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Abstract 

We present Cube-4, a special-purpose volume rendering archi­
tecture that is capable of rendering high-resolution (e.g., 10243

) 

datasets at 30 frames per second. The underlying algorithm, called 
slice-parallel ray-casting, uses tri-linear interpolation of samples 
between data slices for parallel and perspective projections. The 
architecture uses a distributed interleaved memory, several parallel 
processing pipelines, and an innovative parallel dataflow scheme 
that requires no global communication, except at the pixel level. 
This leads to local, fixed bandwidth interconnections and has the 
benefits of high memory bandwidth, real-time data input, modular­
ity, and scalability. We have simulated the architecture and have 
implemented a working prototype of the complete hardware on a 
configurable custom hardware machine. Our results indicate true 
real-time performance for high-resolution datasets and linear scal­
ability of performance with the number of processing pipelines. 

1 Introduction 

Volume rendering is a key technology for the interpretation of the 
large amounts of 3D scalar data generated by acquisition devices 
such as biomedical scanners, by supercomputer simulations, or by 
voxelizing geometric models. Especially important for the explo­
ration and understanding of the data are sub-second display rates 
and instantaneous visual feedback during the change of rendering 
parameters. To create the illusion of smooth dynamics, the image 
must be updated in true real-time. In this paper we describe Cube-4, 
a scalable architecture for volume rendering that achieves 30 pro­
jections per second for up to 1024 3 16-bit voxel datasets. 

The high computational requirements of traditional computer 
graphics led to the development of special-purpose graphics en­
gines, primarily for polygon rendering. Similarly, the special needs 
of volume rendering, where an image must be computed rapidly and 
repeatedly from a volume dataset, lends itself to the development 
of special-purpose volume rendering architectures. A dedicated ac­
celerator, which separates volume rendering from general-purpose 
computing, seems to be best suited to provide true real-time vol­
ume rendering on standard deskside or desktop computers. Volume 
rendering hardware may also be used to directly view changes of 
the 3D data over time for 4D (spatial-temporal) visualization, such 
as in real-time 3D ultrasonography, micro-tomography, or confocal 
microscopy. This may lead to the direct integration of volume visu­
alization hardware with real-time acquisition devices, in much the 
same way as fast signal processing hardware became part of today's 
scanning devices. 

Consequently, research has been conducted towards the devel­
opment of dedicated real-time volume rendering architectures (see 
[6] Chapter 6). Among the more recent approaches is VIRIM [5]. 
However, even a large 16 board VIRIM system achieves only 10 
frames per second for low-resolution 256 x 256 x 128 datasets. A 
more modular approach is taken by VOGUE [9]. A 2563 dataset 
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can be rendered at high quality with 0.6 frames/sec using a single 
board and at 4 frames/sec using 8 boards and a 640 MB/sec global 
bus. Our earlier Cube-3 architecture has been estimated to render 
a medium-resolution 5123 dataset at 30 frames/sec [12]. However, 
such an implementation would require 8 boards interconnected by 
a 3 GB/sec global bus. At this time, no volume rendering architec­
ture is capable of achieving real-time frame rates at an acceptable 
hardware cost, and none is modular and scalable in performance. 

The Cube-4 architecture, presented in this paper, performs arbi­
trary parallel and perspective projections of high-resolution datasets 
at true real-time frame rates. The performance is data and classifi­
cation independent and can be achieved at a fraction of the cost 
of a multiprocessor computer. Cube-4 uses accurate 3D interpola­
tion and high-quality surface normal estimation without any pre­
computation or data duplication. Consequently, Cube-4 is also 
appropriate for 4D visualization as an embedded volume visual­
ization hardware system in emerging real-time acquisition devices. 
The Cube-4 architecture performance grows proportionally with in­
creasing number of memory and processing units, ultimately lim­
ited by memory speeds. 

In the following sections, we first present the underlying algo­
rithm of the Cube-4 system. In Section 5, we present the Cube-4 
dataflow, a main contribution of this research. It leads to localized, 
near-neighbor datapaths for the Cube-4 architecture, described in 
Section 6. In Section 7, we show results from simulations and 
a prototype implementation of Cube-4 on the Teramac, a config­
urable custom hardware machine developed by HP Labs. Finally, 
in Section 8, we analyze the theoretical achievable performance. 

