
Point-Based Computer Graphics
SIGGRAPH 2004 Course Notes

Marc Alexa, Darmstadt University of Technology
Markus Gross, ETH Zurich
Mark Pauly, Stanford University
Hanspeter Pfister, Mitsubishi Electric Research Laboratories
Marc Stamminger, University of Erlangen-Nuremberg
Matthias Zwicker, Massachusetts Institute of Technology

Abstract

This course introduces points as a powerful and versatile graphics
primitive. Speakers present their latest concepts for the acquisition,
representation, modeling, processing, and rendering of point sam-
pled geometry along with applications and research directions. We
describe algorithms and discuss current problems and limitations,
covering important aspects of point based graphics.

C O N T E N T S

Section 1: Introduction

Section 2: Course Schedule

Section 3: Talk Slides

Section 4: Supplemental Material

1S E C T I O N

1INTRODUCTION

Point primitives have experienced a major "renaissance" in recent years, and considerable
research has been devoted to efficient representation, modeling, processing, and rendering
of point-sampled geometry. There are two main reasons for this new interest in points:
First, we have witnessed a dramatic increase in the polygonal complexity of computer
graphics models. The overhead of managing, processing, and manipulating very large
polygonal-mesh connectivity information has led many leading researchers to question the
future utility of polygons as the fundamental graphics primitive. Second, modern 3D digital
photography and 3D scanning systems acquire both the geometry and the appearance of
complex, real-world objects. These techniques generate huge volumes of point samples,
which constitute discrete building blocks of 3D object geometry and appearance, much as
pixels are the digital elements for images.

This course presents the latest research results in point-based computer graphics. After
an overview of the key research issues, affordable 3D scanning devices are discussed, and
novel concepts for mathematical representation of point-sampled shapes are presented. The
course describes methods for high-performance and high-quality rendering of point mod-
els, including advanced shading, antialiasing, and transparency. It also presents efficient
data structures for hierarchical rendering on modern graphics processors and summarizes
methods for geometric processing, filtering, and resampling of point models. Other topics
include: a framework for shape modeling of point-sampled geometry, including Boolean
operations and free-form deformations, and Pointshop3D, an open-source framework that
facilitates design of new algorithms for point-based graphics.

1.1 PREREQUISITES
The course assumes familiarity with the standard computer graphics techniques for surface
representation, modeling, and rendering. No previous knowledge about point-based meth-
ods is required.

1.2 INTENDED AUDIENCE
The course is intended for computer graphics researchers who would like to learn more
about point based techniques. They will obtain a state-of-the-art overview of the use of
points to solve fundamental computer graphics problems such as surface data acquisition,
representation, processing, modeling, and rendering. With this course, we hope to stimulate
research in this exciting field. To this aim we will also introduce Pointshop3D, an open
source software package that is publicly available as a test-bed for point-based computer
graphics research.

1.3 COURSE SYLLABUS

Course Introduction. Gross (15 minutes)

Acquisition of Point Sampled Geometry and Appearance. Pfister (60 minutes)
 System overview
 Silhouette extraction
 View-dependent hull calculation
 Point-sampled data structure
 View-dependent shading
 Results

Point Based Surface Representations. Alexa (60 minutes)
 Introduction & basics
 Delaunay subcomplex methods
 Approximating or interpolating implicits
 Projection-based methods

Algorithms for High Quality Point Rendering. Zwicker (60 minutes)
 Signal processing basics and antialiasing
 Resampling filters for point rendering
 Surface splatting: a splatting algorithm with antialiasing
 Hardware acceleration

Effiecient Data Structures. Stamminger (45 minutes)
 The QSplat bounding spheres hierarchy
 Optimizing the memory layout for hardware accelerated rendering
 Sequential point trees
 Implementation and results

Processing, Sampling and Filtering of Point Models. Gross (30 minutes)
 Spectral processing of point sampled geometry
 Decomposition and patching of point clouds
 Local and global Fourier transforms
 Advanced geometric filtering
 Error and resampling

Efficient Simplification of Point Sampled-Geometry. Pauly (30 minutes)
 Local surface analysis
 Simplification methods
 Hierarchical clustering, iterative simplification, particle simulation
 Comparison and analysis

Pointshop3D: An Interactive System for Point-Based Surface Editing. Gross (30
minutes)
 System overview
 Point cloud parameterization
 Surface reconstruction
 Editing operators (painting, texturing, filtering, sculpting)
 Interactive demo

Shape Modeling of Point-Sampled Geometry. Pauly (30 minutes)
 Boolean operations
 Free-form deformation

Pointshop3D Demonstration. Pauly (30 minutes)
 Open system architecture
 Demonstration of interactive surface editing and modeling

Panel on the Future of Point Based Computer Graphics. all (30 minutes)

1.4 COURSE WEBSITE
We have compiled a web site for the course including slides and presentation material,
which can be found on http://graphics.ethz.ch/publications/tutorials/points/.

The Pointshop3D software package, including source code and documentation, is pub-
licly available from the Pointshop3D web site http://graphics.ethz.ch/pointshop3d/. Using
the software infrastructure provided by Pointshop3D course attendants will be able to
quickly prototype their research ideas based on point primitives.

1.5 SPEAKERS CONTACT INFORMATION
Dr. Marc Alexa
Professor
Department of Computer Science
Darmstadt University of Technology

Fraunhoferstr. 5
64283 Darmstadt
Germany
alexa@igd.fhg.de
http://www.igd.fhg.de/~alexa

Dr. Markus Gross
Professor
Department of Computer Science
Swiss Federal Institute of Technology (ETH)
CH 8092 Zürich
Switzerland
grossm@inf.ethz.ch
http://graphics.ethz.ch

Dr. Mark Pauly
Postdoctoral Associate
Computer Science Department
Gates Building 375
Stanford University
Stanford, CA 94305
USA
mapauly@stanford.edu
http://graphics.stanford.edu/~mapauly/

Dr. Hanspeter Pfister
Associate Director
MERL - Mitsubishi Electric Research Laboratories
201 Broadway
Cambridge, MA 02139
USA
pfister@merl.com
http://www.merl.com/people/pfister/

Dr. Marc Stamminger
Professor
Graphische Datenverarbeitung Erlangen
University of Erlangen-Nurnberg
Am Weichselgarten 9
91058 Erlangen
Germany
Marc.Stamminger@informatik.uni-erlangen.de
http://www9.informatik.uni-erlangen.de/Persons/Stamminger

Dr. Matthias Zwicker
Postdoctoral Associate
The Stata Center, 32 Vassar Street
Massachusetts Institute of Technology

Cambridge, MA 02139
USA
matthias@graphics.csail.mit.edu
http://graphics.csail.mit.edu/~matthias

1.6 SPEAKERS BIOGRAPHIES

Marc Alexa. is an assistant professor at Darmstadt University of Technology and head of
the Discrete Geometric Modeling group. He received his PhD and MS degrees in Computer
Science with honors from Darmstadt University of Technology. His research interests
include shape representations, modeling, transformation and animation as well as conver-
sational user interfaces and information visualization.

Markus Gross . Markus Gross is a professor of computer science and the director of the
computer graphics laboratory of the Swiss Federal Institute of Technology (ETH) in Zürich
since 1994. He received a degree in electrical and computer engineering and a Ph.D. on
computer graphics and image analysis, both from the University of Saarbrucken, Germany.
From 1990 to 1994 Dr. Gross worked for the Computer Graphics Center in Darmstadt,
where he established and directed the Visual Computing Group. His research interests
include point based graphics, physics-based modeling, multiresolution analysis and virtual
reality. He has widely published and lectured on computer graphics and scientific visual-
ization and he authored the book "Visual Computing", Springer, 1994. Dr. Gross has taught
courses at major graphics conferences including SIGGRAPH, IEEE Visualization, and
Eurographics. He is associate editor of the IEEE Computer Graphics and Applications and
has served as a member of international program committees of many graphics confer-
ences. Dr. Gross was a papers co-chair of the IEEE Visualization '99, the Eurographics
2000, and the IEEE Visualization 2002 conferences. Dr. Gross is a member of the ETH
research and planning commissions.

Mark Pauly. Mark Pauly obtained his PhD from the Computer Graphics Lab at ETH Zur-
ich, Switzerland. Before, he had received his MS degree in computer science (with honors)
from the University of Kaiserslautern, Germany. He has been working on point-based sur-
face representations for 3D digital geometry processing, focusing on spectral methods for
surface filtering and resampling. Further research activities are directed towards multires-
olution modeling, geometry compression and texture synthesis of point-sampled objects.
Currently, Dr. Pauly is a postdoctoral scholar with Stanford University.

Hanspeter Pfister . Hanspeter Pfister is Associate Director and Senior Research Scientist
at MERL - Mitsubishi Electric Research Laboratories - in Cambridge, MA. He is the chief
architect of VolumePro, Mitsubishi Electric's real-time volume rendering hardware for
PCs. His research interests include computer graphics, scientific visualization, and com-
puter architecture. His work spans a range of topics, including point-based graphics, 3D
photography, volume graphics, and computer graphics hardware. Hanspeter Pfister
received his Ph.D. in Computer Science in 1996 from the State University of New York at
Stony Brook. He received his M.S. in Electrical Engineering from the Swiss Federal Insti-
tute of Technology (ETH) Zurich, Switzerland, in 1991. Dr. Pfister has taught courses at

major graphics conferences including SIGGRAPH, IEEE Visualization, and Eurographics.
He is Associate Editor of the IEEE Transactions on Visualization and Computer Graphics
(TVCG), member of the Executive Committee of the IEEE Technical Committee on
Graphics and Visualization (TCVG), and has served as a member of international program
committees of major graphics conferences. Dr. Pfister was the general chair of the IEEE
Visualization 2002 conference in Boston. He is member of the ACM, ACM SIGGRAPH,
IEEE, the IEEE Computer Society, and the Eurographics Association.

Marc Stamminger. Marc Stamminger received his PhD in computer graphics in 1999
from the University of Erlangen, Germany, for his work about finite element methods for
global illumination computations. After that he worked as a PostDoc at the Max-Planck-
Institut for Computer Science (MPII) in Saarbrücken, Germany and in Sophia -Antipolis in
France on interactive rendering and modeling of natural environments. Since 2002 he is a
professor for computer graphics and visualization at the University of Erlangen. His current
research interests are pointbased methods for complex, dynamic scenes, and interactive
global illumination methods.

Matthias Zwicker. Matthias Zwicker obtained his PhD from the Computer Graphics Lab
at ETH Zurich, Switzerland. He has developed rendering algorithms and data structures for
point-based surface representations, which he presented in the papers sessions of SIG-
GRAPH 2000 and 2001. He has also extended this work towards high quality volume ren-
dering. Other research interests concern compression of point-based data structures,
acquisition of real world objects, and texturing and painting of point sampled surfaces. Cur-
rently, Dr. Zwicker is a postdoctoral associate with the Computer Graphics Group at MIT.

2S E C T I O N

2COURSE SCHEDULE

TABLE 2.1 Morning Schedule

Time Topic Lectureer

8.30-8.45 Welcome and Introduction Gross

8.45-9.45 Acquisition Pfister

9.45-10.15 Representations – I Alexa

10.15-10.30 Coffee Break

10.30-11.00 Representations – II Alexa

11.00-12.15 High Quality Rendering Zwicker

12.15-1.45 Lunch Break

TABLE 2.2 Afternoon Schedule

Time Topic Speaker

1.45-2.30 Data Structures Stamminger

2.30-3.00 Processing and Filtering Gross

3.00-3.30 Simplification Pauly

3.30-3.45 Coffee Break

3.45-4.15 Pointshop3D Gross

4.15-4.45 Shape Modeling (Pointshop 2) Pauly

4.45-5.15 Pointshop3D Demo Pauly

5.15-5.30 Panel all

3S E C T I O N

3TALK SLIDES

Course Introduction. Gross

Acquisition of Point Sampled Geometry and Appearance. H. Pfister

Point Based Surface Representations. M. Alexa

Algorithms for High Quality Point Rendering. M. Zwicker

Effiecient Data Structures. M. Stamminger

Processing, Sampling and Filtering of Point Models. M. Gross

Efficient Simplification of Point Sampled-Geometry. M. Pauly

Pointshop3D: An Interactive System for Point-Based Surface Editing. M. Gross

Shape Modeling of Point-Sampled Geometry. M. Pauly

1

Point-Based Computer Graphics

Marc Alexa, Markus Gross, Mark Pauly,
Hanspeter Pfister, Marc Stamminger,

Matthias Zwicker

So…PointsSo…Points

• Point primitives have experienced a major
„renaissance“ in Graphics

• Two reasons for that:
– Dramatic increase in polygonal complexity
– Upcoming 3D digital photography

• Researchers start to question the utility of
polygons as „the one and only“ fundamental
graphics primitive

• Points complement triangles !

Polynomials....Polynomials....

Rigorous mathematical concept
Robust evaluation of geometric entities
Shape control for smooth shapes

Require proper parameterization
Discontinuity modeling
Topological flexibility

Reduce p, refine h!

Polynomials -> TrianglesPolynomials -> Triangles

• Piecewise linear approximations
• Irregular sampling of the surface
• No parameterization needed (for now)

Triangle meshes

• Multiresolution modeling
• Compression
• Geometric signal processing

Triangles...Triangles...

Simple and efficient representation
Hardware pipelines support ∆
Advanced geometric processing
The widely accepted queen of graphics primitives

Sophisticated modeling is difficult
(Local) parameterizations still needed
Complex LOD management
Compression and streaming is highly non-trivial

Remove connectivity !

