
 

EM-Cube: An Architecture for Low-Cost Real-Time Volume
Rendering

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Osborne, Rändy, Hanspeter Pfister, Hugh Lauer, TakaHide
Ohkami, Neil McKenzie, Sarah Gibson, and Wally Hiatt. 1997.
EM-Cube: An architecture for low-cost real-time volume
rendering. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware:
August 3-4, 1997, Los Angeles, California, ed. A. Kaufman, W.
Strasser, S. Molnar, B. Schneider, S. N. Spencer, 131-138. New
York, N.Y.: Association for Computing Machinery.

Published Version doi:10.1145/258694.258731

Accessed May 1, 2017 2:06:13 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4141476

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4141476&title=EM-Cube%3A+An+Architecture+for+Low-Cost+Real-Time+Volume+Rendering&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=null,2060e9d052f3b69c96973292385496a3,null,null,null,null,null&department=Engineering+and+Applied+Sciences
http://dx.doi.org/10.1145/258694.258731
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


EM-Cube: An Architecture for Low-Cost
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TakaHide Ohkami

MERL – A Mitsubishi Electric Research Lab

Abstract

EM-Cube is a VLSI architecture for low-cost, high quality volume
rendering at full video frame rates. Derived from the Cube-4 ar-
chitecture developed at SUNY at Stony Brook, EM-Cube computes
sample points and gradients on-the-fly to project 3-dimensional vol-
ume data onto 2-dimensional images with realistic lighting and
shading. A modest rendering system based on EM-Cube consists
of a PCI card with four rendering chips (ASICs), four 64Mbit
SDRAMs to hold the volume data, and four SRAMs to capture the
rendered image. The performance target for this configuration is
to render images from a 2563 � 16 bit data set at 30 frames/sec.
The EM-Cube architecture can be scaled to larger volume data-sets
and/or higher frame rates by adding additional ASICs, SDRAMs,
and SRAMs.

This paper addresses three major challenges encountered devel-
oping EM-Cube into a practical product: exploiting the bandwidth
inherent in the SDRAMs containing the volume data, keeping the
pin-count between adjacent ASICs at a tractable level, and reduc-
ing the on-chip storage required to hold the intermediate results of
rendering.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing I.3.1 [Computer Graphics]:
Hardware Architecture—Graphics Processors B.3.2 [Memory
Structures]: Design Styles—Interleaved Memories

1 Introduction

Real-time volume rendering is an enabling technology for medical
applications including diagnosis, surgical training, and surgical sim-
ulation [6]. The large computational and memory requirements of
real-time volume rendering place it beyond the capabilities of single
processorPCs and workstations without dedicated hardware. While
high performance graphics systems can perform volume rendering
in real-time (e.g. the SGI InfiniteReality Engine), such systems are
very expensive.

Our goal is to develop a family of products that provide real-time
volume rendering at affordable prices — i.e., within reach of per-
sonal computer budgets. This family is intended to address medical
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applications where volume rendering is an obvious requirement, but
also to provide a foundation for the development of interactive vol-
ume graphics — that is, the graphics of 3-D sampled images and
their manipulation at interactive speeds. We expect that as systems
for real-time volume rendering become cheaper and more common-
place, a broader class of applications — e.g. scientific visualization,
industrial design and analysis, virtual sculpture, and games — will
begin to use volume graphical methods. Eventually, we envision
that the mechanisms of volume graphics and conventional polygon-
based graphics will converge, so that both kinds of rendering will be
supported by the same kind of hardware.

This paper describes the architecture of the first member of this
family, a volume rendering chip currently under development. The
architecture is a scalable systolic array based on Cube-4, developed
at SUNY at Stony Brook [16]. The performance target is a chipset
that fits onto a single PCI card and renders volume data sets of size
2563�16 bit voxels, at 30 frames/sec. The cost of such an accelera-
tor will be on the order of a low-cost PC. In subsequent generations
the cost will decrease as the underlying implementation technology
improves.