2 Parallel Ray-Casting 

Our research focuses on ray-casting of regular datasets. Ray­
casting offers room for algorithmic improvements while still allow­
ing for high image quality. We modified the original ray-casting al­
gorithm to make it better suited for a parallel hardware implemen­
tation. Figure 1 shows three possible approaches to parallelizing 
ray-casting. According to the form of parallelism that is exploited, 
we call these algorithms ray-, beam-, or slice-parallel. 

a) Ray-Parallel b) Beam-Parallel c) Slice-Parallel 

Figure 1: Three different approaches to parallelizing ray-casting. 
Shaded voxels are processed simultaneously. The thick arrows in­
dicate the direction in which the algorithm proceeds. 



Data Slice 

a) VolumE! Traversal b) Tri-Linear Interpolation c) Gradient Estimation 

• 
f) 2D Image Warping e) Compositing d) Shading I Classification 

Figure 2: Pipeline stages of the slice-parallel ray-casting algorithm. 

In the ray-parallel approach, all voxels along a ray are processed 
simultaneously (the shaded voxels in Figure Ia). The algorithm 
proceeds ray by ray in scanline order (the thick arrow in Figure I a). 
Our earlier Cube-3 architecture [12] is a highly-parallel implemen­
tation of this approach. However, the simultaneous access to all 
voxels along a ray requires global communication between the vol­
ume memory and the processing units. This ultimately limits the 
performance and the scalability of the architecture because of the 
very high bandwidth requirements. 

An alternative to operating on all samples of a single ray is to si­
multaneously operate on samples of several neighboring rays. De­
pending on how the algorithm proceeds, we call these approaches 
beam-parallel (see Figure lb) or slice-parallel (see Figure lc). A 
beam is a scanline of voxels that is parallel to a principal axis of the 
dataset. The beam-parallel ray-casting approach follows a group of 
rays by fetching consecutive beams in the major viewing direction. 
We presented a preliminary proposal towards a beam-parallel ray­
casting architecture in [13]. However, the stepping along slanted 
planes of rays requires complicated addressing mechanisms and 
leads to non-uniform processor communication. 

The slice-parallel approach processes consecutive data slices that 
are parallel to a face of the volume dataset. This processing order 
appears similar to multipass resampling (4] or object order com­
positing algorithms [16]. However, in addition to the object-order 
data traversal we incorporate advantages of ray-casting into the al­
gorithm. Slice-parallel algorithms have been used in various forms 
by other researchers. Reynolds et al. [14] and Lacroute and Levoy 
[10] use a shear-warp factorization of the viewing transformation to 
project the volume in a ~.lice-parallel fashion onto the base-plane. 
Cameron and Underill [3] and SchrOder and Stoll [15] have used 
slice-parallel approaches on massively-parallel SIMD machines. 

Our hardware impleme:ntation of the slice-parallel ray-casting al­
gorithm improves on these previous results in several ways. Shear­
warp algorithms use linear 2D resampling filters [10], while the 
Cube-4 architecture impl1!ments accurate 3D resampling using tri-
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linear interpolation between data slices. Furthermore, Cube-4 does 
not use any pre-computations and stores only one copy of the 
dataset, allowing for real-time data input. The focus and the. pri­
mary contribution of this paper is the Cube-4 architecture, an ef­
ficient and scalable implementation of pipelined slice-parallel ray­
casting in hardware. 

3 Slice-Parallel Ray-Casting 

In this section we present a fully pipelined version of slice-parallel 
ray-casting that accesses each voxel of the dataset exactly once 
per projection. Figure 2 gives an overview of how the data fiows 
through a sequence of stages in a pipelined fashion. 

The volumetric dataset is stored as a 3D regular grid of voxels 
(Figure 2a). The face of the volume memory that is most perpen­
dicular to the major component of the viewing direction is called 
the base-plane. Consecutive data slices parallel to the base-plane 
are traversed in scanline order. Beams of two adjacent data slices 
of voxels are processed simultaneously to compute a new slice of 
interpolated sample values inbetween these two slices. In the fol­
lowing section we present a distributed memory system that allows 
conflict-free access to beams from all three principal axes. 