Triangles -> PointsTriangles -> Points

• Piecewise linear functions to Delta distributions
• Discrete samples of geometry
• No connectivity or topology – most simple
• Store all attributes per surface sample

Point clouds

• Points are natural representations for
3D acquisition systems

• Meshes constitute an „enhancement“
of point samples

2

(Incomplete) History of Points(Incomplete) History of Points
– Particle systems [Reeves 1983]
– Points as a display primitive [Whitted, Levoy 1985]
– Oriented particles [Szeliski, Tonnesen 1992]
– Particles and implicit surfaces [Witkin, Heckbert 1994]
– Rendering Architectures [Grossmann, Dally 1998]
– Digital Michelangelo [Levoy et al. 2000]
– Image based visual hulls [Matusik 2000]
– Surfels [Pfister et al. 2000]
– QSplat [Rusinkiewicz, Levoy 2000]
– Point Clouds [Linsen, Prautzsch 2001]
– Point set surfaces [Alexa et al. 2001]
– Radial basis functions [Carr et al. 2001]
– Surface splatting [Zwicker et al. 2001]
– Randomized z-buffer [Wand et al. 2001]
– Sampling [Stamminger, Drettakis 2001]
– Opacity hulls [Matusik et al. 2002]
– Pointshop3D [Zwicker, Pauly, Knoll, Gross 2002]
– Raytracing [Alexa et al. 2003]
– Sequential Point Trees [Dachsbacher, Stamminger 2003]
– Boolean Operations [Adams et al. 2003]
– Modeling [Pauly et al. 2003]
– blue-c [Gross et al. 2003]

A Motivation…A Motivation…

• 3D content creation pipeline

Points generalize Pixels !

TaxonomyTaxonomy

Point-Based Graphics

Rendering
(Zwicker)

Acquisition
(Pfister)

Processing &
Editing

(Gross, Pauly)
Representation

(Alexa)

Schedule - MorningSchedule - Morning

Coffee Break10.15-10.30

Lunch Break12.15-1.45

ZwickerHigh Quality Rendering11.00-12.15

AlexaRepresentations – II10.30-11.00

AlexaRepresentations – I9.45-10.15

PfisterAcquisition8.45-9.45

GrossWelcome and Introduction8.30-8.45

LecturerTopicTime

Schedule - AfternoonSchedule - Afternoon

PaulyPointshop3D Demo4.45-5.15

AllPanel on the future of PBG5.15-5.30

PaulyShape Modeling (Pointshop 2)4.15-4.45

GrossPointshop3D3.45-4.15

Coffee Break3.30-3.45

PaulySimplification3.00-3.30

GrossProcessing and Filtering2.30-3.00

StammingerData Structures1.45-2.30

LecturerTopicTime

The Purpose of our Course is …The Purpose of our Course is …

1. …to introduce points as a versatile
and powerful graphics primitive

2. …to present state of the art concepts
for acquisition, representation,
processing and rendering of point
sampled geometry

3. …to stimulate YOU to help us to
further develop Point Based Graphics

1

Acquisition of Point-Sampled Geometry and Appearance

Hanspeter Pfister, MERL [pfister@merl.com]

In this part of the course we will discuss acquisition and rendering of point-sampled
models from real-world objects.

2

In Collaboration WithIn Collaboration With

• Wojciech Matusik, MIT / MERL
• Addy Ngan, MIT
• Matt Loper, MERL
• Paul Beardsley, MERL
• Remo Ziegler, MERL
• Leonard McMillan, UNC

This work would not have been possible without the people mentioned on this slide. In
particular, the hard work and great talent of Wojciech Matusik was instrumental for
this research.

3

How can we capture reality?How can we capture reality?

The goal of our work is – quite simply – to capture and display complex three-
dimensional objects, such as an angle with feathers, a bonsai tree, or a teddy bear. A
secondary goal is to solve one of the longstanding open problems in computer
graphics: capturing and rendering a glass of beer.

4

GoalsGoals

• Fully-automated 3D model creation
• Faithful representation of appearance
• Placement into new virtual environments

More specific goals are to build a system with fully-automated 3D model acquisition.
We focus on faithful acquisition of appearance, not geometry, although good
geometry will help our rendering results. Our objects can be placed in arbitrary
environments with arbitrary lighting and can be rendered from any viewpoint.
The pictures show some of the acquired models (hat, ship, glass) placed into new
environments.

5

Previous Work - IPrevious Work - I

• Contact digitizers – intensive
manual labor

• Passive methods – require
texture, Lambertian BRDF

• Active light imaging systems –
restrict types of materials

• Fuzzy, transparent, and refractive
objects are difficult

4 million pts.
[Levoy et al. 2000]

There has been a lot work on acquiring high quality 3D shape of real-world objects.
This includes contact digitizers, passive methods, and active light imaging systems.
Contact digitizers require a lot of manual labor.
Nearly all passive techniques require that the object has texture and that the BRDF of
the object is Lambertian.
Active Methods are very popular. For example, on the right you see a laser range-
scan of David, one of the great point-based models that resulted from the Digital
Michelangelo project at Stanford [Levoy et al. 2000].
However, active light systems place severe restrictions on types of materials that can
be scanned. For example, specular and fuzzy materials are difficult to scan.
Furthermore, the obtained models require complicated alignment and hole filling
procedures.

6

Previous Work - IIPrevious Work - II

• BRDF estimation, inverse rendering
• Image based modeling
• Point-based rendering

There has been also a considerable amount of work on estimation of appearance of
objects from a set of images.
These methods usually try to fit parametric BRDF model to the observed
measurements. However parametric BRDF models are not capable to represent
complex materials (e.g., feathers, hair, cloth, etc.) They also do not capture inter-
reflections, self-shadowing, subsurface scattering.
To acquire objects with arbitrary materials we use an image-based modeling and a
point-based rendering approach.
Image-based representations have the advantage of capturing and representing an
object regardless of the complexity of its geometry and appearance. Of course, this
advantage comes at the cost of requiring more data.

7

OutlineOutline

• Acquisition
• Model
• Point-Based Rendering
• Relighting
• Reflectance Field Estimation

In this talk I will talk about an image-based method to acquire models of complex real-
world objects. First I will present the acquisition system, followed by a discussion of
the opacity lightfield, which we use to model our objects. Then I will briefly discuss our
point-based rendering pipeline with special emphasis on view-dependent shading.
After that I will show how opaque objects can be relit using reflectance fields, which
allows us to place them into arbitrary new environments. Finally I will discuss a novel
method for reflectance field illumination for arbitrary scenes, including reflective,
refractive, and transparent objects.

8

OutlineOutline

Acquisition
• Model
• Point-Based Rendering
• Relighting
• Reflectance Field Estimation

Let’s start by looking at our image-based acquisition system.

9

Acquisition Systems – I & IIAcquisition Systems – I & II

V1.0 (July-Oct 2000) V2.0 (Oct-Dec 2000)

We have been building image-based acquisition systems for some time. The general
idea is to take multiple pictures of the object from different viewpoints.
Our first system – shown on the left – consisted of a turntable, a camera, and some
static overhead lights. Two light boxes – one opposite the camera and one on the
turntable – provided background illumination to make segmentation of the foreground
object easier.
The second system – shown on the right – added two more cameras to improve the
quality of the image-based model. We also mounted the overhead lights on a second
turntable so that they can rotate with the object. This ensures that specular highlights
remain stationary on the object throughout acquisition.

10

Acquisition System - IIIAcquisition System - III

This is our third system, which one may call the mother ship of all image-based
acquisition systems [Matusik et al. 2002].
Objects are placed onto a plasma display that is mounted on the rotating platform. An
array of lights is mounted on an overhead rotating platform. Six video cameras are on
the stationary arc and are pointed towards the object.
We use the plasma displays for multi-background matting techniques [Smith & Blinn
96] to acquire alpha mattes of the object from multiple viewpoints. We also use them
to estimate the light transport through transparent and refractive objects, but more on
that later.

11

A lot of headwork…A lot of headwork…

• Building systems is hard, but worthwhile

Building these systems is a lot of headwork… But I highly encourage you to try it,
because the experience of building systems will focus your thinking. And playing with
turntable and cameras is fun… mostly…

12

Acquisition ProcessAcquisition Process

Alpha
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

The acquisition starts by first acquiring high-quality alpha mattes of the object from
different viewpoints

13

Alpha MattesAlpha Mattes

• Modified multi-background matting [Smith &
Blinn 96] with plasma monitors

As mentioned before, we use the plasma monitors to display know, random patterns
in the background. By comparing the acquired images with images of the known
background we can compute the partial coverage of the foreground object with the
background matte [Smith & Blinn 96]. The result is a sub-pixel accurate alpha matter,
as shown in these examples.
After alpha matte acquisition we switch off the plasma displays.

14

Acquisition ProcessAcquisition Process

Alpha
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

Next we use a threshold to convert the alpha mattes into binary silhouette images.
These images are then used to compute an approximate geometry of the object know
as the visual hull.

15

Visual HullVisual Hull

• The maximal object consistent with a given set
of silhouettes

A Visual hull is an approximating geometric shape which is obtained using the
silhouettes of an object as seen from a number of views. Each silhouette is extruded
creating one cone-like volume that bounds the extent of the object. The intersection of
these bounding volumes gives us the visual hull. Note that this method is unable to
capture all concavities.

16

Visual Hull ExampleVisual Hull Example

Here is an animation of the visual hull of a Buzz Lightyear model that was scanned in
one of our early systems. Note that the quality of the visual hull geometry is a function
of the number of viewpoints / silhouettes.

17

Acquisition ProcessAcquisition Process

Alpha
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

Now we have two options:
We can acquire the surface lightfield of the object – the object under a fixed
illumination. That means we rotate the object while the lighting is fixed with respect to
the object.

18

Acquisition ProcessAcquisition Process

Alpha
Mattes

Visual
Hull

Surface Lightfield Surface Reflectance Fields

Or we can acquire the surface reflectance field of the object, which is necessary for
relightable models.
The array of lights is rotated around the object. For each rotation position, each light
in the light array is sequentially turned on and an image is captured with each camera.

19

OutlineOutline

• Acquisition
Model

• Point-Based Rendering
• Relighting
• Reflectance Field Estimation

From the acquired data we build a model of our objects based on the opacity
lightfield, a surface lightfield that includes view-dependent opacity.

20

View-Dependent TexturesView-Dependent Textures

• Capture concavities, reflections, and
transparency with view-dependent textures
[Pulli 97, Debevec 98]

To add appearance to our model we can use view-dependent (or projective) texture
mapping [Debevec et al. 98][Pulli et al. 97]. Here we see our Buzz Lightyear model
from different viewpoints.
Note that the view-dependent textures capture reflections and transparency and give
the illusion of improved concavities. For example, the visual hull does not represent
Buzz’s head, although it clearly appears in the texture-mapped model.

21

Surface LightfieldSurface Lightfield

• Parameterize view-dependent textures
onto the object surface [Wood et al., 2000]

To improve the efficiency for compression and to improve the image quality during
view-interpolation we parameterize the view-dependent radiance samples on the
visual hull surface of the object. This is called a surface lightfield [Wood et al. 2000].
Note that the visual hull geometry (the black line in the figure) does not correspond to
the true geometry of the surface. Nevertheless, the view-dependent surface lightfield
is able to capture the actual surface appearance.

22

Opacity LightfieldOpacity Lightfield

• Also parameterize view-dependent opacity onto
the object surface

• 4D function f(u,v,φ,θ) RGBA

Red = invisible
Black = transparent

(θ,φ)

θ

φ

Opacity

Texture + Opacity

To further improve the appearance, especially for fuzzy or furry objects, we enhance
the surface lightfield with view-dependent opacity. We call this new representation the
opacity lightfield [Matusik et al. 2002, Vlasic et al. 2003].
The opacity lightfield is a four dimensional function. For each point (u, v) on the object
surface it stores radiance and opacity as a 2D function of the viewing direction (phi,
theta).
In these plots we show the opacity function and the opacity lightfield for one particular
surface point. White represents the opaque values, black represents the transparent
values, and red represents invisible directions. In general, it is quite difficult to fit a
parametric function to the opacity lightfield, although that would certainly be possible
for certain materials.
It is worth to note that the parameterization surface does not have to be a surface of
the visual hull. It can be any surface that contains the actual object.

23

Opacity LightfieldOpacity Lightfield
Texture + Opacity

Opacity Lightfield

Visual Hull

+

=

In summary: Our appearance representation for static light sources is the opacity
lightfield, which simply consists of texture + opacity for each acquisition viewpoint.
Those textures with alpha are mapped onto the visual hull geometry in a view-
dependent fashion. We will discuss the details of rendering of our models later.

24

ExampleExample

Photo

Let’s look at an example. Here we is a photograph of a small bonsai tree.

25

ExampleExample

Photo

Visual Hull

This animation shows the visual hull of the tree. Note that the visual hull does not
capture any of the fine features, such as leaves and branches.

26

ExampleExample

Photo

Visual Hull Visual Hull
+ Opacity

Here is the visual hull plus view-dependent opacity. It greatly enhances the quality of
the object’s silhouette. The background is also visible through the leaves and
branches, even though the geometry is exactly the same as on the left.

27

ExampleExample

Photo

Visual Hull Visual Hull
+ Opacity

Opacity
Lightfield

Finally we map the view-dependent textures onto the surface, too, for the final opacity
lightfield model. Note the specular highlights on the base of the tree.

28

Results VideoResults Video

Here is a video of the angel. Look at the feathers, the anisotropic cloth, and the semi-
transparent cloth on top of that. At some places you will see that the approximate
visual hull geometry leads to artifacts.

29

Results VideoResults Video

Here is another video of the bonsai tree, this time with a close-up view. Look at the
leaves in the tree and the specular highlights on the vase.

30

Results VideoResults Video

Here is a very specular teapot with intricate texture. You will see some jumping of the
highlights in the close-up view. This is due to the limited number of pictures – even
though we took 72 x 6 = 432 of them. Very specular objects require a tremendous
amount of image data.

31

Results VideoResults Video

Here is a video of a teddy bear. The organic complexity of the silhouette is captured
nicely by the opacity lightfield, as is the transparency of the glasses. You will see
artifacts in-between the arms of the teddy because of the bad visual hull geometry.