Cube-4, though scalable to larger volumes by adding more ASICs
and memory modules, is impractical for low-cost ASIC implemen-
tation. The key challenges are delivering the required bandwidth
with as few chips as possible, reducing the inter-chip communi-
cation to keep the pin count reasonable, and reducing the on-chip
storage required for intermediate results. Our EM-Cube (Enhanced
Memory Cube-4) architecture meets the first two challenges by us-
ing a block skewed memory, which exploits inherent SDRAM burst
bandwidth, and meets the third challenge by subdividing the volume
in a technique we call sectioning.

The organization of this paper is as follows. Section 2 describes
related work. Sections 3 and 4 describe Cube-4 and introduce the
three implementation challenges. Sections 5 and 6 introduce block
skewed memory and show how it meets the first and second chal-
lenges respectively. Section 7 discusses the on-chip storage prob-
lem and our solution via sectioning. Section 8 presents the overall
architecture. Finally, Sections 9 to 11 discuss features needed for a
commercial product, such as support for multiple voxel formats.

2 Related Work

Several approaches have been taken to achieve interactive volume
rendering rates. Software implementations use acceleration tech-
niques which require pre-computation, additional data storage, or
trade-off image quality for speed. Shear-warp rendering, the cur-
rently fastest software algorithm, achieves one projection in a few
seconds on a regular workstation [11]. Many researchers have im-
plemented volume rendering algorithms on large general-purpose
multiprocessors [2, 5, 14, 15]. However, this approach requires ex-
pensive, typically network-shared machines to achieve acceptable
frame rates, and the lack of direct frame-buffer access prohibits
real-time output rates. Another approach is to use existing polygon
graphics hardware for volume rendering [18, 8, 13]. Interactive ren-
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Figure 1: Rendering pipeline

dering rates have been achieved on the SGI Reality Engine using 3D
texturing hardware [3, 1]. However, current 3D texturing hardware
is expensive and does not support estimation of gradients that is re-
quired for high-quality shading and classification. Furthermore, the
best volume rendering performance on large general-purpose super-
computers or special-purpose texture mapping hardware is still be-
low 15 frames/sec for 2563 volumes.

In view of these limitations, it is not surprising that a number
of researchers have undertaken the development of special-purpose
hardware for volume rendering. VOGUE, one of the most concrete
proposals, is a compact ray-casting unit which provides interactive
rendering speeds at moderate hardware costs [10]. A single board
consisting of eight-way interleaved volume memory and four VLSI
chips provides 2.5 frames/sec for 2563 volumes. Near real-time
rates of 20 frames/sec can be achieved by connecting several mod-
ules over a ring-connected cubic network [9]. VIRIM, an object-
order volume rendering engine, is one of the few research propos-
als that has been built and tested [7]. The machine consists of four
VME boards with special-purpose geometry processors for data re-
sampling and programmable ray-casting processors for the final im-
age generation. VIRIM achieves 2.5 frames/sec for 2563 datasets.

3 Cube-4 Architecture

Cube-4, developed at SUNY Stony Brook, is a scalable systolic ar-
ray of rendering pipelines, each connected to its own memory mod-
ule [16]. Figure 1 shows the major functions in each rendering
pipeline. Cube-4 uses a modified ray casting algorithm. Instead of
processing along each ray in depth-first fashion, Cube-4 processes
rays in parallel in a breadth-first fashion. In particular, all the sample
points contained in an entire plane of voxels are processed in paral-
lel, thereby avoiding the need to re-read neighboring voxels from
memory. Such a voxel plane, called a slice, is always perpendicular
to one of the three axes of the volume data cube. Cube-4 chooses the
direction for the slice such that the slice normal subtends the small-
est angle with the actual viewing direction.1

Since a slice has too many voxels to be processed at once, Cube-
4 scans each slice a beam (i.e. a row) at a time. Beams are further
divided into partial beams of p voxels. Each voxel of a partial beam
is processed by a separate rendering pipeline capable of fetching a

1The algorithm choosesarbitrarily amongst view normals having equally
small subtended angles.

(x+y+z)  mod C = 0

(x+y+z)  mod C = 1

(x+y+z)  mod C = 2

(x+y+z)  mod C = 3

xz

y

Figure 2: Skewed voxel memory

new voxel from an associated memory module every clock cycle.
Thus a Cube-4 system with p pipelines can process a beam in N=p
cycles, a slice in N2=p cycles, and a volume in N3=p cycles, where
N is the size of a cubic dataset in any dimension.