The orthogonal voxel neighborhoods between data slices al­
low for accurate 3D resampling using tri-linear interpolation OF'ig­
ure 2b ). In order to reduce the computation of res amp ling weights, 
we use a lookup-table based ray-casting technique that was first 
introduced by Yagel and Kaufman [17] and that we used in the 
Cube-3 architecture [12]. Correct 3D resampling along rays may 
lead to multiple samples inbetween data slices. Consequently,. we 
may compute more than one interpolated data slice inbetween voxel 
slices. 

To approximate the surface normals necessary for shading and 
classification (Figure 2c) and to avoid any further access to the vol­
ume memory after tri-linear interpolation we use the interpolated 
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Figure 4: 3D skewed memory organization for n = 4. a) Assignment ofvoxel addresses [zyx] in volume space. b) Dataset stored in 
n = m = 4 memory modules. c) Dataset stored in m = 2 memory modules. Thick lines indicate slice boundaries inside the memory. 

sample values to estimate the gradients on each sample position 
(cf. [13]). Figure 3 illustrates the technique for parallel projections 
for major viewing direction Z. The interpolated data slices from 

o Samples along rays e Additionally interpolated 
samples 

-Current 

-Behind 

Current 
YLBehind 

z 

Figure 3: Gradient estimation using interpolated samples from the 
ahead, behind, and current (ABC) slices. The example shows par­
allel projection with major viewing direction Z. 

the tri-linear interpolation stage are stored in the so-called ABC 
buffers. The current buffer stores the samples that are currently 
being shaded. The ahead and behind buffers store the samples one 
slice ahead and one slice behind in major viewing direction, respec­
tively. 

As Figure 3 shows, the gradients in non-major direction (X and 
Y) can be computed by taking central differences of neighboring 
samples (shown in black) inside the current buffer. In the major 
direction Z, because of the possibly slanted rays, we need to inter­
polate two additional samples (shown in grey). These samples can 
be computed using two additional bi-linear interpolations between 
samples of the ahead and behind buffers. This method is called 
the 12-neighborhood ABC gradient estimation because a total of 
12 samples participate in the computation. 

Using the gradient as a surface-normal approximation, each sam­
ple is shaded and classified by an opacity transfer function (Fig­
ure 2d). Compositing of samples along rays onto the base-plane 
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(Figure 2e) is performed using any of the well-known methods in 
the literature [11]. The distorted intermediate base-plane image is 
then 20 transformed (warped) onto the viewing plane to produce 
the final image (Figure 2t). 

Perspective projection is nearly identical to parallel projection, 
except that the interpolation stage also needs to compute averages 
oflarger neighborhoods for slices further away from the base-plane 
(cf. [10]). The first slice of data is uniformly sampled and scaled 
by a factor of one, which corresponds to shooting one ray per pixel 
of the base-plane. In all subsequent slices, the slices are scaled ac­
cording to the viewing transformation, and a larger portion of the 
slice is sampled. This averaging of larger neighborhoods can be 
implemented in hardware using additional interpolation stages that 
perform a simple box-filtering of slices. The maximum extent of 
this box filter, needed for the slice furthest away from the base­
plane, is 1 + 2 tan a, where a is half of the field-of-view angle. 
For a < 45°, or any field-of-view less than 90°, this corresponds to 
a maximum extent of 3 voxels. Therefore, averaging of samples for 
perspective projections can be implemented using three additional 
interpolation stages. After samples from averaged slices have been 
computed, the subsequent algorithm remains the same as for paral­
lel projections. 

4 Memory Organization 

In this section, we present a memory interleaving technique based 
on a linear skewing of the address space that allows for conflict-free 
access to beams of voxels from all three principal viewing axes. 
Kaufman and Bakalash [7] have used a simplified version of this 
memory organization. The volume dataset is stored only once with­
out data duplication. 