32

Results VideoResults Video

Our acquisition system can also capture organic models, such as living plants, which
would be very hard to do with active light or passive systems.

33

LessonsLessons

• View-dependent opacity vs. detailed geometry
trade-off

• Sometimes acquiring the geometry is not
possible

• Sometimes representing true geometry would be
very inefficient

• Opacity lightfield stores the “macro” effect

There is a logical trade-off between having accurate geometry and the opacity
lightfield.
If we have good geometry the sampling of the opacity and textures does not need to
be very dense. However, if we do not have good geometry we need the view-
dependent opacity and textures at a very good sampling rate.
There are at least two good reasons why to use the opacity lightfield:
Sometimes, geometry is impossible to get. The resolution of the acquisition device –
such as range scanner or a camera – may be limited, which means we cannot pick up
the details below a certain resolution.
And sometimes representing the true geometry would be very inefficient (e.g. for
hair). We would simply need too many points or polygons to represent it.
The opacity lightfield stores the macro effect, the overall effect of the geometry.

34

OutlineOutline

• Acquisition
• Model

Point-Based Rendering
• Relighting
• Reflectance Field Estimation

Let’s now talk about the rendering of our point-based models. In particular we will
discuss the view-dependent shading using the opacity lightfield (RGBA) data.

35

Why Points?Why Points?

• Generating a consistent triangle mesh or texture
parameterization is time consuming and difficult

• Points represent organic models (feathers, tree)
much more readily than polygon models

What is the connection between our system and point-based graphics? Quite simply,
we use a point-based model of the visual hull to store the opacity lightfield at each
surface point.
The main advantage is that we do not need to generate a consistent triangle mesh or
texture parameterization for our models. We avoid difficult issues such as mesh-
stitching, finding a global parameterization of the mesh, texture resampling, texture
anti-aliasing, etc.
In addition, points are a more natural choice to represent organic models such as
feathers and trees, which may have very small features and very complex silhouette
lines.

36

Points as Rendering
Primitives
Points as Rendering
Primitives
• Point clouds instead of triangle meshes [Levoy

and Whitted 1985]
• 2D vector versus pixel graphics

triangle mesh (with
textures)

point cloud

The idea of using points instead of triangle meshes and textures has first been
proposed by Levoy and Whitted in a pioneering report [Levoy & Whitted 85].
Think of the difference between points and triangles in 3D similar as of the difference
between pixels and vector graphics in 2D. Points in 3D are analogous to pixels in 2D,
replacing textured triangles or higher order surfaces by zero-dimensional elements.

37

Surface Elements - SurfelsSurface Elements - Surfels

• Each point corresponds to a surface element, or
surfel, describing the surface in a small
neighborhood

• Basic surfels:

BasicSurfel {
position;
color;

}

position

color

x

y

z

We call a point sample on the object surface a surface element, or surfel. It is similar
to a pixel in 2D or a voxel in 3D. As a matter of fact, there is a tight connection
between volume rendering and point-based surface rendering (see [Zwicker et al.
2002]).
A surfel describes the surface in a (possibly infinitely) small neighborhood. The basic
surfel is just a point with a position and a constant color.

38

ExtendedSurfel {
position;
color;
normal;
radius;
etc...

}

SurfelsSurfels

• Surfels can be extended by storing additional
attributes

normal
position

color radius

surfel disc

Surfels can of course be extended by storing additional attributes. We also store a
normal and a radius with each surfel. This corresponds to having a surfel disc with
radius r and normal n.
Intuitively, the union of surfel discs covers the object such that there are no holes on
the object surface. This will come in handy for reconstructing a continuous image
during rendering, as you will see in the talk by Matthias Zwicker.

39

• Simple, pure forward mapping pipeline
• Surfels carry all information through the

pipeline („surfel stream“)
• See Zwicker, Point-Based Rendering

Point Rendering PipelinePoint Rendering Pipeline

Filtering,
samplingShade samples

Input surface
samples

Surface samples
in image space

Continuous
Reconstruction

Warp to
image space

The point rendering pipeline processes point data as follows: Input surface samples
are first shaded according to the opacity lightfield data. We will discuss this step in
more detail next.
In the next stage, the points are projected, or warped, to image space. This is
analogous to projecting triangle vertices to image space.
Next, a continuous surface is reconstructed in image space, which is similar to
triangle rasterization.
The final stage in the pipeline is filtering and sampling the continuous representation
at the output pixel positions, which is is similar to texture filtering and sampling.
Matthias Zwicker will talk in much more detail about the reconstruction, filtering, and
resampling steps [Zwicker et al. 2001]. Point-based rendering can also be accelerated
with commodity graphics hardware, e.g., [Ren et al. 2002].

40

• Blend colors based on angle between new
viewpoint and acquired RGBA images

• Linear combination of colors from closest
views

Point Rendering PipelinePoint Rendering Pipeline

Filtering,
samplingShade samples

Input surface
samples

Surface samples
in image space

Continuous
Reconstruction

Warp to
image space

We will now focus on the pre-surfel shading.
The basic shading algorithm blends colors and alphas from the closest images that
were acquired from different camera views. The final color per surfel is a linear
combination of the colors from the closest views.

41

Color BlendingColor Blending

• Unstructured Lumigraph blending [Buehler 2001]
• Weights are based on angles between camera

vectors and the new viewpoint

The formula for this linear combination was developed for Unstructured Lumigraph
Rendering by [Buehler et al. 2001]. The blending weights are computed based on the
angles between the camera vectors and the new viewpoint.

42

ULR BlendingULR Blending

• For each surfel and some view direction d:
– Find the k closest camera views
– Compute the blending weights ri for each
– Normalize to get the final weights wi

cos1

coscosr
i

ki
i θ−

θ−θ
=

ki1 ,
r

rw 1k

1i
i

i
i ≤≤=

∑
−

=

ULR uses a ranking function based on the angles between original camera views and
the desired view.
For each surfel v and some viewing direction d, the algorithm finds the k nearest
visible views by comparing the angles they subtend with d.
Blending weights are computed according to the following formula:

Here, ri represent relative weights of the closest k-1 views. Those are normalized to
sum up to one, resulting in actual weights wi:

For more details about this blending formula, including implementation and
optimization suggestions, see [Vlasic et al. 2003].

cos1

coscosr
i

ki
i θ−

θ−θ
=

ki1 ,
r

rw 1k

1i
i

i
i ≤≤=

∑
−

=

43

Shading AlgorithmShading Algorithm

• Pre-compute and store visibility vector per surfel
• During rendering, project surfel into k closest

visible images to get RGBA colors
• Blend the RGBA colors using ULR weights

ExtendedSurfel {
position;
visibility[NUM_VIEWS];
normal;
radius;
etc...

}

We can further optimize this calculation by pre-computing the visibility of each camera
for each surfel by simply projecting it into each camera view. We store the visibility as
a binary vector per surfel. For each acquired camera view, the vector stores a 0 (not
visible) or 1 (visible).
During rendering, we determine the k closest visible camera views for each surfel
based on the angles they subtend with the new virtual view. We project the surfel into
the k closest images to get RGBA colors for ULR blending.
Then we compute the blending weights based on the formula presented on the
previous slide and compute the final surfel color.

44

DemoDemo

• Real-time for SW-only implementation
• No alpha blending
• Graphics HW implementation [Vlasic 2003]

This demo runs on my laptop in real-time using a software-only implementation.
However, we are not doing any alpha blending and the resolution of the textures is
limited. Nevertheless, the achievable image quality is very good.
We also implemented opacity lightfield rendering on modern graphics hardware. See
[Vlasic et al. 2003] for details.

45

OutlineOutline

• Acquisition
• Model
• Point-Based Rendering

Relighting
• Reflectance Field Estimation

So far, our models just display the lighting that was used during acquisition. In order
to place the models into arbitrary new environments we need to be able to relight
them.

46

Surface Reflectance FieldSurface Reflectance Field

• 6D function:
• Assumes directional illumination [Debevec 2000]

ωi

ωr

(u,v)

),;,;v,u(R rrii ΦθΦθ

To relight our models we acquire the surface reflectance field. The SRF is a 6D
function. For each surfel (u,v) and for each incoming light direction at infinity (ωi) and
for each outgoing direction (ωo) it stores the ratio of the incoming radiance to the
outgoing radiance [Debevec et al. 2000]. It is a simplified form of the BSSRDF for the
case of a fixed viewpoint.
For opaque objects we capture images of the object and vary the incoming
illumination for each turntable position by rotating the overhead light array. We use 4
lights and 15 positions for a total of 60 light configurations per camera view.

47

Relighting – 1st StepRelighting – 1st Step

• Generate new images for camera views

x =

Down-sampleSurface reflectance field

New
Illumination

Our modified rendering algorithm has two steps.
In the first step, we generate the new radiance images for all original camera views
given the new illumination environment.
Since we acquire the surface reflectance field only for 60 light position we have to
severely downsample the new illumination map.

48

Relighting – 2nd stepRelighting – 2nd step

• Interpolate images with ULR blending as before

Camera
View 1

Camera
View 2

New
View

In the second step we just use standard ULR blending as presented before to
compute the color values of each surfel for the new viewpoint. Note that we
interpolate both the radiance (color) and the opacity.

49

Results VideoResults Video

In this short video we show some results for opaque 3D models.
First, we use directional light sources with random colors to illustrate the relighting.
Then we place the 3D model into a synthetic environment where an environment map
provides the incoming illumination.
We also acquired a short video of a real scene in a local library. The camera was
tracked, and we acquired the illumination at the scene using a mirror ball and a
camera. Using the camera tracking information and an environment map of the
illumination we can then render new views of our objects and composite them into the
video.

50

OutlineOutline

• Acquisition
• Model
• Point-Based Rendering
• Relighting

Reflectance Field Estimation

We now look at a new method to acquire a surface reflectance field of arbitrary
objects, including transparent and refractive ones. Our method uses natural
illumination for the estimation of the reflectance field. It works for small objects or
large, outdoor scenes.

51

Previous WorkPrevious Work

• Forward Approaches
– Reflectance Fields [Debevec 2000]

• Inverse Approaches
– Environment Matting [Zongker 99]

• Pre-computed Light Transport

• We use an inverse approach [Matusik 2004]

We can classify the methods for estimating reflectance functions into forward and
inverse methods.
Most forward methods sample the reflectance functions exhaustively and tabulate the
results. For each incident illumination direction they store the reflectance function
weights for a fixed observation direction. In practice, only low-resolution incident
illumination can be used, since one reflectance table has to be stored per surfel. This
is what we used so far.
Inverse methods observe an output and compute the probability that it came from a
particular region in the incident illumination domain. The incident illumination is
typically represented by a bounded region, such as an environment map, which is
then modeled as a sum of basis functions. The inverse problem can then be stated as
follows: Given an observation (e.g., an image pixel), what are the weights and
parameters of the basis functions that best explain the observation? This is what we
will discuss now.
Note that recent real-time rendering methods use pre-computed light transport (or
pre-computed radiance transfer) to increase the realism of their objects. The
estimation method for the light transport is similar to what we will discuss now.
For a detailed list of references see [Matusik et al. 2004].

52

Light Transport ModelLight Transport Model

• Incident illumination is 2D parameterizable
• Linear “black box” system:

B = relit image (stacked in vector)
L = incident light (stacked in vector)
T = light transport matrix (reflectance field)

TLB =

First we start with the light transport model that we adopt:
We assume that the incident illumination is 2D parameterizable (i.e., can be
represented by an environment map). If we consider the problem as a black box
linear system, we can write:

where L is the incident illumination (stacked in a vector), B is the resulting relit
image (stacked in a vector), and T is the light transport matrix (or reflectance field).
Each row in T represents a reflection function Ti, thus T = [T0,…, Tn].

TLB =

53

Reflectance FunctionReflectance Function

• Each row Ti of the matrix T is a 4D reflectance
function for one output pixel bi

(θi,φi)

θi

φi

),;y,x(T)(T iiii Φθ=ω

Here is an example of a row of the reflectance field matrix T. Each row stores a 4D
reflectance function Ti.
For each pixel (x,y) and each incoming light direction (ωi) it stores the ratio of the
incoming radiance to the outgoing radiance. Note that the outgoing direction is
implicitly fixed to be the camera viewpoint.
Here we show five samples of this functions for different image points. We draw these
samples as a function of the incoming radiance directions phii and thetai.

54

RepresentationRepresentation

• Approximate Ti as a sum of 2D rectangular
kernels Rk,i, each with weight wk,i.

∑≈
k

i,ki,ki RwT

We approximate Ti as a weighted sum of several 2D rectangular kernels, such that:

where wk,i are the weights of each 2D rectangular box Rk,i. The figure shows an
example of the axis-aligned 2D kernels. The grayscale color corresponds to the
weight magnitude, where white is largest and black is zero.

∑≈
k

i,ki,ki RwT

55

Inverse EstimationInverse Estimation

• Display input images Lj and record observed
images Bj:

• Given Lj and bj(x,y), the goal is to estimate T
– Weights wk, i

– Position and size of the 2D box filters Rk, i

• We typically use 200 input images

jj TLB =

The problem of reflectance field acquisition is now equivalent to estimating the
impulse response function (or point spread function) of a linear system with multiple
inputs (the incident illumination L) and multiple outputs (the observation B).
The estimation process can be described as:

where Lj is a set of different natural incident illumination (the input images) and Bj is
the resulting set of observed photographs of the scene (the observed images).

We use over 200 random input images of indoor and outdoor scenes – such as
kitchens, gardens, cities – that are displayed on the monitor.