A key feature of the Cube-4 architecture is that rendering
pipelines communicate only locally with associated memories and
neighboring pipelines up to three away. Thus the Cube-4 architec-
ture is highly scalable.

3.1 Cube-4 Skewed Memory

A fundamental challenge in Cube-4 is arranging data amongstmem-
ory modules so that the processing chips can concurrently fetch all
p voxels in a partial beam regardless of the viewing direction. To
meet this challenge, Cube-4 uses 3D skewed memory. A voxel at
position (x; y; z) in unskewed voxel space is mapped to position
(i; r; s) in skewed voxel space where i = (x + y + z)modN ,
r = y, ands = z. GivenC memory modules, whereN is a multiple
of C , a voxel (i; r; s) in skewed voxel space is mapped to module
number imodC and to an address within that memory module of
bi=Cc + r �N=C + s �N2=C .

The layout of voxels in the volume memory is illustrated in Fig-
ure 2 which shows a set of voxels near the origin in each of the three
dimensions for C = 4. Voxels are represented by small cubes, with
the shading illustrating their assignment to memory modules. The
ordering of the assignments of colors to voxels is identical for each
of the three visible faces. Throughout the volume, adjacent voxels
within a beam are stored in adjacent memory modules, and thus re-
gardless of the view direction, a partial beam of p = C voxels can
be fetched concurrently from the C separate memory modules.

The 3D skewing introduces a lateral shifting in voxels between
adjacent beams within a slice and also between adjacent beams in a
row plane perpendicular to a slice. As discussed in Section 6, this
shifting must be undone in order to process each voxel (e.g. see Fig-
ure 6), and it leads to significant communication between adjacent
rendering pipelines.

4 Implementation Issues

To achieve a low-cost system, the number of rendering chips and as-
sociated memory chips must be as small as possible. The rendering
chips must have a reasonable die size and must be compatible with
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current packaging technology. The Cube-4 architecture described
in Section 3 does not meet these goals. It requires too many mem-
ory modules (about 20), too many pins per rendering chip (on the
order of 512 signal pins), and too much on-chip storage, resulting
in an excessively large die (in excess of 100mm2 for storage alone).
Subsequent sections describe each of these points in more detail and
describe our modifications to Cube-4 to attain a feasible design for
VLSI implementation.

5 Voxel Bandwidth

To meet our performance targets, the voxel memory must have a
capacity of 32Mbytes and must deliver a sustained bandwidth of
1Gbyte/sec independent of view direction.

5.1 Cube-4 memory access patterns

The Cube-4 skewed memory organization has view-dependent
memory access strides which exceed common DRAM page sizes
for some view directions. This precludes the use of fast page (i.e.
column) mode access in DRAMs in such view directions, reducing
achievable memory performance to random (i.e. row) access levels.
View dependenceforces the entire memory system design to handle
this worst case.

In particular, for aN3 datasetwithC memory modules, the mem-
ory access stride is 1, N=C , or N2=C if the view normal direction
is parallel to the Z, X, or Y axes respectively. Figure 3 shows the as-
signment of memory locations of voxels on the YZ face for a view
direction parallel to the X axis. A stride of N=C is required to ac-
cess successive voxels in successive partial beams parallel to the Y
axis. Moreover, there is an anomaly in this stride at the beginning
of each beam. Therefore, except for small N and/or large C , only a
few successive accesses will fall on the same DRAM page, making
little benefitof fast page mode access. Likewise, on the ZX face (not
shown), a stride ofN2=C is required to access successivevoxels of
successive partial beams, also with an anomaly at the beginning of
each beam. For small C and reasonable values of N , this N2=C
stride is larger than typical DRAM pages, completely precluding the
use of fast page mode.