Figure 4a shows a 4 x 4 x 4 dataset in its local coordinate system. 
Each voxel in the figure is represented by its address which is a = 
[zyx], the tuple with the local coordinates of the voxel. We refer 
to this standard arrangement of voxels as volume space. A regular 
volumetric dataset with n x n x n voxe1s in volume space is stored 
in m physical memory modules, each containing w words of either 
8 or 16 bits, using a skewing function u : [z, y, x) -+ [k, i), which 



maps a voxel with local coordinates [z, y, x] into memory module 
number k at index i as follows: 

k = (x + y + z) mod n 
i = y + zn 

0:5 k,x,y,z < n, 
0 :5 i < n 2

• 
(1) 

Adjacent voxels of beams in X direction are placed in the same 
relative locations of adjacent memory modules (i.e., rows across 
the memory). This choice of storage is arbitrary. If the number of 
memory modules m is smaller than n, we apply a re-mapping of 
the skewed memory space by a partitioning function¢> : [k, i] -t 
[kp, ip]. where: 

kp=k mod m 

ip = i~~ + l!;;J 
0 :5 kp < m, 

<. n3 o _ zp < m-· (2) 

Figure 4b shows th,e resulting assignment of voxel addresses 
[zyx] to memory modules, for n = m = 4. Notice that we can 
access beams in X, Y, or Z direction conflict-free from the four 
memory modules. Figure 4c shows the partitioned memory space 
for n = 4 and m = 2. It is important to notice that this skew­
ing and partitioning of the memory space works for any n and m 
as long as n is a multiple of m. In general, the computation of 
( x + y + z) mod n or k mod m involves a division operation. If 
n and m are powers of two, it degenerates to a masking operation 
with the low order bits of the operand. 

5 Slice-Parallel Dataflow 

The skewing distance s is the distance by which two beams have 
been shifted (mod m) relative to each other. For example, Fig­
ure 4b shows that each beam of a slice (in volume space) has been 
shifted by s = 1 (in memory space) with respect to the beam below 
it. This means that, in general, beams can not be accessed from 
memory in the same order they have in volume space. 

One solution to the problem is to permute fetched beams by 
an intermediate interconnection network between the memory and 
the processing units. This permutation of beams is called unskew­
ing, because it reduces the skewing distance between consecutively 
fetched beams to zero. This approach has been used in the Cube-
3 architecture [12]. However, the hardware complexity of such a 
global interconnection is high and becomes prohibitive for large m, 
limiting the scalability. In Cube-4 we take a very different approach 
that does not require any global communication except at the pixel 
level. 

We now explain the dlatapaths and the resulting dataflow in de­
tail using signal flow graphs (SFGs). A SFG is a directed graph 
with non-negative edge and node weights. A node stands for an 
arithmetic or logic function performed with zero delay and an edge 
stands for data transport The order of operations is represented 
as directed edges emanating from the node that is to be executed 
first. The weight of the ,edge indicates by how many clock cycles 
the first operation must precede the second operation. We do not 
show edge weights of 0. An edge may also be viewed as a datap­
ath from one operation to another and its weight as indicating the 
number of registers included in that datapath. The width of all dat­
apaths is assumed to be constant. To simplify the discussion, we 
first restrict our attention to the case of m = n. Later, we discuss 
the generalization of these results to the case of m < n. 

Tri-Linear Interpolation 

Tri-linear interpolation requires 8 voxels arranged in a 2 x 2 x 2 or­
thogonal voxel neighborhood. This is equivalent to two 2 x 2 voxel 
neighborhoods from consecutive data slices. Figure 5 shows one 
slice of a 4 x 4 x 4 datasf:t in volume space and in skewed memory 

50 

a) 

A B IC Dl 
A B CD 
fAiil C D 
l£\_]!J C D 

Figure 5: Bi-linear neighborhoods. 

space. For simplicity we have indicated increasing voxel addresses 
along rows with consecutive letters. The neighborhoods required 
for the bi-linear interpolation inside the slice are surround1~ by 
a box. Notic>e how the orthogonal neighborhoods are shifted and 
sheared in m1emory space due to the skewing difference between 
beams. 