We denote a pixel b(i, j) as pixel i in the j-th observed image. Given L j and b(i, j), the
algorithm estimates the weights w k,i, positions, and sizes of the 2D rectangular
kernels for each pixel bi in the reflectance field. As we increase the number n of input
and observed images, we refine the kernels to improve the estimate of the reflectance
field.

jj TLB =

56

Algorithm Input and OutputAlgorithm Input and Output

• Input:
– Images (environment maps) of the input

illumination (L1,…,Ln)
– Observed images of the scene under input

illumination (O1,…,On)
• Output:

– For each pixel: Weights wk,i, positions and
sizes for Rk,i

Here again, more explicitly, the input and outputs of our algorithm.

57

AlgorithmAlgorithm

• Minimize error for each pixel bi:

Wi = vector of weights wk,i

Bi = vector of observed pixels
Ai = matrix of dot products Rk,i • Lj

0wtosubjectBWAminarg 2
iiiw ≥−

We observe that the problem can be solved independently for each pixel bi. We solve
the following optimization problem:

Wi is the stacked vector of weights wk,i to be computed (for a single pixel bi).
Ai = [Rk,i • Lj], where Lj is one of the input natural illumination images, and Bi = b i, j

We found through experimentation that constraining the kernel weights to be positive
is very important for the stability of the solution.
This over-constrained system can be efficiently solved using quadratic programming.
It estimates the weights Wi that satisfy the system best in the least-squares sense.

0wtosubjectBWAminarg 2
iiiw ≥−

58

Kernel SubdivisionKernel Subdivision

• Hierarchical quad-tree subdivision of the input
image

• Typically k=25 kernels per output pixel bi

To find the kernel positions and sizes for pixel bi, we use a hierarchical quad-tree
subdivision of the input image to find them.
We first start with a kernel that occupies the whole image. We split it into two equal
size rectangles. Having the option of splitting the kernel horizontally or vertically, we
choose the subdivision that yields the lowest error. To compute this error we solve for
the kernel weights using the equation in the previous slide. In the second iteration we
have four possible splits of the two kernels from the first iteration, and so on.
The recursive subdivision stops if K kernels are computed (or K-1 subdivisions have
been made).We found that K = 25 yields a good quality-vs.-time tradeoff

59

Kernel SubdivisionsKernel Subdivisions

Here we show images of the progressive subdivision of the kernels for different scene
points indicated by the red arrows. The kernels progress from left to right with 1, 2, 3,
4, 5, 10, 20, and 24 subdivisions.
The gray-scale colors of the kernels signify their weight (white is highest). Intuitively,
these images show which light from the background is transported towards the pixel.
The first row shows how our algorithm quickly (after 10 subdivisions) identifies the
small illumination kernel that is refracted by the glass. We identify one pixel (from the
800×600 input image) after 24 quad-tree subdivisions, which is quite remarkable.
The second row shows a primarily diffuse point in a hard shadow area. Note how the
light transport comes mostly from the right as expected, and how a small reflective
component is visible as well.
The third row shows a point with subsurface scattering. Light from a large area is
scattered towards the viewer.
Finally, the last row shows a glossy point. The illumination enters the scene from the
left (i.e., where the monitor was placed during acquisition). Note how the light is
transported from almost concentric circular areas towards the incoming illumination.

60

SummarySummary

• Quadratic programming to estimate weights Wi
such that the error is minimized

• Quad-tree subdivision of the image to determine
the optimal kernels Rk,i

initial
iW initial

i,kR

iterate

i,ki RandW1n
iW + 1n

i,kR +

In summary, our algorithm iteratively proceeds as follows:
We first choose the whole image as a kernel and 1 as the initial weight. We then
compute the error of this estimation compared with the actual observed images.
Assuming the error is too large, we subdivide the kernels and compute the minimum
error according to the formula three slides back. This process yields a new set of
weights and a set of new kernels.
The algorithm proceeds until the error of the estimation is below a certain threshold.

61

RelightingRelighting

• For each output pixel bi:

• Weights times the incident light from each kernel
• The incident illumination can be stored in a

summed-are table to accelerate the computation

()∑ •≈
k

ii,ki,ki LRwb

The pixel value of a single relit output pixel B = [bi] is:

Note that the pixel value bi is the inner product of two vectors Ti (reflectance function)
and L (incident illumination).

LTb ii •=

62

Results Results

• Single viewpoint, new illumination

Estimate Actual

As a standard test of the quality of reflectance field estimation, we first compare the
actual picture of the scenes under new illumination with the prediction obtained using
our estimated reflectance field.
In general, our prediction works very well, for glossy, diffuse, and transparent objects.

63

ResultsResults

Estimate Actual

Diffuse elements (e.g., the label on the molasses jar) are reproduced correctly.

64

ResultsResults

Estimate Actual

The Santa model, which is hollow, shows both subsurface scattering and refractions.

65

Moving White BarMoving White Bar

• New synthetic illumination

Estimate Actual

Since our algorithm depends entirely on natural images, the most difficult test for our
reflectance field prediction is to use synthetic input illumination with very high
frequencies, such as images with white bars on a black background.
Here we show our predictions of the scenes with a vertical white bar, 100 pixels wide,
sliding across the illumination domain. The glass clearly shows the greasy
fingerprints, which corresponds well to reality. However, the movie contains a slight
discontinuity due to the vertical subdivision used for the kernels.

66

3D Models3D Models

• Generate new images for camera views using
this technique

• Interpolate images with ULR blending
• The following results were actually computed

using an older technique [Matusik et al. 2002]

For 3D models we use the same procedure as before:
Generate new, relit images for each of the camera views and interpolate the results
using ULR blending for each new viewpoint.
The following results were computed using an older technique that uses a
combination of low-resolution reflectance fields and environment mattes (see [Matusik
et al. 2002]).

67

ResultsResults

Note the refraction of the checkerboard texture in this scanned wine glass.

68

Transparent ObjectsTransparent Objects

Here is our beer glass put into a new, synthetic environment. Note the refraction and
the reflections.

Note: No beer was harmed to produce this model. We used apple juice, of course.

69

Transparent ObjectsTransparent Objects

Note the reflection on the stem of the glass and the refraction.

70

Transparent ObjectsTransparent Objects

A crystal sugar bowl. Of course, we do not know what this object really would look like
in this environment.

71

ConclusionsConclusions

• Image-based 3D photography is able to capture
any type of object

• Point-based rendering offers high image-quality
for display of complex models

• Opacity lightfields provide realistic 3D graphics
models

• Robust reflectance field estimation allows us to
integrated objects into new environments

We can draw the following conclusions from our work:
Image-based 3D photography is able to capture any type of object, as long as we are
willing to acquire enough images.
Point-based rendering allows us to display these objects with maximum image quality
without compromises due to texture resampling or geometry parameterization.
Opacity lightfields offer a simple alternative to having complex geometry, since they
allow us to display objects with high complexity using an approximate shape model.
Finally, reflectance fields can be estimated robustly, which allows us to relight the
objects and place them into arbitrary new environments.

72

AcknowledgementsAcknowledgements

• Colleagues:
– MIT: Chris Buehler, Tom Buehler
– MERL: Bill Yerazunis, Darren Leigh

• Thanks to:
– David Tames, Jennifer Roderick Pfister

• Papers available at:
http://www.merl.com/people/pfister/

We would like to thank these individuals who helped during this research.
Please visit my web page to download PDF files of our publications.

73

ReferencesReferences
• [Debevec et al. 98] Efficient View-Dependent Image-Based Rendering with Projective

Texture Mapping. In Proceedings of the 9th Eurographics Workshop on Rendering, 1998.
• [Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000.
• [Matusik et al. 2004] Progressively-Refined Reflectance Functions from Natural Illumination,

Eurographics Symposium on Rendering 2004.
• [Matusik et al. 2002] Image-based 3D photography using opacity hulls. SIGGRAPH 2002,

July 2002.
• [Matusik et al. 2002] Acquisition and Rendering of Transparent and Refractive Objects,

Thirteenth Eurographics Workshop on Rendering, June 2002.
• [Pfister et al. 2000] Surfels: Surface elements as rendering primitives, SIGGRAPH 2000.
• [Pulli et al. 97] View-based rendering: Visualizing real objects from scanned range and color

data. In Eurographics Rendering Workshop 1997.
• [Ren et al. 2002] Object space EWA splatting: A hardware accelerated approach to high

quality point rendering, Eurographics 2002.
• [Smith & Blinn 96] Blue screen matting. Smith, A. R., and Blinn, J. F. 1996. In Computer

Graphics, vol. 30 of SIGGRAPH 96 Proceedings.
• [Vlasic et al. 2003] Opacity Light Fields: Interactive Rendering of Surface Light Fields with

View-Dependent Opacity, Proceedings of the Interactive 3D Graphics Symposium 2003,
Monterey, April 2003.

• [Zongker et al. 99] Environment matting and compositing. In Computer Graphics (Aug. 1999),
SIGGRAPH 99 Proceedings.

• [Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001.
• [Zwicker et al. 2002] EWA Splatting, IEEE TVCG 2002.

[Debevec et al. 98] Efficient View-Dependent Image-Based Rendering with
Projective Texture Mapping. In Proceedings of the 9th Eurographics Workshop on
Rendering, 1998.
[Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000.
[Matusik et al. 2004] Progressively-Refined Reflectance Functions from Natural
Illumination, Eurographics Symposium on Rendering 2004.
[Matusik et al. 2002] Image-based 3D photography using opacity hulls. SIGGRAPH
2002, July 2002.
[Matusik et al. 2002] Acquisition and Rendering of Transparent and Refractive
Objects, Thirteenth Eurographics Workshop on Rendering, June 2002.
[Pfister et al. 2000] Surfels: Surface elements as rendering primitives, SIGGRAPH
2000.
[Pulli et al. 97] View-based rendering: Visualizing real objects from scanned range
and color data. In Eurographics Rendering Workshop 1997.
[Ren et al. 2002] Object space EWA splatting: A hardware accelerated approach to
high quality point rendering, Eurographics 2002.
[Smith & Blinn 96] Blue screen matting. Smith, A. R., and Blinn, J. F. 1996. In
Computer Graphics, vol. 30 of SIGGRAPH 96 Proceedings.
[Vlasic et al. 2003] Opacity Light Fields: Interactive Rendering of Surface Light
Fields with View-Dependent Opacity, Proceedings of the Interactive 3D Graphics
Symposium 2003, Monterey, April 2003.
[Zongker et al. 99] Environment matting and compositing. In Computer Graphics
(Aug. 1999), SIGGRAPH 99 Proceedings.
[Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001.
[Zwicker et al. 2002] EWA Splatting, IEEE TVCG 2002.

1

Point-based Computer Graphics
Point-based Surface Representations

Point-based Surface RepsPoint-based Surface Reps

Presenter
– Marc Alexa
– Discrete Geometric Modeling Group
– Darmstadt University of Technology
– alexa@informatik.tu-darmstadt.de

MotivationMotivation

• Many applications need a definition of
surface based on point samples
– Reduction
– Up-sampling
– Interrogation (e.g. ray tracing)

• Desirable surface properties
– Manifold
– Smooth
– Local (efficient computation)

OverviewOverview

• Introduction & Basics
• Fitting Implicit Surfaces
• Surfaces from Local Frames

OverviewOverview

• Introduction & Basics
• Fitting Implicit Surfaces
• Surfaces from Local Frames

Introduction & BasicsIntroduction & Basics

• Notation, Terms
– Regular/Irregular, Approximation/Interpolation,

Global/Local
• Standard interpolation/approximation techniques

– Global: Triangulation, Voronoi-Interpolation, Least
Squares (LS), Radial Basis Functions (RBF)

– Local: Shepard/Partition of Unity Methods, Moving LS
• Problems

– Sharp edges, feature size/noise
• Functional -> Manifold

2

Introduction & BasicsIntroduction & Basics

• Notation, Terms
– Regular/Irregular, Approximation/Interpolation,

Global/Local
• Standard interpolation/approximation techniques

– Global: Triangulation, Voronoi-Interpolation, Least
Squares (LS), Radial Basis Functions (RBF)

– Local: Shepard/Partition of Unity Methods, Moving LS
• Problems

– Sharp edges, feature size/noise
• Functional -> Manifold

NotationNotation

• Consider functional (height) data for now
• Data points are represented as

– Location in parameter space
– With certain height

• Goal is to approximate f from

pi

f i = f pi()

fi,pi

• Regular (on a grid) or irregular (scattered)
• Neighborhood (topology) is unclear for irregular

data

Terms: Regular/IrregularTerms: Regular/Irregular Terms: Approximation/InterpolationTerms: Approximation/Interpolation

• Noisy data ⇒ Approximation

• Perfect data ⇒ Interpolation

Terms: Global/LocalTerms: Global/Local

• Global approximation

• Local approximation

• Locality comes at the expense of fairness

Introduction & BasicsIntroduction & Basics

• Terms
– Regular/Irregular, Approximation/Interpolation,

Global/Local
• Standard interpolation/approximation techniques

– Global: Triangulation, Voronoi-Interpolation, Least
Squares (LS), Radial Basis Functions (RBF)

– Local: Shepard/Partition of Unity Methods, Moving LS
• Problems

– Sharp edges, feature size/noise
• Functional -> Manifold

3

TriangulationTriangulation

• Exploit the topology in a triangulation (e.g.
Delaunay) of the data

• Interpolate the data points on the triangles
– Piecewise linear C0

– Piecewise quadratic C1?
– …

• Barycentric interpolation on simplices
(triangles)
– given point x inside a simplex defined by pi

– Compute αi from

– Then

Triangulation: Piecewise linearTriangulation: Piecewise linear

x = α ipii∑ and 1 = α ii∑

f (x) = α i f ii∑

Voronoi InterpolationVoronoi Interpolation

• compute Voronoi diagram (dual of Delaunay
triangulation)

• for any point x in space
– add x to Voronoi diagram
– Voronoi cell τ around x intersects original cells τi of

natural neighbors ni

– interpolate

with

f (x) = λi(x) f ii∑ λi(x)
i∑

λi(x) =
τ ∩ τ i

τ ⋅ x − pi

Voronoi InterpolationVoronoi Interpolation

n1

x

τ1
n2

τ2

n3

τ3

n4

τ4

n5

τ5

τ

• Compute Voronoi diagram (dual of Delaunay
triangulation)