5.2 Memory Technology

64Mbit synchronous DRAMs (SDRAMs) will be the mainstream
DRAM in the next 1-2 year period. Such SDRAMs meet our
32Mbyte capacity requirement, and 4Mx16 versions at 125MHz de-
liver 1Gbyte/sec with just 4 chips. 64Mbit Rambus(TM) will ramp
up during the same period but its higher clock speed requires a more
complicated interface.

z x

y

Figure 4: Blocked skewed memory (b = 4)

Unfortunately, Cube-4’s large memory strides prevent getting
anywhere near the maximum 1Gbyte/sec bandwidth with 4 mem-
ory chips. For Mitsubishi Electric’s 64Mbit 125MHz SDRAM, the
cycle time for a row access is tRC = 80nsec. In practical opera-
tion, at most two banks can be overlapped in tRC , thus limiting the
maximum performance to 2 accesses per 80nsec, or 50Mbytes/sec
per SDRAM (at 16bits/voxel). Thus 20 SDRAMs are needed to ob-
tain 1Gbyte/sec. The situation is similar for Rambus since it is also
block oriented. This number is unreasonable for a low cost design.

To significantly reduce the row access time, the DRAM banks
must be smaller, and as a side effect usually less dense. Exam-
ples are 16Mbit Enhanced SDRAM (30nsec row access time) and
MoSys’s 1Mbyte multibank MDRAM (20nsec row access). How-
ever, these devices are too slow (a 20nsec row access time im-
plies 10 chips) or not dense enough. The performance of vari-
ous cache+DRAM combinations, such as 16Mbit cached DRAM
(CDRAM) and EnhancedSDRAM, degrades to the row access time
for strides greater than a DRAM page.

5.3 Block Skewed Memory

To take advantage of the high bandwidth of SDRAM in fast page
mode, we organize the volume memory into subcubes or blocks of
b � b � b voxels in such a way that all of the voxels of a block
are stored linearly in the same DRAM page. The memory is still
skewed to support rendering independent of view direction, but it is
now skewed at the block granularity rather than voxel granularity
as in Cube-4. Each rendering chip processes a block and maintains
a block-sized reordering buffer so that the voxels in a block can be
read out in the order appropriate for the view direction. Figure 4 il-
lustrates the block skewed memory for b = 4.

In this new organization, a row of blocks comprises a block-beam
and a two-dimensional array comprises a block-slice. At the block
granularity the processing algorithm is the same as the Cube-4 algo-
rithm, except that partial block-beams replace partial beams. Each
block is processed internally on a voxel granularity using the Cube-
4 algorithm.

There are several design points for b.
PageBlock: b can be as large as possible while still allowing the b3

block to fit into a single DRAM page. Thus the burst transfer size
can be as large as a page size, which easily permits sustaining full
bandwidth from the SDRAMs. One disadvantage of this scheme
is the block size depends on the voxel size. The 512 byte pages in



64Mbit SDRAMs support b = 8 for 8 bit voxels and b = 4 for 16 or
32 bit voxels. Another disadvantage is that it requires a page-sized
buffer on-chip.
MiniBlock: Alternatively, b can be as small as possible. This
eliminates the sensitivity to voxel size. Blocks with b = 2 are
large enough to completely overlap the row access overhead of the
SDRAM module with data transfer. Assuming 16 bit voxels and
Mitsubishi Electric’s 4Mx16 SDRAM at 125MHz, the single burst
access time for a 2x2x2 block is 112nsec, i.e. 8 accessesin 14 clocks.
Two of the four banks in the SDRAM can be interleaved to achieve
8 accessesin 8 clocks, i.e. full bandwidth.2 A disadvantageof b = 2
is the large inter-chip communication.
Hierarchical Blocks: A compromise yielding the advantages of
both large and small block sizes can be achieved by tiling blocks
of size b with miniblocks. The blocks themselves are skewed across
memory modules, but the miniblocks within them are not. This hier-
archical blocking permits efficient implementation of larger blocks
e.g. PageBlocks. Instead of fetching the entire block at once, which
requires a b3 voxel buffer, miniblocks can be fetched on a row by
row basis on demand. This capability ensures minimal overhead for
the sectioning described in Section 7.1.

The maximum block size is b � N=C since blocks must be
skewed over C chips so that a block-beam can be fetched without
conflict for any view direction.