Assume that we fetch consecutive beams in positive Y di«:ction 
from the dataset. This corresponds to fetching consecutive rows in 
column direction in Figure 5b. The SFG in Figure 6 shows how 
the data is moved between pipeline stages. Dashed edges that leave 
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; 

; 
; 
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1 
' --~ 

Stage 2 

bO bl b2 b3 

Figure 6: SFG for bi-linear interpolation. 

on one side of the figure are connected to corresponding edges on 
the other side in a wrap around fashion. Each node in the graph 
performs a linear interpolation of its two inputs. The first stage 
performs a linear interpolation between neighboring voxels of one 
beam using w"', the interpolation weight in X direction. The second 
stage performs a linear interpolation between the linearly interpo­
lated samples of two consecutive beams using wy, the interpolation 
weight in Y direction. 

Looking at the SFG we notice some important patterns. The dat­
apath between memory and stage 1 is used to join two (spatially) 
adjacent voxels from a beam at a time. This is easily achieved by 
a merger of adjacent voxels at the processing nodes. The dataJPath 
between stage 1 and stage 2 is used to join data of two (temporally) 
subsequent beams. Because the two beams are output in cons,ecu­
tive clock periods, this can be achieved by a shift and delay. Al­
though the skewing difference between input beams has been cor­
rected, the results are still skewed. 

To perform a tri-linear interpolation, we need voxel data from 
two subsequent slices. Figure 7 shows the complete SFG for tri­
linear interpolation using the SFG of Figure 6. Because voxels from 
the second slice are output n clock periods later, we need to dt:lay 
data from the previous slice by n cycles. Furthermore, because 
of the skewing difference between beams of subsequent slices, we 
need to shift the non-delayed output from the memory by one po-
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Figure 7: SFG for tri-linear interpolation. 

sition. For example, compare the beams at index i = 0 and i = 4 
in Figure 4b. The last stage of the SFG in Figure 7 performs the 
linear interpolation between the hi-linearly interpolated samples of 
the two slices using wz, the interpolation weight in Z direction. 

ABC Gradient Estimation 

ABC gradient estimation is similar to tri-linear interpolation. It re­
quires the collection of a 3 x 3 x 3 neighborhood of interpolated 
samples between the three ABC sample slices. The ray-samples 
are output each clock cycle by the tri-linear interpolation stage as 
skewed beams. To compute any additional samples required for or­
thogonal gradients (as shown in Figure 3) we use a similar dataflow 
approach as for bi-linear interpolation. 

To compute the gradients we need to collect the data from the 
three consecutive sample slices. Figure 8 shows the corresponding 
SFG. The samples currently output by the tri-linear interpolation 

tO t1 t2 t3 

___ .,.. 

Behind 

' - -- - r -~-- - - -~- _.--------- - , 

Ahead<t-~--+~-+~--;~-+~--.------' 

gX gY gZ 

Figure 8: Top-level SFG for ABC gradient estimation. 

stage are input without delay as ahead samples. The ahead samples 
are delayed by n cycles and input as the current samples. A delay 
of the current samples by n cycles produces the behind samples. 
As in the case of tri-linear interpolation, the delayed samples are 
shifted according to their skewing distance. The last stage in the 
SFG computes the central differences between interpolated samples 
and outputs the three gradient components. 
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Shading and Classification 

Using this gradient, each sample is shaded using any of the standard 
local illumination models. For maximum performance, we need 
to perfectly pipeline the shading calculations. Other researchers 
have proposed fully pipelined Phong shading and vector normal­
ization architectures [8]. For our prototype implementation, we use 
a small, lookup-table based reflectance map shader [2]. It allows 
to implement any higher-order shading model without expensive 
square root units. Classification is performed based on sample value 
and possibly gradient magnitude using a lookup-table opacity map. 

Com positing 

The shading stage produces consecutive beams of color intensity 
values within slices. In the slice-parallel dataflow, the compositing 
stage accumulates these intensity values to pixels stored in the base­
plane. The total size of this base-plane buffer is (2n)2

, the maxi­
mum size of a base-plane [15]. However, this buffer is distributed 
among m compositing units. The difficulty is how to forward the 
intensity values along a ray to the compositing unit that stores the 
intermediate base-plane pixel corresponding to that ray. Or, alter­
natively, how to forward the intermediate base-plane pixel value to 
the compositing unit that receives the next intensity value along the 
ray. 