• For any point x in space
– Add x to Voronoi diagram
– Compute weights from

the areas of new cell
relative to old cells

• Properties
– Piecewise cubic
– Differentiable,

continous derivative

Properties of Voronoi Interpolation:
• linear Precision
• local
• on domain
• f(x,x1,...,xn) is continuous in xi

Voronoi InterpolationVoronoi Interpolation

f(x) ∈ C1

Least SquaresLeast Squares

• Fits a primitive to the data
• Minimizes squared distances between the

pi’s and primitive g

min
g

f i − g pi()()2

i
∑

g(x) = a + bx + cx 2

4

Least Squares - ExampleLeast Squares - Example

• Primitive is a (univariate) polynomial

•

• Linear system of equations

g(x) = 1,x,x 2,...()⋅ cT

min f i − 1, pi, pi
2,...()cT()2

i
∑ ⇒

0 = 2pi
j f i − 1, pi, pi

2,...()cT()
i

∑

Least Squares - ExampleLeast Squares - Example

• Resulting system

0 = 2pi
j f i − 1, pi, pi

2,...()cT()
i

∑ ⇔

1 pi pi
2 K

pi pi
2 pi

3

pi
2 pi

3 pi
4

M O

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟ i

∑

c0

c1

c2

M

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 2 f i

1
pi

pi
2

M

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i
∑

Radial Basis FunctionsRadial Basis Functions

• Represent approximating function as
– Sum of radial functions r
– Centered at the data points pi

f x()= wi r pi − x()
i

∑

Radial Basis FunctionsRadial Basis Functions

• Solve

to compute weights wi

• Linear system of equations

f j = wir pi − p j()
i

∑

r 0() r p0 − p1() r p0 − p2() L

r p1 − p0() r 0() r p1 − p2()
r p2 − p0() r p2 − p1() r 0()

M O

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

w0

w1

w2

M

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

f0

f1

f2

M

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Radial Basis FunctionsRadial Basis Functions

• Solvability depends on radial function
• Several choices assure solvability

– (thin plate spline)

– (Gaussian)
• h is a data parameter
• h reflects the feature size or anticipated spacing

among points

r d()= d2 logd

r d()= e−d 2 / h 2

• Monomial, Lagrange, RBF share the same
principle:
– Choose basis of a function space
– Find weight vector for base elements by

solving linear system defined by data points
– Compute values as linear combinations

• Properties
– One costly preprocessing step
– Simple evaluation of function in any point

Function Spaces!Function Spaces!

5

• Problems
– Many points lead to large linear systems
– Evaluation requires global solutions

• Solutions
– RBF with compact support

• Matrix is sparse
• Still: solution depends on every data point, though

drop-off is exponential with distance
– Local approximation approaches

Function Spaces?Function Spaces? Introduction & BasicsIntroduction & Basics

• Terms
– Regular/Irregular, Approximation/Interpolation,

Global/Local
• Standard interpolation/approximation techniques

– Global: Triangulation, Voronoi-Interpolation, Least
Squares (LS), Radial Basis Functions (RBF)

– Local: Shepard/Partition of Unity Methods, Moving LS
• Problems

– Sharp edges, feature size/noise
• Functional -> Manifold

Shepard InterpolationShepard Interpolation

• Approach:

with basis functions

• define

φi x()=
x − x i

− p

x − x j
− p

j∑

f(x) = φi x() f ii∑

f(pi) = f i = lim
x →p i

f(x)

Shepard InterpolationShepard Interpolation

• f(x) is a convex combination of φi,
because all

• f(x) is contained in the convex hull of data points
•

Data points are saddles

• global interpolation
every f(x) depends on all data points

• Only constant precision, i.e. only constant functions are
reproduced exactly

φi ∈ 0,1[] and φi x()∑ ≡1

pi{ } >1⇒ f(x) ∈ C∞ and ∇ f pi()= 0

Shepard InterpolationShepard Interpolation

Localization:
• Set

• with

for reasonable Ri and ν >1
no constant precision because of possible
holes in the data

f(x) = µi x()φi x() f ii∑

µi x()= 1− x − pi Ri()ν
 if x − pi < Ri

0 else

⎧
⎨
⎪

⎩ ⎪

Partition of Unity MethodsPartition of Unity Methods

6

Partition of Unity MethodsPartition of Unity Methods

• Subdivide domain into cells

Partition of Unity MethodsPartition of Unity Methods

• Compute local interpolation per cell

Partition of Unity MethodsPartition of Unity Methods

• Blend local interpolations?

Partition of Unity MethodsPartition of Unity Methods

• Subdivide domain into overlapping cells

Partition of Unity MethodsPartition of Unity Methods

• Compute local interpolations

Partition of Unity MethodsPartition of Unity Methods

• Blend local interpolations

7

Partition of Unity MethodsPartition of Unity Methods

• Weights should
– have the (local) support of the cell

Partition of Unity MethodsPartition of Unity Methods

• Weights should
– sum up to one everywhere (Shepard weights)
– have the (local) support of the cell

Moving Least SquaresMoving Least Squares

• Compute a local LS approximation at x
• Weight data points based on distance to x

min f i − g pi()()2

i
∑ θ x − pi()

g(x) = a + bx + cx 2

t

Moving Least SquaresMoving Least Squares

• The set

is a smooth curve, iff θ is smooth

f x()= gx (x),gx : min
g

f i − g pi()()2

i
∑ θ x − pi()

Moving Least SquaresMoving Least Squares

• Typical choices for θ:
–
–

• Note: is fixed
• For each x

– Standard weighted LS problem
– Linear iff corresponding LS is linear

θ d()= d−r

θ d()= e−d 2 / h 2

θi = θ x − pi()

Introduction & BasicsIntroduction & Basics

• Terms
– Regular/Irregular, Approximation/Interpolation,

Global/Local
• Standard interpolation/approximation techniques

– Global: Triangulation, Voronoi-Interpolation, Least
Squares (LS), Radial Basis Functions (RBF)

– Local: Shepard/Partition of Unity Methods, Moving LS
• Problems

– Sharp edges, feature size/noise
• Functional -> Manifold

8

Typical ProblemsTypical Problems

• Sharp corners/edges

• Noise vs. feature size

Functional ManifoldFunctional Manifold

• Standard techniques are applicable
if data represents a function

• Manifolds are more general
– No parameter domain
– No knowledge about neighbors, Delaunay

triangulation connects non-neighbors

OverviewOverview

• Introduction & Basics
• Fitting Implicit Surfaces
• Surfaces from Local Frames

ImplicitsImplicits

• Each orientable 2-manifold can be
embedded in 3-space

• Idea: Represent 2-manifold as zero-set of
a scalar function in 3-space
– Inside:
– On the manifold:
– Outside:

f x()< 0
f x()= 0
f x()> 0

Implicits - IllustrationImplicits - Illustration

• Image courtesy Greg Turk

Implicits from point samplesImplicits from point samples

• Function should be zero
in data points
–

• Use standard
approximation
techniques to find f

• Trivial solution:
• Additional constraints are

needed

f pi()= 0

f = 0

0

9

Implicits from point samplesImplicits from point samples

• Constraints define inside
and outside

• Simple approach (Turk,
O’Brien)
– Sprinkle additional

information manually
– Make additional

information soft
constraints

−

−
−

−

−

−

+

+

+

+

+

+

+

Implicits from point samplesImplicits from point samples

• Use normal information

• Normals could be
computed from scan

• Or, normals have to be
estimated

Estimating normalsEstimating normals

• Normal orientation
(Implicits are signed)
– Use inside/outside

information from scan
• Normal direction

by fitting a tangent
– LS fit to nearest neighbors
– Weighted LS fit
– MLS fit

n

q

Estimating normalsEstimating normals

• General fitting problem

– Problem is non-linear
because n is constrained
to unit sphere

n
q

min
n =1

q − pi,n
2θ q − pi()

i
∑

Estimating normalsEstimating normals

• The constrained minimization problem

is solved by the eigenvector corresponding to
the smallest eigenvalue of the following co-
variance matrix

which is constructed as a sum of weighted outer
products.

min
n =1

q − pi,n
2θi

i
∑

q − pi()⋅
i

∑ q − pi()T θi

Implicits from point samplesImplicits from point samples

• Compute non-zero
anchors in the
distance field

• Use normal
information directly as
constraints

+1

+1

+1

+1

+1

+1

+1+1

+1

+1

+1 +1

f pi + ni()=1

10

Implicits from point samplesImplicits from point samples

• Compute non-zero
anchors in the
distance field

• Compute distances at
specific points
– Vertices, mid-points,

etc. in a spatial
subdivision

−2.5

+0.5

+1 +1

+0.5+2.5 +2

+2 +1.5

Computing ImplicitsComputing Implicits

• Given N points and normals
and constraints

• Let
• An RBF approximation

leads to a system of linear equations

f pi()= 0,f c i()= di

iNi cp =+

f x()= wiθ pi − x()
i

∑

pi,ni

Computing ImplicitsComputing Implicits

• Practical problems: N > 10000
• Matrix solution becomes difficult
• Two solutions

– Sparse matrices allow iterative solution
– Smaller number of RBFs

Computing ImplicitsComputing Implicits

• Sparse matrices

– Needed:

– Compactly supported RBFs

θ 0() θ p0 − p1() θ p0 − p2() L

θ p1 − p0() θ 0() θ p1 − p2()
θ p − p0() θ p2 − p1() θ 0()

M O

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

0)(',0)(==→> crdrcd

cc

Computing ImplicitsComputing Implicits

• Smaller number of RBFs
• Greedy approach (Carr et al.)

– Start with random small subset
– Add RBFs where approximation quality is not

sufficient

RBF Implicits - ResultsRBF Implicits - Results

• Images courtesy Greg Turk

11

RBF Implicits - ResultsRBF Implicits - Results

• Images courtesy Greg Turk

PuO ImplicitsPuO Implicits

• Construct a spatial
subdivision

• Compute local
distance field
approximations
– e.g. Quadrics

• Blend them with
local Shepard weights

−2.5

+0.5

+1 +1

+0.5+2.5 +2

+2 +1.5

CornerCorner
functionfunction

Edge Edge
functionfunction

Standard Standard
quadricquadric

Piecewise quadric
functions

Local analysis of Local analysis of
points and points and normalsnormals

PuO Implicits: Sharp featuresPuO Implicits: Sharp features Multi-level PuO ImplicitsMulti-level PuO Implicits

• Subdivide cells based on local error

Multi-level PuO ImplicitsMulti-level PuO Implicits

• Local computations
– Insensitive to number of points

• Local adaptation to shape
complexity

• Sensitive to output complexity

Multi-level PuO ImplicitsMulti-level PuO Implicits

• Aproximation at arbitrary accuracy

12

Implicits - ConclusionsImplicits - Conclusions

• Scalar field is underconstrained
– Constraints only define where the field is zero,

not where it is non-zero
– Additional constraints are needed

• Signed fields restrict surfaces to be
unbounded
– All implicit surfaces define solids

OverviewOverview

• Introduction & Basics
• Fitting Implicit Surfaces
• Surfaces from Local Frames

Hoppe’s approachHoppe’s approach

• Use linear distance
field per point
– Direction is defined

by normal
• In every point in

space use the
distance field of the
closest point

Hoppe’s approach - smootherHoppe’s approach - smoother

• Direction fields are
interpolated using
Voronoi interpolation

ProjectionProjection

• Idea: Map space to surface
• Surface is defined as fixpoints of mapping

r
r’

Surface definitionSurface definition

• Projection procedure (Levin)
– Local polyonmial approximation

• Inspired by differential geometry
– “Implicit” surface definition

– Infinitely smooth &
– Manifold surface

r
r’

13

Surface DefinitionSurface Definition

• Constructive definition
– Input point r
– Compute a local

reference plane
Hr=〈q,n〉

– Compute a local
polynomial over
the plane Gr

– Project point r’=Gr(0)
– Estimate normal

r
Gr

Hr

q

n

• Find plane
–

–
• h is feature size/

point spacing
– Hr is independent

of r’s distance
– Manifold property

r

Hr

q

n

Weight function
based on distance to

q, not r
Hr = q,n + D

min
q, n =1

q − pi,n
2θ q − pi()

i
∑

θ d()= ed 2 / h 2

Local Reference PlaneLocal Reference Plane

• Computing reference plane
– Non-linear optimization problem

• Minimize independent variables:
– Over n for fixed distance

– Along n for fixed direction n

– q changes the weights change
– Only iterative solutions possible

r

Hr

q

n

r

H
r

q

n

qr −

Local Reference PlaneLocal Reference Plane

• Practical computation
– Minimize over n for fixed q

• Eigenvalue problem
– Translate q so that

• Effectively changes
– Minimize along n for

fixed direction n
• Exploit partial derivative

r

Hr

q

n

r

H
r

q

n
nqrqr −+=

qr −

Local Reference PlaneLocal Reference Plane

• MLS polyonomial over Hr
–

– LS problem
– r’=Gr(0)

– Estimate normal

Projecting the PointProjecting the Point

r

Gr

Hr

q

n

min
G ∈Πd

q − pi,n − G pi Hr()()2

θ q − pi()
i

∑

Spatial data structureSpatial data structure

• Regular grid based on support of θ
– Each point influences only 8 cells

• Each cell is
an octree
– Distant octree cells

are approximated
by one point in
center of mass

r

14

ConclusionsConclusions

• Projection-based surface definition
– Surface is smooth and manifold
– Surface may be bounded
– Representation error mainly depends on point

density
– Adjustable feature size h allows to smooth out

noise

1

Point-Based Rendering
Matthias Zwicker, Computer Graphics Group, MIT

2

Point-Based RenderingPoint-Based Rendering

• Introduction and motivation
• Rendering by surface resampling
• Antialiasing by prefiltering
• Hardware implementation
• Applications
• Conclusions

This lecture starts with an introduction and motivation to point-based rendering.
Next, point rendering is explained as a resampling process, which builds a
conceptual framework for advanced rendering techniques. Basic point rendering
algorithms are prone to aliasing artifacts. We present a prefiltering approach to
avoid aliasing, which is based on our framework for surface resampling. We then
present a hardware implementation of our rendering algorithm and we discuss
various applications. We conclude the talk with a summary and directions for future
research.

