is created based on lightweight threads and is designed to 
handle simultaneous high bandwidth, multimodal, and 
complex input from multiple users, even through the 
network. A general abstract action and input device 
description language is also being studied. 

7. Implementation 

Two major concerns during the implementation of 
Volvis have been to ensure that the system could be 
expanded to include new functionality and techniques, and 

that the system would be relatively easy to port to new 
platforms. Therefore, the development of the VolVis 
system required the creation of a comprehensive, flexible, 
and extensible abstract model [ 11. The model is organized 
hierarchically, beginning with low-level building blocks 
which are then used to construct higher-level structures. 
For example, low-level objects such as vectors and points 
can be combined to create a coordinate system, while at 
the highest level the World structure contains the state of 
every object in the system. The World structure includes 
Lights, Volumes, Views, global cut planes, and global 
shading parameters. Each Volume structure includes color 
and texture information, local shading parameters, local 
cut planes, and data which may be either geometric 
descriptions, or rectilinear or irregularly gridded data. 

The abstract model is flexible in that a structure can 
assume one of many representations. For instance, a 
segmentation structure can consist of either a threshold or 
opacity and color transfer functions. A natural 
consequence of flexibility is expandability. Since the 
objects in the abstract model already provide for numerous 
representations, the addition of a new segmentation type, 
shading type, or even data type is fairly simple. 

The VoZvis system requires only Unix and X/Motif 
to run. Unfortunately, only simple two-dimensional 
graphics operations are supported in X. Therefore, all 
viewing transformations, shading, and hidden surface 
removal must be done in software. This greatly reduces the 
rendering speed for the geometry-based projection routines 
used in the Navigation section, and therefore also reduces 
the overall interactivity of the system. Since many Unix 
workstations now include graphics hardware, interactivity 
can be maintained by utilizing the graphics language of the 
workstation. To avoid rewriting large sections of the code, 
we have developed a library of basic graphics functions 
that are used throughout the VolVis code. This simplifies 
the process of porting the system to a new workstation that 
has a different graphics language, since only the graphics 
function library must be rewritten. 

8. Conclusions 

The Volvis system for volume visualization has been 
used for many tasks in diverse applications and situations. 
First, Volvis has been used to test new algorithms for 
rendering, modeling, animation generation, and computer- 
human interaction. Due to the flexible nature of the 
abstract model, testing new ideas within the system is 
much easier and less time consuming than writing a new 
application for each new algorithm. VolVis has also been 
used by scientists and researchers in many different areas. 
For example, neurobiologists have used VoZVis to navigate 
through the complex dendritic paths of nerve cells, which 

37 



is extremely useful since the function of nerve cells is 
closely tied to their structure (see Figure 4). 

Volvis is a rapidly growing system, with new plans 
for future development continually being considered. 
Since the system is currently being used by many research 
labs and visualization developers, feedback from these 
sources is used to make future versions of the system 
easier to use and extend. To increase portability, a user- 
interface library, similar to the graphics function library 
described in the previous section, is being developed to 
allow Volvis to be easily ported to new windowing 
systems. 

9. Acknowledgements 

Volvis development has been supported by the 
National Science Foundation under grant CCR-9205047, 
Department of Energy under the PICS grant, Howard 
Hughes Medical Institute, and the Center for 
Biotechnology. Data for Figure 4 is courtesy of Howard 
Hughes Medical Institute, Stony Brook, NY. Data for 
Figure 5 is courtesy of Siemens, Princeton, NJ. Data for 
Figure 6 is courtesy of AVS, Waltham, MA. 

For information on how to obtain the Volvis system, 
send e-mail to volvis@cs.sunysb.edu. 

References 

1. 

2. 

3. 

4. 

5.  

R.S. Avila, L.M. Sobierajski, and A.E. Kaufman, 
“Towards a Comprehensive Volume Visualization 
System,” Visualization ’92 Proceedings, pp. 13-20 
(October 1992). 

M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. 
Greenberg, “A Progressive Refinement Approach to 
Fast Radiosity Image Generation,” Computer 
Graphics (Proc. SIGGRAPH) 22(4) pp. 75-84 (July 
1988). 

S. Dunne, S. Napel, and B. Rutt, “Fast Reprojection 
of Volume Data,” Proceedings of the 1st Conference 
on Visualization in Biomedical Computing, pp. 

M. Garrity, “Raytracing Irregular Volume Data,” San 
Diego Workshop on Volume Visualization, Computer 
Graphics 24(5) pp. 35-40 (December 1990). 

P. Hanrahan, D. Salzman, and L. Aupperle, “A Rapid 
Hierarchical Radiosity Algorithm,” Computer 
Graphics (Proc. SIGGRAPH) 25(4) pp. 197-206 
(July 1991). 

11-18 (1990). 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

T. He and A. Kaufman, “Virtual Input Devices for 
3D Systems,” Visualization ’93 Proceedings, pp. 
142- 148 IEEE Computer Society Press, (October 
1993). 
W. Krueger, “The Application of Transport Theory 
to Visualization of 3D Scalar Data Fields,” 
Computers in Physics, pp. 397-406 (JulyIAugust 
1991). 

W. E. Lorensen and H. E. Cline, “Marching Cubes: 
A High Resolution 3D Surface Construction 
Algorithm,” Computer Graphics (Proc. SIGGRAPH) 

T. Malzbender, “Fourier Volume Rendering,” ACM 
Transactions on Graphics 12(3) pp. 233-250 (July 
1993). 

H. E. Rushmeier and K. E. Torrance, “The Zonal 
Method For Calculating Light Intensities in the 
Presence of a Participating Medium,” Computer 
Graphics (Proc. SIGGRAPH) 21(4) pp. 293-306 
(July 1987). 

L.M. Sobierajski and A.E. Kaufman, “Volumetric 
Ray Tracing,” 1994 Symposium on Volume 
Visualization, ACM Press, (October 1994). 

T. Totsuka and M. Levoy, “Frequency Domain 
Volume Rendering,” Computer Graphics (Proc. 

G. K. Wallace, “The P E G  Still Picture Compression 
Standard,” Communications of the ACM 34(4) pp. 
30-44 (April 1991). 

S.W. Wang and A.E. Kaufman, “Volume Sampled 
Voxelization of Geometric Primitives,” Visualization 
’93 Proceedings, pp. 78-84 IEEE Computer Society 
Press, (October 1993). 

T. Whitted, “An Improved Illumination Model for 
Shaded Display,” Communications of the ACM 
23(6) pp. 343-349 (June 1980). 

21(4) pp. 163-169 (July 1987). 

SIGGRAPH), pp. 271-278 (1993). 

38 

mailto:volvis@cs.sunysb.edu