Consider a partially composited base-plane pixel that was pro­
duced after compositing slice S. We have to forward this pixel to 
the compositing unit which receives the next intensity value along 
the ray from the shader. Because all rays are 26-connected in dis­
crete space, the next sample along the ray must come from a 3 x 3 
neighborhood inside the next slice S + 1. Using the discrete ray­
templates of the template-based ray-casting algorithm [17], we can 
determine the position inside this neighborhood of the next intensity 
value along the ray. Using Figure 9, we can determine the forward­
ing pattern for all possible cases. The figure assumes that the major 
viewing direction is Z and that the dataset is stored along beams in 
X direction. 

-1 0 :-}: 
~-- ~ 

-1 0 1 
-1 0 1 

a) No skewing YL 
X 

-2 -1 0 

-1 0 1 

0 1 2 

b) Skewed, 
sliceS 

-1 0 1 

0 1 2 
1 2 3 

c) Skewed, 
slice S+1 

Figure 9: Compositing neighborhood. 

Figure 9a shows the 3 x 3 neighborhood in case of no skewing. 
The center position, surrounded by a box, indicates the current po­
sition of the intermediate base-plane pixel. The numbers indicate 
the relative distance in X to the compositing unit that receives the 
next sample along the ray. For example, if the ray-templates indi­
cate that the ray in discrete space makes a step in positive X and 
Y directions, the next sample is forwarded to the compositing unit 
one position in positive X direction (shown by a dashed box in the 
figure). Because of the skewing difference between beams inside 
slices, this forwarding distance is altered as shown in Figure 9b. 
Finally, Figure 9c shows the forwarding distances if we take the 
skewing between slices S and S + 1 into account. Because of the 
forwarding distances, each compositing unit has to be connected to 
three units in positive and one unit in negative X direction. Fig­
ure 10 shows the corresponding SFG for compositing. Notice that, 



due to the maximum skewing differences of -1 and +3 shown in 
Figure 9c, a minimum of five rendering pipelines is required. 

iO il i2 i3 i4 

pO pl p2 p3 p4 

Figure 10: Compositing SFG. 

The resulting pixels of the base-plane are still generated in a 
skewed order. However, pixel scanlines can easily be unskewed by 
a simple address-permutation inside or when stored into the frame­
buffer. 

Extensions for m < n 

If m < n, we have to add two minor changes to the dataflow pre­
sented so far. Instead of complete beams we forward partial beams 
with ;;; samples each. The order of partial beam access is along 
beams. To fetch the data of a complete beam requires m cycles in­
stead of one cycle. Consequently, all delay operations on edges in 
the SFGs, which are needed to gather data from consecutive beams, 
need to be changed from I tom. 

The second change is required because of border cases between 
partial beams. For example, the tri-linear interpolation units at 
rightmost position m require voxels from the partial beam that will 
be fetched one cycle later. Figure 11 shows how to deal with these 
border cases using a technique we call beam-extension. The partial 

Partial bE~am i 
'"----~Partial beam (i+ 1) 

.~ ... : 
Extension 

Figure 11: Beam extension. 

beam i, is delayed by one cycle, until the next partial beam ( i + 1) 
arrives, and the overlap necessary for the border cases is available 
as an extension to beam i. Notice that we need to extend beams 
only in the direction of partial beam access. The amount of exten­
sion depends on the processing stage and varies between 3 and 4 
data samples. 

6 Cube-4 Architecture 

Figure 12 shows the complete top-level diagram of the Cube-4 ar­
chitecture with five rendering pipelines. Due to the skewing differ­
ence for pixel exchange in the compositing stage this is the mini­
mal configuration. The dataset is stored in the multiple cubic frame 
buffer (CFB) memory modules. Each rendering pipeline contains 
four types of processing units: CFB memory and address gener­
ation, tri-linear interpolation (TRILIN), ABC gradient estimation 
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and shading (Shader), and compositing (Compos). All datapaths 
have constant width, corresponding to the word-width of a voxel 
(e.g., 8 or 16 bits). The delay of data required for tri-linear inter­
polation and for the ABC gradient estimation is achieved by first-in 
first-out (FIFO) memories. 