3

Motivation 1Motivation 1

Quake 2, 1998
10k triangles

Nvidia, 2002
millions of triangles

In recent years, we have witnessed a tremendous development of the
computational power of computer graphics hardware. It was not possible to display
scenes with more than couple of thousand triangles only a few years ago, which is
illustrated on the left with a scene from Quake 2, a state-of-the art 3D game in 1998.
Over only a few years, realism of interactive computer graphics has increased
drastically. Recent hardware allows interactive rendering of highly complex
surfaces, as shown for example in this demo by Nvidia on the right.

4

Motivation 1Motivation 1

• Performance of 3D hardware has
exploded (e.g., GeForce FX: up to 338
million vertices per second, GeForce 6:
600 million vertices per second)

• Projected triangles are very small (i.e.,
cover only a few pixels)

• Overhead for triangle setup increases
(initialization of texture filtering,
rasterization)

Comparing the performance numbers of the last generations of GPUs, we can say
that the performance of these processors has literally exploded. While, for example,
the last generation of Nvidia GPUs, the GeForce FX, had a peak vertex rate of 338
million vertices per second, the current generation, the GeForce 6 that has been
released this spring, has almost doubled this number to 600 million vertices per
second. As a result of this huge processing power, the average projected size of
triangles in typical scenes is becoming smaller and smaller. Since the image
resolution has not increased significantly, the number of pixels covered by each
triangle has decreased significantly. However, this means that the relative overhead
for triangle setup, which includes the initialization of rasterization and texture
filtering, has increased. It is amortized over fewer and fewer pixels, leading to a
higher per pixel rendering cost.

5

Motivation 1Motivation 1

• Simplifying the rendering pipeline by
unifying vertex and fragment processing

A simpler, more efficient rendering
primitive than triangles?

Triangle rendering has also become much more flexible and programmable, since
modern GPUs allow the application of highly complex per-vertex and per-fragment
programs. However, this requires separate functional units for vertex and fragment
stages in the rendering pipeline. It would clearly be desirable to simplify the
rendering pipeline by unifying the vertex and fragment processing stages. Point-
based rendering has been developed with the goal to provide a rendering primitive
that is more efficient than triangles for the highly complex geometry that is common
today, and that allows the implementation of efficient and flexible rendering
pipelines avoiding redundant functionality.

6

Motivation 2Motivation 2

• Modern 3D scanning devices
(e.g., laser range scanners)
acquire huge point clouds

• Generating consistent triangle
meshes is time consuming and
difficult

A rendering primitive for
direct visualization of point
clouds, without the need to
generate triangle meshes? 4 million pts.

[Levoy et al. 2000]

While we observe continued advances in the power of rendering and visualization
systems, progress in 3D acquisition technology has also increased the complexity
of available 3D objects. Modern 3D scanning devices such as laser range scanners
acquire huge volumes of point data. Using such devices, the Digital Michelangelo
Project by Marc Levoy and his group in Stanford has obtained highly detailed
models of various statues by Michelangelo, for example the David statue that is
displayed using about 4 million points on the right. To visualize this data using
triangle rendering pipelines requires generating consistent triangle meshes, which is
a time consuming and difficult process. Therefore, a rendering primitive that allows
the direct visualization of unstructured point clouds, without the need to generate
triangle meshes as a pre-process, seems very attractive.

7

Points as Rendering PrimitivesPoints as Rendering Primitives

• Point clouds instead of triangle meshes and textures as
a rendering primitive [Levoy and Whitted 1985]

• 2D vector versus pixel graphics
• Points in 3D are analogous to pixels in 2D

triangle mesh with
textures

point cloud, i.e.,
nonuniform

surface samples

In this talk, I will present techniques that use points as an alternative to triangles as
a fundamental rendering primitive. The idea of using points instead of triangle
meshes and textures has first been proposed by Levoy and Whitted in a pioneering
report in 1985. Think of the difference between points and triangles in 3D similar as
of the difference between pixels and vector graphics in 2D. Points in 3D are
analogous to pixels in 2D, replacing textured triangles or higher order surfaces by
zero-dimensional elements.

8

Point-Based Surface RepresentationPoint-Based Surface Representation

• Points are nonuniform samples of
the surface

• The point cloud describes:
– 3D geometry of the surface
– Surface reflectance properties (e.g., diffuse

color, etc.)

• Points discretize geometry and
appearance at the same rate

• There is no additional information,
such as
– connectivity (i.e., explicit neighborhood

information between points)
– texture maps, bump maps, etc.

Essentially, points are nonuniformly distributed samples of 3D surfaces. A point
cloud describes the 3D geometry of the surface, including surface position and
normal, and the surface reflectance properties, for example its diffuse color, or even
a full BRDF at each point. This means that points are a purely discrete
representation of the surface, in fact discretizing the geometry and appearance of
the surface at the same rate. Note that in a point-based object representation, there
is no additional information such as connectivity, i.e., explicit neighborhood
information between points, or texture maps, bump maps, and so on.

9

Model AcquisitionModel Acquisition

• 3D scanning of physical objects [Matusik et
al. 2002, Levoy et al. 2000]
– See Pfister, acquisition
– Direct rendering of acquired point clouds
– No mesh reconstruction necessary

[Matusik et al. 2002]

How are point-based models acquired? Point-based surface representations arise
naturally as the raw data produced by 3D scanning devices. Many such systems
have been developed recently, making the direct visualization of acquired point
clouds desirable and attractive. For example, the acquisition device developed by
Matusik et al. is capable of scanning surfaces that are geometrically very complex,
such as those shown in the images here. The images are generated using a point
rendering algorithm with surface reflectance field shading. Using the points directly
as rendering primitives makes mesh reconstruction unnecessary, which would be
problematic for the fur of the bear or the feather boa of the angel.

10

Model AcquisitionModel Acquisition

• Sampling synthetic objects
– Efficient rendering and simple LOD of

complex models (trees, plants)
– Dynamic sampling of procedural objects

and animated scenes

[Zwicker et al. 2001] [Stamminger et al. 2001] [Deussen et al. 2001]

Point-based surfaces can also be acquired by sampling synthetic objects, as
proposed for example by Pfister et al. and Deussen et al. The goal of these
approaches is to render highly complex objects such as trees, plants, or whole
ecosystems, as efficiently as possible. In particular, points allow a very simple
construction of level-of-detail representations. Points can also be used to
dynamically sample and directly visualize procedural objects as described by
Stamminger et al.

11

Model AcquisitionModel Acquisition

• Processing and editing of point-sampled geometry (see
Pauly, Gross, afternoon session)

• Point-based content creation pipeline

point-based surface editing
[Zwicker et al. 2002]
(Pauly, Pointshop3D)

spectral processing
[Pauly, Gross 2002]

(Gross, spectral processing)

Shape modeling
[Pauly et al. 2003]

(Pauly, Pointshop3D)

Finally, recent research has extended the scope of point-based surface
representations to include processing, editing, and modeling operations. These
efforts provide a wide variety of operations to modify point-based surfaces. They will
be described in more detail in the talks by Mark Pauly and Markus Gross later in
this course. In these techniques, point-based rendering provides the back-end for
interactive visualization of the modified objects. Together, the techniques provide a
complete point-based content creation pipeline that never requires the
reconstruction of a triangle mesh or higher order surface.

12

Rendering by ResamplingRendering by Resampling

nonuniform set of
surface samples

surface samples on a
regular image sampling grid

Input:

Output:

rendering algorithmResampling:

• Resampling involves reconstruction, filtering, and
sampling

• The resampling approach prevents artifacts such as
holes and aliasing

In this talk, I will introduce point rendering as a resampling process: As an input, we
are given an unstructured point cloud, or a nonuniform set of surface samples. The
output of the rendering system is again a set of surface samples, but distributed on
the regular grid of the output image. The rendering algorithm converts the initial
surface samples to new samples at the output positions. Hence rendering is a
resampling process that consists of reconstructing a continuous surface from the
input samples, filtering the continuous representation, and sampling it, or evaluating
it, at the output positions. In this talk I will show how this resampling approach
prevents artifacts such as holes or aliasing in point rendering algorithms.

13

Rendering by ResamplingRendering by Resampling

• Rendering pipeline

Filtering,
samplingShade samples

Input surface
samples

Surface samples
in image space

Continuous
Reconstruction

Warp to
image space

“vertex shading” “vertex
projection”

“triangle
rasterization”

“texture
filtering”

The point rendering pipeline processes point data as follows: Input surface samples
are first shaded according to any local illumination model. This stage is comparable
to vertex shading in triangle rendering pipelines. In the next stage, the points are
projected, or warped, to image space. Again, this is analogous to projecting triangle
vertices to image space. Next, a continuous surface is reconstructed in image
space, which is similar to triangle rasterization. The final stage in the pipeline is
filtering and sampling the continuous representation at the output pixel positions,
which is is similar to texture filtering and sampling.

14

Rendering by ResamplingRendering by Resampling

• Rendering pipeline

Continuous
Reconstruction

Filtering,
sampling

Warp to
image spaceShade samples

Input surface
samples

Surface samples
in image space

resampling

I will now focus on the final three stages of the pipeline, which essentially implement
the resampling process. First, I will explain our method for surface reconstruction.

15

Continuous ReconstructionContinuous Reconstruction

• For uniform samples, use signal processing theory
• Reconstruction by convolution with low-pass

(reconstruction) filter
• Exact reconstruction of band-limited signals using ideal

low-pass filters

)()()(~ ixifxf
i

−=∑ δ

∑ −=

⊗=

i
ixhif

xhfxg
)()(

))(~()(
21

21

The continuous reconstruction of uniformly sampled functions, or signals, is well
understood and described by signal processing theory. Continuous reconstruction is
achieved by convolving the sampled signal with a reconstruction or low-pass filter.
On the left, the sampled signal tilde(f) is represented as a sum of scaled impulse
signals, where f(i) are the samples of the original function. Convolving this with a
reconstruction filter h as shown on the right leads to the representation of the
reconstructed signal g as a weighted sum of shifted reconstruction filter kernels.
One of the major and most practical results of signal processing theory, the so-
called sampling theorem, states that band-limited signals can be exactly
reconstructed using ideal low-pass filters.

16

Continuous ReconstructionContinuous Reconstruction

• Signal processing theory not applicable for
nonuniform samples

• Local weighted average filtering
– Normalized sum of local reconstruction kernels

)()()(~ i
i

i xxxfxf −=∑ δ
∑

∑
−

−
=

i
ii

i
iii

xxr

xxrxf
xg

)(

)()(
)(

Unfortunately, signal processing theory is not applicable to nonuniform samples,
and it is a non-trivial question what would be the best way to reconstruct a
continuous signal from nonuniform samples. Our approach shown on the right is
inspired by signal processing theory. We call it local weighted average filtering. The
nonuniformly sampled signal is represented by samples f of the original signal at
arbitrary positions x_i. We reconstruct a continuous signal g by building a weighted
sum of reconstruction kernels r, similar as in the uniform case. However, we use a
locally different kernel for each sample position, so this does not correspond to a
convolution. Further, we normalize the reconstructed value at each position by the
sum of the reconstruction kernels.

17

Nonuniform ReconstructionNonuniform Reconstruction

• Local weighted average filtering
– Simple
– Efficient
– No guarantees about reconstruction error

• Normalization division ensures perfect flat
field response

• Choice of reconstruction kernels based on
local sampling density [Zwicker 2003]

This local weighted average scheme is very simple and efficient, in particular if the
reconstruction kernels have a local support. However, note that it does not
guarantee any bounds on the reconstruction error, as signal processing theory does
in the uniform case. Further, normalization is a crucial component of the scheme,
since it ensures that the reconstruction has a perfect flat field response. This means
that reconstructing a constant signal is done exactly and without any error. This is
important to avoid visual artifacts. The reconstruction kernels are determined in a
pre-process based on the local sampling density. However, a discussion of
techniques to do so is outside the scope of this talk.

18

common frame?

Parameterized ReconstructionParameterized Reconstruction

input sample points

• Lower dimensional signal in higher dimensional space

So far I have been discussing the reconstruction of signals in a functional setting.
However, surfaces must be interpreted as lower dimensional signals in a higher
dimensional space. In our case, these would be 2D surfaces embedded in 3D
Euclidean space. Note that to perform 2D surface reconstruction as described
before, we need a global, common 2D coordinate frame. Our solution is to construct
such a global frame using a parameterization of the input points. I will illustrate this
idea using a 1D curve reconstructed in the 2D plane. First, let us define a local
frame for each point, and let us define the reconstruction kernel associated with
each point in coordinates of the local frame. Note that the orientation of the local
frame and the reconstruction kernel for each point is different.

19

Parameterized ReconstructionParameterized Reconstruction

reconstructed curve

local framelocal frame

reconstruction kernel

input sample points

parameter domain x

• Lower dimensional signal in higher dimensional space

We then use a parameterization to map all the local frames into one global frame of
reference. The global frame of reference is also called the global parameter domain.
This means that for each local reference frame we define a parameter mapping that
converts local coordinates to coordinates of the global parameter domain. I will later
explain how this mapping from local to global coordinates is computed for point
rendering. Given all the reconstruction kernels in the parameter domain, the
reconstruction equation can be evaluated as in the functional setting. However, the
reconstructed curve is not a continuous 1D function, but a parameterized 1D curve
embedded in the 2D plane.