A hierarchical blocking scheme is also described in [12]. The
data volume is divided into subcubes and subcubes are divided into
2x2x2 “supervoxels”. However, while the hierarchical division is
the same as above, the actual memory blocking is different. In [12]
the eight voxels in a supervoxelare distributed across eight memory
modules, i.e. supervoxels are the unit of interleaved memory access.
In our blocking, all the voxels comprising a block are located in the
same memory and miniblocks are the unit of pipelined burst access.
In addition, all the blocks are skewed.

6 Inter-chip Communication

Figure 5 shows the EM-Cube architecture in a generic way indepen-
dent of b. Voxel blocks are distributed across the set of SDRAM
volume memories at the top. Each rendering chip connects to a
SDRAM memory module, a pixel memory chip (SRAM or DRAM)
for output, and neighboring rendering chips for transfer of interme-
diate values.3 Such inter-chip communication is required for resam-
pling (intermediate trilinear interpolation results and possibly vox-
els), gradient estimation (intermediate results and trilin results), and
compositing (partial pixels).

Each voxel block is processed by a single rendering chip. Within
a block, intermediate values are communicated on-chip. The only
inter-chip communication results from processing voxels near the
faces of each block. Since the area of a block face is b2 , the inter-
chip communication grows as b2 . On the other hand, the number of
voxels processed per block grows as b3 . Therefore, on a per voxel
basis, the interchip communication scales as 1=b. Thus a design
with b = 4 requires up to 4 times less inter-chip communication
bandwidth4 than Cube-4. Table 1 summarizes the inter-chip com-
munication requirements for several architectural variations. The

2Provided that every row is accessed at least once within every 64msec,
no additional overhead is necessary for refresh. Rendering the entire 2563

dataset of 16 bit voxels accesses every row of four 64Mbit SDRAMs every
32msec. For a smaller volume or smaller voxel size, rendering might not ac-
cess every row every 32msec. However, we do not need full 250Mbytes/sec
bandwidth in such cases and thus we can slip in auto-refresh cycles without
degrading the bandwidth.

3Because of the one-to-one correspondence of memory modulesand ren-
dering chips, we useC interchangeably for either.

4Exactly 4 less except for compositing which is 37=64 less. See Table 1.

Trilin Grad est Compos
Unskewed 1 2 1
Cube-4 3 3 1
EM-Cube 3

b

3

b

1

b
to 3b

2
�3b+1

b3

Table 1: Summary of inter-chip communication bandwidth (in “val-
ues”/clock)

compositing communication depends on the view direction.
The inter-chip communication for resampling has an interest-

ing geometric interpretation. The left side of Figure 6 shows, in
unskewedvoxel space, the eight voxel neighborhoodfor trilinear in-
terpolation. Here we assume b = 1 to simplify the picture, and thus
there is one memory module and one rendering chip for each col-
umn i. It suffices to communicate the bilinear interpolation of the
four side face voxels (e.g. 2, 4, 6, and 8) to the left neighbor. Skew-
ing the volume transforms the eight voxel neighborhood cube into
the slanted parallelepiped in the right of Figure 6. The transforma-
tion is the same as pulling vertices 4 and 5 of the unskewed voxel
cube laterally to the right and left, respectively. Such pulling spreads
the eight voxel cube over four columns. To perform the trilinear in-
terpolation, we first undo the skewing by shifting voxels 5 and 6 to
the right by 1 and likewise shifting voxels 3 and 4 to the left by 1.
This lateral communication can be pipelined, with all front bottom
voxels moving one to the right and all top rear voxels moving one
to the left on each clock. The four side face voxels are then bilin-
early interpolated and the result sent laterally to the left neighbor to
compute the final trilinear interpolation result. The total communi-
cation is thus 3 values per clock. For b > 1 each vertex becomes a
b3 block of voxels and b2 face voxels move to the left and another
b2 move to the right each time step.

For compositing, the inter-chip communication is equal to the
number of rays exiting a block. The best case shown in Table 1 oc-
curs for a viewing direction parallel to an axis and the worst case
occurs for a ray direction 45 degrees from two axes. The worst case
communication scales as 1=b in all three dimensions. Thus b must
be fairly big, e.g. 8, before there is a significant reduction in total
compositing communication from the b = 1 case.