Control of Cube-4 is very simple and can be part of the dataflow. 
The host downloads the viewing vector into the CFB address­
generation units. The ray templates are generated in hardware by 
adding the viewing vector to the current sample location and com­
puting the resampling weights. From there on, all necessary control 
signals travel with the data through the machine, making centralized 
control unnecessary. 

7 Simulations and Prototyping 

We have extensively simulated the algorithm and architecture in C 
and a high-kvel hardware description language (VHDL). Table 7 
shows results from the VHDL simulation. The table shows fl!nder­
ing performance in frames per second versus the number of rc!nder­
ing pipelines for three different dataset resolutions. To translate the 
number of simulation cycles into frames per second, we assumed a 
relatively low processing frequency of 33 MHz. 

Dataset #Pipelines Cycles/frame Frames/sec: 

643 8 32,814 1,006 
16 16,422 2,009 
32 8,226 4,012 

1283 8 262,206 126 
16 131,118 252 
32 65,574 503 

2563 8 2,097,246 16 
16 1,048,638 31 
32 524,334 63 
64 262,182 126 
128 133,106 248 

Table 1: VHDL simulation results: Rendering performance as a 
function of the number of rendering pipelines. 

As a proof of concept we implemented a Cube-4 prototype on 
the Teramac, a configurable custom hardware machine developed at 
Hewlett-Packard Laboratories [1]. Figure 13a (in the color se,ction 
of the proceedings) shows a picture of a 4-board Teramac system. 
Teramac can execute synchronous logic designs of up to one million 
gates at rates up to 1 MHz. The system has been built from custom 
field-programmable logic arrays (FPGAs) packaged in large mul­
tichip modules (MCMs). Figure l3b (in the color section) shows 
a picture of a single MCM, which carries 27 FPGAs. Each MCM 
measures 6.13 x 7.4 inches, weighs approximately 3 pounds, and 
has over 3000 pins. The Teramac system we used for our Cube-4 
implementation includes 8 boards, 250MB of RAM, 32 MCMs and 
864FPGAs. 

Our prototype of Cube-4 on Teramac implements the dc!sign 
shown in Figure 12 with five rendering pipelines. The. implemen­
tation is capable of producing parallel color projections of 1283 

8-bit per voxel datasets from arbitrary directions. Inside the shader 
units, we use a lookup-table based reflectance map shading. The 
total logic complexity for all five rendering pipelines is 330K gates. 
Compilation of the complete design onto Teramac takes less than 
one hour without user intervention. 

The Cube-4 prototype generated an image of any of the 1283 

datasets in 1.5 seconds at 0.25 MHz, independent of dataset com-
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Figure 12: The Cube-4 slice-parallel architecture. Bold lines indicate all data connections of the rendering pipeline in the center. (CFB = 
Cubic Frame Buffer, TR/LIN = Tri-Linear Interpolation Unit, Compos = Compositing Unit.) 

plexity, transfer function, or viewing parameters. The maximum 
processing frequency of Cube-4 on Teramac is 0.96 MHz without 
any performance optimizations, although higher speeds could be 
achieved by careful insertion of additional pipeline stages. Fig­
ure 13c (in the color section) shows volume renderings of a CT 
lobster dataset and Figure 14 (in the color section) shows volume 
renderings of several other datasets. The use of different opacity 
and color transfer functions reveals different aspects of the data. 

8 Performance Analysis 

The results we presented in the previous section indicate linear 
scalability of performance with increasing number of rendering 
pipelines. In this section, we look at the theoretical maximum per­
formance of Cube-4. Assuming perfect pipelining of interpolation, 
shading, and compositing, we can continually enter data at the max­
imum possible rate, and the theoretical performance of Cube-4 is 
thus limited by the access speed of the memories. 