20

Parameterized ReconstructionParameterized Reconstruction

∑
∑

−

−

=

i
ii

i
iii

xr

xrxf
xg

))((

))(()(
)(1

1

ϕ

ϕ

sample value
reconstruction kernel

Parameterization,
i.e., mapping to global

parameter domain

• Reconstruction yields a parameterized curve

global parameter
coordinate

Mathematically, the reconstruction of a parameterized curve can be expressed
easily by plugging in the parameter mappings into the reconstruction equation for
the functional setting. Here, x denotes the global parameter coordinate, and phi_i^(-
1)(x) are the mappings from the local frames to the global domain.

21

Parameterized ReconstructionParameterized Reconstruction

• Surface samples are extended with
specification of local reference frame

• Usually given by surface normal
• Reconstruction of surfaces includes

reconstruction of all surface attributes
– Color
– Position
– Normal

To apply this scheme to point-sampled surfaces, we need to extend the surface
samples by a specification of the local reference frame. Usually, the local reference
frame is defined to be perpendicular to the surface normal. Further, note that the
reconstruction of surfaces includes the reconstruction of all surface attributes such
as its color, position, and normal. All these attributes can be interpolated using the
expression shown in the last slide.

22

Parameterized ReconstructionParameterized Reconstruction

parameterization

3D object space 2D parameter domain

2D local
reference

2D recon-
struction kernel

This slides illustrates the idea of parameterized reconstruction for 2D surfaces in
3D. A 2D local reference plane is defined for each surface sample in 3D, and the 2D
reconstruction kernel associated with each sample is defined on this plane. A
parameter mapping for each local reference domain transforms the reconstruction
kernel to a global 2D parameter domain with coordinates x_0 and x_1. Local
weighted average filtering for all surface attributes is then performed in this global
parameter domain.

23

Rendering by ResamplingRendering by Resampling

• Rendering pipeline

Continuous
reconstruction

Filtering,
sampling

Warp to
image spaceShade samples

Input surface
samples

Surface samples
in image space

Now that I have established a method to reconstruct a continuous surface from the
discrete samples, I will explain how it is applied in the point rendering pipeline. The
crucial step to do this is the warping or the projection of the input sample points and
their attributes to image space.

24

WarpingWarping

• Use image space as global parameter
domain

• Warp local reference domains to image
space using a 2D to 2D projective
mapping

• Compute weighted sum of reconstruction
kernels in image space

The link between parameterized reconstruction described before and point
rendering is the idea to use image space as the global parameter domain. The
parameter mappings from local to global coordinates are then given by the warp of
the local reference domains to image space using a 2D to 2D projective mapping.
Reconstruction is performed by computing the weighted sum of reconstruction
kernels in image space.

25

WarpingWarping

The idea of warping the local reference planes to image space and using image
space as the global parameter domain is again illustrated on this slide. The
reconstruction kernels are initially defined in coordinates u_0, u_1 of the local
reference plane shown on the left. The reference planes are embedded in 3D
space using an anchor point p and tangent vectors t_u_0 and t_u_1, as shown in
the middle. Note that the index i specifying an input point is omitted here to simplify
the notation. A 2D to 2D mapping, or a 2D to 2D correspondence, is then
established by perspectively projecting these planes to image space with
coordinates x_0 and x_1, shown on the right. Hence, the pose of the tangent plane
and its perspective projection determine the 2D to 2D parameter mapping
x=phi_i(u_i).

26

WarpingWarping
• The projective mapping from tangent coordinates to

image coordinates
– Mapping to clip space with coordinates x0’, x1’, x2’, x3’

where M is the 4x4 compound modelview-projection
matrix

– Projection (division by homogeneous coordinate)

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
),('
),('
),('
),('

1

0

10

3

2

1

0

u
u

vux
vux
vux
vux

uu pttM

⎥
⎦

⎤
⎢
⎣

⎡
==

),('
),(',

),('
),('

103

101

103

100

uux
uux

uux
uux(u)x ϕ

The projective mapping from local tangent coordinates to image coordinates is
easily expressed using the following matrix notation. First, a point on the tangent
plane is mapped to so-called clip space. This is done by transforming a point u_0,
u_1 to 3D using the definition of the tangent plane, which is expressed as a matrix
vector multiplication here. This point is then mapped to clip space by multiplying it
with the 4x4 modelview-projection matrix M, analogous to transforming triangle
vertices. Projection to image coordinates is then performed by the division through
the homogeneous coordinate x_3.

27

WarpingWarping

∑
∑

−

−

=

i
ii

i
iii

kjr

kjrf
kjg

)),((

)),((
),(1

1

ϕ

ϕ

perspective projection
of reference domain i

output pixel
coordinates

* =

• Reconstruction kernels in image space are
also called “footprints” or “splats”

The projective 2D to 2D mapping can now be plugged into the reconstruction
equation. To simplify explanations, we focus on the reconstruction of the surface
color from now on. The color at an output pixel (j,k) is then given by the weighted
sum of sample colors f_i multiplied by the value of the warped reconstruction
kernels, normalized by the sum of the warped reconstruction kernels at the pixel.
The projective mapping phi_i is derived as explained in the slide before. A warped
reconstruction kernel in image space multiplied with a sample color is also called a
“footprint” or “splat”.

28

Splatting AlgorithmSplatting Algorithm

for each sample point {
shade surface sample;
splat = projected reconstruction
kernel;
rasterize and accumulate splat;

}
for each output pixel {
normalize;

}

Hence, we also call the resulting rendering algorithm a splatting algorithm. This
algorithm proceeds by iterating over all sample points: First, the point is shaded
using some local illumination model. Then, the footprint or splat is computed by
projecting the reconstruction kernel to image space. The splat is now rasterized and
accumulated in the framebuffer. After all samples have been processed, all the
values in the framebuffer have to be normalized by the accumulated weights of the
warped reconstruction kernels.

29

NormalizationNormalization

varying brightness
because of irregular
point distribution

without normalization with normalization

no artifacts

I want to point out two important aspects of this splatting algorithm: First, observe
that the normalization pass is essential to avoid visual artifacts. Since the input
points are nonuniformly distributed in 3D space, it is in general not possible to
choose reconstruction kernels that sum up to one everywhere, i.e. that provide a
partition of unity. This leads to a varying brightness across the reconstructed
surface, as is illustrated in the close-up in the middle. Normalization guarantees a
perfect flat field response of the reconstruction scheme, therefore avoiding
brightness variations.

30

VisibilityVisibility

• ε-z-buffering

z
z-buffer pixel

local reference
planes

surface 2surface 1

accumulate

splats within
ε-threshold

discard splats

The second issue is determining the visibility of the splats in image space. In other
words, we need to determine which splats belong to the visible surface in a given
pixel and therefore should be accumulated, and which ones should be discarded
because they belong to an occluded surface. We solve this problem using an
extended z-buffering scheme, sometimes also called epsilon-z-buffering. The idea is
that in each pixel, all those splats are visible that lie within a range epsilon from the
front-most contribution of any splat. All splats that have depth values that are further
away than the front-most splat plus the threshold epsilon are considered to belong
to a different surface, and they are discarded.

31

Rendering by ResamplingRendering by Resampling

• Rendering pipeline

Continuous
reconstruction

Filtering,
sampling

Warp to
image spaceShade samples

Input surface
samples

Surface samples
in image space

Now that we have reconstructed the point-based surface in image space, the final
step of the rendering pipeline is to sample the reconstructed signal at the output
pixel locations. However to achieve high image quality, it turns out that we need to
apply some filtering to the reconstructed signal before sampling it. I will focus on this
issue in the next part of the talk.

32

AliasingAliasing

• Moiré patterns
• Disintegration

of textures

Unfortunately, rendering using warped reconstruction kernels does not prevent so-
called aliasing artifacts. Aliasing artifacts include Moire patterns in images with
highly structured patterns, such as the checkerboard texture shown on the right.
Moire patterns are low-frequency patterns that appear in sampled versions of highly
structured, high frequency signals. An other artifact that we observe is the
disintegration of textures with very fine detail, such as the text pattern on the right.
These artifacts are analogous to the artifacts produced by texture mapped triangle
rendering with poor texture filtering.

33

AntialiasingAntialiasing

• Aliasing occurs when sampling a signal
that is not band-limited to the Nyquist
frequency of the sampling grid

• Aliasing is avoided by prefiltering, i.e.,
band-limiting to the Nyquist frequency,
before sampling

From signal processing theory we know that aliasing occurs when sampling a signal
that is not band-limited to the Nyquist frequency of the sampling grid. The best way
to prevent aliasing is to prefilter the signal before sampling, i.e., to band-limit it to
the Nyquist frequency of the sampling grid. Prefiltering techniques are common for
texture filtering, and the technique that we will describe for point splatting is actually
derived from a high quality texture filtering approach.

34

Resampling with PrefilteringResampling with Prefiltering

discrete input

warp

warped inputreconstructed input

reconstruct

continuous output

prefilter

source space
resampling with

prefiltering
[Heckbert 89]

discrete output

sample

destination space

Our approach is based on the concept of resampling with prefiltering, which has
been introduced to computer graphics by Paul Heckbert in 1989 in the context of
texture filtering and image warping. Resampling is the process of taking a discrete
input signal, defined in so-called source space, transform it to a destination space,
and sample it to a new sampling grid in destination space. To avoid aliasing
artifacts, resampling includes the following steps: First, a continuous signal is
reconstructed in source space. The continuous signal is then warped to destination
space. Next, a prefilter is applied to remove high frequencies from the warped
signal, i.e., to band-limit the signal. The band-limited signal is then sampled at the
new sampling grid in destination space, avoiding any aliasing artifacts.

35

Resampling with PrefilteringResampling with Prefiltering

reconstruction kernels

reconstructed input

position

sample
value

nonuniform spacing

Let me describe this in some more detail in the 1D setting: We first reconstruct a
signal by building a weighted sum of reconstruction kernels. Note that the kernels
are nonuniformly distributed in space.

36

Resampling with PrefilteringResampling with Prefiltering

Source Space

3. Filter

Destination Space2.
 W

ar
p

Destination Space 4.
 S

am
pl

e

Destination Space

Next, the reconstructed signal is warped to destination space as described before.
Here, the warp is simply a 1D dilation of the signal. The warped signal is then low-
pass filtered and sampled on the output grid in destination space.

37

Resampling with PrefilteringResampling with Prefiltering

low-pass filter convolution

resampling kernel

sum of resampling kernel

warped reconstruction
kernel

Source Space

3. Filter

Destination Space2.
 W

ar
p

Destination Space 4.
 S

am
pl

e

Destination Space

Observe that the warped signal in destination space can again be expressed as a
weighted sum of warped reconstruction kernels. Band-limiting the warped signal is
implemented as a convolution with a low-pass filter. Since convolution is a linear
operation, we can convolve each warped reconstruction kernel with the low-pass
kernel individually, instead of applying the low-pass filter to the sum of the
reconstruction kernels. We call a warped, low-pass filtered reconstruction kernel a
resampling kernel, as shown in the bottom right figure. Hence, the continuous
output signal is a weighted sum of resampling kernels, which is evaluated at the
output sampling grid.

38

• Ignoring normalization for now

• The image space resampling kernel
combines a warped reconstruction
kernel and a low-pass kernel

Resampling FiltersResampling Filters

∑ ⊗= −

i
iii xhxrfxg)())(()(1ϕ

resampling kernel

It is straightforward to apply this resampling framework to the reconstruction
scheme described earlier in the talk. Let me ignore the normalization division for
now. The output signal is given by convolving the reconstructed signal in image
space with the low-pass filter. Because of the linearity of the convolution, each
warped reconstruction kernel can be convolved separately, yielding a resampling
kernel. So the resampling kernel essentially is a combination of a warped
reconstruction kernel and a low-pass kernel.

39

Gaussian Resampling FiltersGaussian Resampling Filters

• Proposed by [Heckbert 89]

• Gaussians are closed under

– linear mappings:

– convolutions:

xVx

V
V

x
1

2
1

2/12
1)(

-T

eg
−

=
π

)()()(xxx V'VV'V +=⊗ ggg

)()(1 xWxW WVWV Tgg - =

While resampling seems to be an elegant approach to do reconstruction and band-
limiting in a unified framework, it is not clear yet how to compute these kernels
efficiently. To use resampling filters in practice, Heckbert proposed to use
Gaussians as reconstruction and as low-pass filter kernels. The familiar equation for
a 2D Gaussian g with a 2x2 variance matrix V is given here. To compute resampling
kernels efficiently, we exploit two interesting properties of Gaussian kernels: They
are closed under linear mappings and under convolutions. Applying a linear
mapping W to a Gaussian with variance matrix V yields an other Gaussian with
variance matrix WVW^T. Similarly, convolving a Gaussian with variance matrix V
with an other one with variance matrix V’ leads to a new one with variance matrix
V+V’.

40

Gaussian Resampling FiltersGaussian Resampling Filters

• Locally approximate the projective mapping
using its Jacobian
– Exact:

– Approximation:

where

[])(),((u)x 101100 ,uux,uux==ϕ

uJxux 0 ⋅+=≈ 0)(~ϕ

)0,0(1

101

0

101

1

100

0

100

0),(),(

),(),(

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

u
uux

u
uux

u
uux

u
uux

J

Note that since the projective mapping phi from local tangent coordinates to image
space is not linear, we can not use it directly to warp the Gaussian reconstruction
kernels to image space. Instead, we use a locally linear approximation of this
mapping by computing its linear Taylor expansion. This involves the Jacobian J_0,
which is the 2x2 matrix consisting of its partial derivatives evaluated at u=0.