Comparing the entries in Table 1 for Cube-4 (skewed volume)
and the unskewed volume reveals that skewing significantly in-
creases the inter-chip communication. However, the unskewed vol-
ume is not practical because either the view direction must be re-
stricted or there must be a copy of the entire dataset for each axis
direction.

The blocked architecture permits a tradeoff between signal fre-
quency and the pin count for inter-chip communication. The inter-
chip bandwidth decreasesby b allowing fewer pins and/or lower fre-
quency. For example, if the resampling stage uses 16bit voxels, the
inter-chip communication can be any combination of (16=w)bits
wide every (b=w) � 8nsec where w = 1; 2; 4; 8, and 16 andw < b.

For b = 8 we estimate a rendering chip will have 267 signal pins.
This is feasible for today’s packaging technology. Only 20 of these
pins need to run at 125MHz, the remainder at 62MHz or less. All
the inter-chip signals use quarter-width paths, i.e. the pins are mul-
tiplexed over four 62MHz clocks. The unskewed volume variation
has 72 fewer pins. Thus skewing costs 72 pins for b = 8 (the cost
increases for smaller b).

7 On-chip Storage

As depicted in Figure 5, each rendering chip needs buffer storage for
buffering blocks, voxels for interpolation, values on the slice ahead
and slice behind for gradient estimation, and partially composited
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6 bytes/pixel 3 bytes/pixel
Block buffer 3.1 3.1
Interpolation 1053/C 1053/C
Grad est 2097/C 2097/C
Compos 3146/C 1573/C
Lookup 36.9 36.9
Total 6296/C + 40 4723/C + 40

# chips 6 bytes/pixel 3 bytes/pixel
4 1614 1221
8 827 630
16 433 335
32 237 187

Table 2: On-chip buffer storage for b = 8 (Kbits/chip where C is
the number of chips)

pixels. Each chip also needs lookup tables for opacity values, color
values, and shading (not shown in Figure 5).

The blocked architectures require a reordering buffer of b3 vox-
els. For uninterrupted supply of voxels, the block buffer must be
double buffered with 2b3 voxel storage per rendering chip. How-
ever, for hierarchical blocking the storage drops to 3b2 voxels (b >
2).

Trilinear interpolation requires voxels in two adjacent slices.
Thus voxels must be buffered from one slice to the next. This stor-
age is independentof the architecture (e.g. Cube-4 or EM-Cube) and
depends solely on the number of rendering chips,C . The slice stor-
age required per rendering chip is N2=C voxels. However, interpo-
lation also requires voxels in the previous row, thus the total inter-
polation storage per rendering chip is (N2 +N)=C voxels.

To compute a central difference for gradient estimation requires
samples from a slice ahead and a slice behind. This requires two
slice buffers and thus the gradient estimate storage per rendering
chip is 2N2=C samples.

Shading producespartial pixels. As these partial pixels are gener-
ated slice by slice, they are composited into a “running” pixel buffer.
All the partial pixels along the same ray (i.e. sharing the same screen
pixel location) are composited into the same location in the running
pixel buffer. Final pixels corresponding to a ray emerging on an
exit face are immediately written to pixel memory off-chip. Con-
sequently, only the N2 running pixels of the slice cross-section of
the volume need to be stored. Thus the compositing storage per ren-
dering chip is N2=C running pixels. We allow 3 to 6 bytes per pixel
to cover a number of possible pixel formats, e.g. containing an alpha
value (for front-to-back compositing).

For lookup tables, we assume a two-tiered table opacity lookup
with two 512byte tables and one 512 entry table per color compo-
nent (3x512 bytes total). Shading is not yet finalized. One possibil-
ity is the lookup table method of [17] which uses a reflectance map
(one 512 byte table per axis direction, for 3x512bytes total) and an
arctangent table (one 512 byte table).5 The total for all lookup tables
is 9x512bytes.