If n is the dimension of the dataset, p the number of rendering 
pipelines, and fp the processing frequency of the machine, the the-

oretical rendering rate fr in frames per second is P!f. Figure 15 
the frame rate fr as a function of the number of rendering pipelines 
p for three different dataset sizes. We show graphs for two different 
processing frequencies fp· The solid lines shows graphs for fp = 
33 MHz, corresponding to the cycle time of SDRAM, the fastest 
currently available DRAM memory technology. The dashed lines 
show performance assuming 100 MHz processing frequency. Be­
cause current DRAM memory can not output data at this rate it 
has to be additionally interleaved per rendering pipeline. This addi­
tional interleaving is a standard memory bank arrangement as used 
in current general-purpose processors. 
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In order to allow for a compact implementation, we are currently 
developing an application-specific integrated circuit (ASIC) con­
taining several of the Cube-4 rendering pipelines. We have a con­
tract with a company that will fabricate such an ASIC. Preliminary 
estimates indicate that an ASIC containing 4 rendering pipelines re­
quires less than 300 pins, including power and ground. Each ASIC 
requires only 400K gates, and internal memory for the ABC FIFO 
buffers of 40 K, assuming a total of 32 rendering pipelines. 

Frames per Second 

8 16 32 64 128 256 512 1024 
Number of Rendering Pipelines 

Figure 15: Theoretical rendering performance of Cube-4 as a func­
tion of the number of renderingfipelines. We show graphs for dif­
ferent dataset sizes (0 = 256 , D = 5123

, /:::, = 10243 
). Solid 

lines indicate 33 MHz processing frequency, and dashed lines indi­
cate 100 MHz processing frequency. 



We are designing a long PCI card system with 32 rendering 
pipelines or 8 Cube-4 ASICs, 32 SRAM chips, and a PCI host inter­
face. Such a card would cost a few thousand dollars and provide 30 
projections per second for 2563 datasets. Larger systems for higher 
resolution datasets supporting 30 projections per second, 16-bit per 
voxel, can be built, such as a workstation board (e.g., VME size) 
for 5123 datasets, and multiple boards for 10243 datasets. 

9 Conclusion!~ 

We have introduced Cube-4, a scalable architecture for true real­
time ray-casting of large volumetric datasets. The unique fea­
tures of Cube-4 are a high bandwidth skewed memory organiza­
tion, localized and near~neighbor datapaths, and multiple, paral­
lel rendering-pipelines with simple processing units. System per­
formance scales linearly with the number of rendering pipelines, 
limited only by memory access speed. The Cube-4 architecture, 
viewed as a near-neighbor array of simple processors, is extremely 
well-suited for very large scale integration (VLSI). Due to its mod­
ularity, it is feasible to build a Cube-4 VLSI chip containing several 
rendering pipelines. Such a chip allows the construction of modular 
and cost-effective small to medium size volume rendering systems 
with true real-time perfo1mance for low- to high-resolution datasets 
- far above the performance of current systems. 

Finally, the choice of whether one adopts a general-purpose or a 
special-purpose solution to volume rendering depends upon the cir­
cumstances. If maximum flexibility is required, general-purpose 
appears to be the best way to proceed. However, an important 
feature of graphics accelerators is that they are integrated into a 
much larger environment where software can shape the form of in­
put and output data, thereby providing the additional flexibility that 
is needed. A good example is the relationship between the needs of 
conventional computer graphics and special-purpose graphics hard­
ware. Nobody would dispute the necessity for polygon graphics ac­
celeration despite its obvious limitations. We are making the exact 
same argument for our Cube-4 volume rendering architecture. 
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(a) 

Figure 13 : a) A four-board Teramac system. b) A Teramac multichip module (MCM) with 27 custom FPGAs 
routed through 39 signal layers. c) Different volume renderings of a 1283 CT lobster dataset generated by the 
Cube-4 prototype on the Teramac. Each image took 0.6 seconds at 0.96 MHz processing frequency. 

(a) (c) 

Figure 14: Volume rendering images of 1283 datasets produced by the Cube-4 prototype on Teramac. Each image 
took 1.5 seconds at 0.25 MHz processing frequency. a) Hippocampal pyramidal cell. b) lluman MRI head. c) 
Bullfrog ganglion cell. d) CT head, 45° rotated . e) Volume sampled sphere-flake. f) MRI brain. Images g) 
through i) show the effect of different transfer functions on a simulated high-potential iron protein. 
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