Table 2 lists the total on-chip storage required for N = 256; b =
8 with hierarchical blocks, and 16 bit voxels. With present em-
bedded SRAM densities, the buffer storage per chip must be less
than roughly 200Kbits to ensure a cost-effective core area of about
100mm2, reserving half the core for logic. Thus 32 chips are re-
quired. This is far too many chips for a cost effective solution.

5This produces grey level shading; full color shading requires one re-
flectance map per color component.
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Figure 7: Sectioning of volume memory

7.1 Sectioning – A Solution for the On-Chip Buffer
Size Problem

To reduce the on-chip buffer area to a feasible amount, we use the
same approachas in [4]: we divide the volume intoL horizontal sec-
tions as shown in Figure 7. We process each section in turn using
the EM-Cube algorithm and then combine the results. This section-
ing reduces the slice face area and hence the size of slice buffers: L
sections reduce the size of on-chip slice buffers by 1=L. For C = 4
chips,L = 8 is a feasible design.

Sectioning does not come for free. We are performing a space-
time tradeoff: we re-read voxels from volume memory and move
some intermediate results back and forth from external pixel mem-
ory.

7.1.1 Voxel bandwidth

Interpolation requires the voxels in the previous row while gradi-
ent interpolation requires the voxels in the two previous rows. Con-
sequently, after the first section all subsequent sections require re-
reading the bottom two rows of the previous voxel plane as de-
picted in Figure 7. If there are L sections, this means re-reading
2(L�1)N2 voxels per frame, and thus the total bandwidth overhead
is 2(L�1)N2=N3 = 2(L�1)=N . This is less than 5% of the total
bandwidth if L � 8. For blocks with b > 2, tiling with miniblocks
eliminates any excess overhead in re-reading the two voxel plane.

However, one consequence is that the SDRAM clock and ren-
dering chip pipelines must run slightly faster to deliver the addi-
tional bandwidth. ForL = 8, the SDRAM clock and rendering chip
pipelines must run 5% faster, i.e. at 132MHz, or at 5% slower frame
rate, i.e. 28frames/sec.

7.1.2 Pixel memory re-read

While processing a section, we only need on-chip storage for the
compositing buffer proportional to the size N2=L of the slice face
area. All running pixels for rays emerging on a section face can be
written to off-chip pixel memory as “interim” pixels.

However, interim pixels written to off-chip pixel memory for rays
exiting a section face must be combined/composited with values
for rays continuing into the adjoining section. We deal with this
problem by reading interim pixels from off-chip pixel memory into
the on-chip compositing buffer before processing the next section.
There are up to N2 interim pixels to read per section (the number is
as few as 0 for rays parallel to a voxel row). The worst case can be
handled by reading one beam of interim pixels from off-chip pixel
memory per slice. In fact, the latency for reading these interim pix-
els can be hidden by the time to reload the additional two voxels per
slice from voxel memory.
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8 Rendering Chip Structure

Figure 5 shows the overall architecture. Each rendering chip has
buffers and datapaths built-in for a nominal design such that 4 ren-
dering chips, 4 SDRAMs, and 4 pixel memories achieve 28-30
frames/sec with 2563�16 bit voxels. To reduce inter-chip commu-
nication cost, and hence the pin count, to manageable levels, we plan
to use a block size of b = 8 hierarchically tiled with miniblocks.
Each rendering chip processes 16bit voxels at 125MHz6 and has
slice buffers of size 256� 256� 16bit/32 (4Kbytes). Currently we
plan to have four pipelines on-chip, as shown in Figure 8, each 16
bits wide clocked at 32nsec. Larger voxels are treated as a sequence
of 16 bit values with proportional reduction in frame rate.

9 Voxel Formats

Flexibility in voxel formats is important. Accordingly, the EM-
Cube architecture allows the user to fashion the voxel format appro-
priately. Voxels are either 8 bits or a sequence of one or more 16 bit
fields. We distinguish the format of voxels in memory (“memory
voxels”) and the format of voxels in EM-Cube pipelines (“pipeline
voxels”). In the simplest case, pipeline voxels are the same as mem-
ory voxels. In general, a pipeline voxel can be a simple transforma-
tion, e.g. a table lookup, on some or all fields of memory voxels. A
memory voxel has the following conceptual components:

1. Intensity field: 8, 12, or 16 bits to indicate intensity or to index
a RGB table.

2. Index field: 4, 8, (maybe 12), or 16 bits for color lookup and
material type indicator.

3. Gradient coefficient: 8 bits (may increase later).

4. Opacity field: 8 bit value or index to opacity table.

5. Arbitrary user fields (size unrestricted as long as user pads
overall voxel size out to a multiple of 16 bits).

Not all fields need be present; some fields may not exist and some
may overlap with other fields. Table 3 shows examples of some of
the voxel formats.

6Or slightly more due to sectioning overhead.

intensity 8 bits

intensity index

intensity index

intensity

intensity
index

intensity index grad.

intensity index
grad. coeff opacity

rgb index grad. opacity RGB table index

R G
B opacity/intensity

direct RGB

Table 3: Example voxel formats

10 Scaling

It is important that EM-Cube scale to accommodate larger volumes
and larger voxel sizes. Given C rendering chips each having the
nominal design described in Section 8 and a volume dataset of N
columns,M rows, S slices and 16v bits/voxel (v = :5, 1, 2, 4), we
have the following constraints:
Memory capacity: 2vNMS=C � 8m Mbytes where there are m
64Mbit SDRAMs per rendering chip.
Frame rate: � C=(2vNMS) � 250M f/sec, determined by the ren-
dering chip processing rate.7

Slice buffer: 2vNM=LC � 4096 bytes

10.1 Voxel Scaling

The above constraints define the options if the voxel size v changes.
For example, if v doubles and if NMS = 2563 and NM =
64Kbytes, then we can half the volume size by halving N or M
(halving S does not help because of the slice buffer constraint); or
we can double the number of rendering chips C , SDRAMs, and
pixel memories; or we can double the number of sectionsL, double
the amount of voxel memory per rendering chip, and half the frame
rate.

10.2 Volume Scaling

To handle a data set of size NMS larger than the nominal design
of N �M � S = 256 � 256 � 256 supported in the four chip
nominal design, we extend sectioning to three dimensions to divide
the volume into smaller volumes. Thus we virtualize the voxel and
pixel memories by paging them to the host memory system. As in
Section 7.1, volume sections must overlap by two voxel planes re-
quiring re-reading part of a section.

This 3D sectioning also allows us to handle reasonable volume
sizes with just a single rendering chip, albeit with proportional re-
duction in performance.

7Frame rate degradation due to sectioning is ignored (typically only 5%,
depending on L).



11 Other Issues

Several important issues such as supersampling, subvolumes, and
perspective projections are unaddressed in this paper. We are inves-
tigating these issues as we refine our architecture. We anticipate that
supersampling will be easy to work into the pipelines while subvol-
umes will be moderately more difficult.

12 Summary

We presented the outline of a feasible architecture for a low-cost,
real-time volume rendering system suitable for PCI cards in PCs.
Processing 2563 � 16 bit voxels at 30frames/sec requires four sets
of rendering chips and associated voxel and pixel memories.

A major innovation of the architecture is block-skewed memory.
Blocking achieves maximum bandwidth from a small number of
SDRAMs. While skewing eliminates memory access conflicts to
provide view independence without duplicating voxel data, it in-
creases inter-chip bandwidth. Blocking counteracts this problem,
reducing the inter-chip bandwidth and thus the pin count. The block
size b parameterizes the architecture. The larger b, the lower the
communication overhead paid for skewing, and the more the data
access pattern resembles that for an unskewed voxel memory.

A second key aspect of the architecture is sectioning. This re-
duces the on-chip storage requirements to achieve a feasible chip
area for implementation.

Other features of the architecture are flexible voxel formats and
scalability. As in Cube-4, one can always add more chips and mem-
ories for scalability. Alternatively, given a fixed amount of hard-
ware, one can use sectioning in multiple dimensions to scale to
larger volumes. We are investigating adding additional features
such as supersampling, subvolumes, and perspective projection.

Architectural simulations of EM-Cube are underway. We plan to
freeze the architecture in early summer and expect chips and a PCI
reference board in the second half of 1998.
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