41

)(1
1

x
J HJVJ +−∑= T

iii
gf

i i
i

Gaussian Resampling FiltersGaussian Resampling Filters

• Using the affine approximation and the
exploiting the properties described before

∑ ⊗= −

i
iii xhxrfxg)())(~()(1ϕ

Gaussian resampling kernel
(EWA resampling kernel)

Using the affine approximation and exploiting the properties of Gaussians described
before, we can now express the warped and band-limited reconstruction kernel as a
single Gaussian kernel. Heckbert has also called this kernel the EWA resampling
kernel, EWA standing for elliptical weighted average. The variance matrix of this
kernel is composed of the original variance V_i matrix of the reconstruction kernel in
tangent space, the Jacobian J_i of the mapping from tangent to image space, and
the variance matrix of the low-pass kernel H, which is usually a 2x2 identity matrix.
The Gaussian resampling kernel can be computed efficiently, since it only involves
one 2x2 matrix inversion and a couple of 2x2 matrix multiplications and additions.

42

Gaussian Resampling FiltersGaussian Resampling Filters
warped recon-

struction kernel
low-pass

filter
resampling

filter
minification

magnification

The effects of Gaussian resampling kernels on the splat shape can be visualized
and explained very intuitively. In the left column of this table I depict the shapes of
the warped reconstruction kernels in image space. Note that the ellipse corresponds
to a contour line of the Gaussian kernel. The shape and size of the reconstruction
kernel depends on the projection of the local tangent plane. In case of minification,
shown in the top left, the reconstruction kernel will be “smaller” than the pixel
spacing, which is indicated on the axes of the figures. In other words, the
reconstruction kernel contains higher frequencies than can be captured by the pixel
grid, which leads to aliasing artifacts. Convolution with the low pass filter, shown in
the middle column, solves this problem. Note that the low-pass filter is independent
of the projection, but its size is determined by the spacing of the pixel grid. The
resulting resampling kernels are depicted in the right column. Observe that in the
case of minification, shown in the top row, the shape of the resampling kernel is
largely determined by the low-pass kernel, blurrying the reconstruction kernel and
removing its high frequencies. In the middle column, a case of anisotropic
minification and magnification is shown. This leads to an anisotropic scaling of the
reconstruction kernel as shown on the right. In other words, this filtering technique is
equivalent to a so-called anisotropic texture filter. The bottom row illustrates
magnification of the reconstruction kernel. In this case, convolution with the low-
pass kernel does not change the shape of the kernel significantly, avoiding
unnecessary blurrying the output image.

43

Image Quality ComparisonImage Quality Comparison

• EWA texture filtering [Heckbert 89]

surface splatting EWA texture filtering
equivalent quality

In fact, splatting with Gaussian resampling kernels is mathematically equivalent to
EWA texture filtering as originally proposed by Heckbert in 1989. As a result, both
approaches provide the same high image quality due to true anisotropic texture
filtering.

44

Image Quality ComparisonImage Quality Comparison

• Ellipse splatting (no low-pass filter)

surface splatting splatting reconstruction
kernels, aliasing!

Here I compare splatting resampling kernels on the left with splatting reconstruction
kernels without low-pass filtering on the right. Clearly, this leads to strong aliasing
artifacts, visible as Moire patterns on the right. In contrast, those artifacts are
completely avoided when using prefiltered resampling kernels.

45

Image Quality ComparisonImage Quality Comparison

• Trilinear mipmapping

surface splatting
anisotropic filtering

trilinear mipmapping
isotropic filtering

This is one more comparison of surface splatting on the left with trilinear
mipmapping on the right, a popular texture filtering technique. While surface
splatting provides anisotropic filtering, trilinear mipmapping is an isotropic filter.
However, the amount of filtering required in this example is different in the
horizontal and vertical direction. Trilinear mipmapping filters conservatively in both
directions, leading to excessive blurriness in the horizontal direction in this example.
While the structure of the checkerboard texture is preserved along the horizontal
direction on the left, it is completely lost on the right side due to isotropic filtering.

46

ImplementationImplementation

• Software implementation „surface
splatting“ [Zwicker et al. 2001]
– Edge antialiasing
– Order independent transparency

• LDC tree data structure [Pfister et al.
2000]
– Extension of layered depth images
– Hierarchical rendering
– Optimized warping

The following slides show some results that were generated using a software
implementation of our technique. This implementation also features edge
antialiasing and order independent transparency to render semi-transparent
surface. It is based on the LDC tree data structure, which is an extension of layered
depth images. This data structure allows for hierarchical rendering and optimized
warping.

47

ResultsResults

• Scanned head (429‘075 points)

This first example is a data set that was acquired using a Cyberware laser range
scanner. The scanner obtained roughly 400’000 surface samples, which are
visualized directly using our splatting approach.

48

ResultsResults

• Helicopter (987‘552 points)

Here we show a complex object that was sampled from a synthetic model. It
contains almost one million points. This animation also illustrates rendering of semi-
transparent surfaces.

49

ResultsResults

• Matterhorn (4‘782‘011 points)

This is a data set that we acquired from a textured digital terrain model. It contains
almost five million points. This animation is to demonstrate the high image quality of
our splatting approach. The texture contains very fine detail, which is rendered
without flickering or any other aliasing artifacts.

50

PerformancePerformance
• Software implementation [Zwicker et al. 2001]

– 1.1 GHz AMD Athlon, 1.5 Gbyte RAM

Helicopter 987‘552 0.6 fps 0.3 fps
Matterhorn 4‘782‘011 0.2 fps 0.1 fps

Scanned head 429‘075 1.3 fps 0.7 fps
Data #Points 256 x 256 512 x512

Scanned head Helicopter Matterhorn

Here is some performance data of the software implementation that was measured
on a 1.1 GHz AMD Athlon system. With current systems, rendering performance is
increased about a factor of two. We achieved an average of roughly 500’00 splats
per second for the models shown before. Note that the performance also depends
significantly on the output image resolution. Clearly, this performance is not
sufficient for interactive rendering of complex objects. Therefore, we have also
attempted to accelerate surface splatting by exploiting current programmable
computer graphics hardware, which I will describe in the final part of this talk.

51

Hardware ImplementationHardware Implementation

• Challenges
– Extended z-buffering with ε-threshold
– Per pixel normalization

• Hardware implementation requires a three
pass algorithm on current GPUs

An implementation of our splatting algorithm on current GPUs faces two challenges.
First, the extended z-buffering scheme with an epsilon threshold is not supported
directly in current hardware. Second, the per pixel normalization must be done after
all splats have been processed and hence it requires an additional pass over the
framebuffer. So all implementations on current hardware require three rendering
passes, which I will describe in some more detail in the following.

52

• Draw depth image with a small depth offset ε
away from the viewpoint

• Perform regular z-buffering (depth tests and
updates), no color updates

First PassFirst Pass

z

surface

depth
image

camera space

ε

In the first pass, we draw a depth image into the framebuffer, which is offset away
from the viewpoint by a small depth offset epsilon. We apply regular z-buffering with
depth tests and updates, but no color writes. The depth image is visualized on the
left. On the right, we show how the depth offset is applied by shifting rendering
primitives along viewing rays away from the viewer.

53

Second PassSecond Pass

• Draw colored splats with additive blending
enabled

• Perform depth tests, but no updates
• Accumulate

– Weighted colors of visible splats in the color
channels

– Weights of visible footprint functions in the
alpha channel

In the second rendering pass, we draw colored with additive alpha blending
enabled. In this pass, we perform depth tests, using the depth image computed in
the first pass, but no updates. Hence, all splats that lie behind the depth image are
discarded. This pass accumulates the weighted colors of the visible splats in the
RGB color channels, and the weights of the visible footprint functions in the alpha
channel of the framebuffer.

54

Third PassThird Pass

• Normalization of the color channels by
dividing through the alpha channel

• Implemented by
– using the framebuffer as a texture
– drawing a screen filling quad with this texture
– performing the normalization in a fragment

program

The third pass computes the normalization by the accumulated footprint weights by
dividing the color channels through the alpha channel. This is implemented by using
the framebuffer as a texture. We draw a screen filling quad with this texture, such
that there is a one-to-one correspondence between pixels in the framebuffer and
texels. Normalization is then performed in a simple fragment program.

55

Drawing SplatsDrawing Splats

• Based OpenGL points (GL_POINT)
• Vertex program computes conic matrix for the

exponent of the Gaussian

and a bounding box that contains the ellipse

where r is the cutoff radius
• The conic matrix C is passed as a texture

coordinate to the fragment stage
• The bounding box is used to set the OpenGL

point size

() 1−+= HJVJC T
iii

2rT =Cxx

Independent of the three pass rendering approach described before, there are
several ways how individual splats can be drawn into the framebuffer. Here we
present a method that is based on OpenGL point primitives, which avoids
representing each point as a quad or triangle as has been proposed before. Our
approach relies heavily on vertex and fragment programs, but it is a quite
straightforward implementation of the equations for the Gaussian resampling kernel
derived before. In the vertex program, we compute the 2x2 conic matrix for each
splat, which is the matrix that appears in the exponent of the Gaussian. This
requires the computation of the Jacobian J, the addition of the low-pass kernel H,
and the inversion of the resulting matrix. We also compute the size of a bounding
box that encloses the ellipse defined by the conic matrix with a certain radius r^2.
Here, r is a cutoff radius that clamps the Gaussian kernel to a finite support. The
conic matrix C is then passed as a texture coordinate to the fragment stage.
Further, the size of the bounding box is used to set the appropriate OpenGL point
size.

56

Drawing SplatsDrawing Splats

• The fragment program evaluates

where x are pixel coordinates accessible
through the wpos input argument (Cg, NVidia)

• Discard fragments if d^2 > r^2

CxxTd =2

GL_POINT

2rT =Cxx

The fragment program visits each pixel covered by the point primitive and evaluates
the quadratic form (x^T)Cx, where x are pixel coordinates that are accessible
through the wpos input argument. Note that this currently works only with NVidia
cards. We then discard all pixels that yield a value d^2 > r^2, which results in
rasterizing an ellipse. Note that by choosing the point size correctly, we guarantee
that the ellipse always lies completely within the point primitive.

57

Drawing SplatsDrawing Splats

• Use d^2 to look up the value of the Gaussian in
a 1D texture, i.e.,

2

2
1

2)(
d

edtex
−

=

2d

2

2
1d

e
−

Finally, to evaluate the Gaussian kernel at each pixel, we use d^2 to look up the
value of the Gaussian in a 1D texture. Note that the texture is indexed directly by
d^2 instead of d, avoiding the computation of the square root.

58

PerformancePerformance

• NVidia GeForce FX (NV35) [Zwicker et al.
2004]

Salamander WaspChameleon Fiesta

1024x1024 2.8
512x512 3.1

Image Resolution Mio. Splats/Sec.

In an implementation on an NVidia GeForce FX, we obtained a rendering
performance of about 3 million splats per second. Performance is still dependent on
the output image resolution, meaning that the renderer is fragment processing
limited for higher output resolutions.

59

PerformancePerformance

• Low-quality hardware accelerated point
splatting
– up to 50 million points per second on

GeForce4 or Radeon 9700 [Dachsbacher et
al. 2003]

Note that it has been demonstrated that with low-quality hardware accelerated point
splatting much higher performance can be obtained. With suitable data structures,
Dachsbacher et al. achieved a throughput of up to 50 million points per second on
GeForce4 or Radeon 9700 GPUs. These approaches use a single rendering pass
and avoid computationally expensive vertex and fragment programs, trading-off
performance for high filtering quality provided by surface splatting.

60

Variations of Surface SplattingVariations of Surface Splatting

• Alternative approximation of perspective
projection [Räsänen 2002, Zwicker 2004]

• Approximation using look-up tables
[Botsch et al. 2002]

• Efficient hardware implementation [Botsch
et al. 2003]

• Non-Gaussian kernels [Pajarola et al.
2003]

For further reading, let me point out several interesting variations of the surface
splatting algorithm that have been presented recently. Rasanen and Zwicker
introduced an alternative approximation of the perspective projection that is not
based on the Jacobian. Rather, it is based on the exact projective mapping of conic
sections using homogeneous coordinates, yielding more accurate splat shapes than
the approximation based on the Jacobian. Botsch et al. presented an approximation
of surface splatting using pre-computed look-up tables, avoiding the on-the-fly
computation of the splat kernels. They also described an efficient hardware
implementation that also uses the approach based on OpenGL points described
before. Finally, Pajarola et al. proposed to use non-Gaussian kernels to improve
filtering quality.

61

Applications of Point RenderingApplications of Point Rendering

• Direct visualization of point clouds from 3D
scanners [Rusinkiewicz et al. 2000, Matusik et
al. 2002, Xu et al. 2004]

• Real-time 3D reconstruction and rendering for
virtual reality applications [Gross et al. 2003]

[Rusinkiewicz et al. 2000] [Matusik et al. 2002] [Gross et al. 2003]

Point rendering has found a variety of applications. Several researchers have
proposed to use point clouds for direct visualization of data acquired by 3D
scanners [Rusinkiewicz et al. 2000, Matusik et al. 2002, Xu et al. 2004]. Related to
this is using points as a surface representation and rendering primitive in a real time
acquisition and rendering environment for virtual reality [Gross et al. 2003].

62

Applications of Point RenderingApplications of Point Rendering

• Hybrid point and polygon rendering systems
[Chen et al. 2001, Cohen et al. 2001]

• Rendering animated scenes [Wand et al. 2002]

[Chen et al. 2001] [Wand et al. 2002]

Various systems have been proposed to combine traditional rendering primitives
with points to get the best of both worlds [Chen et al. 2001, Cohen et al. 2001].
Points have also been proposed to render large animated scenes[Wand et al.
2002].

63

Applications of Point RenderingApplications of Point Rendering

• Interactive display of huge meshes [Wand et al. 2001,
Deussen et al. 2002]

• On the fly sampling and rendering of procedural objects
[Stamminger et al. 2001]

• Modeling and editing [Zwicker et al. 2002, Pauly et al.
2003]

[Deussen et al. 2002] [Stamminger et al. 2001] [Pauly et al. 2003]

Points are suitable to build up efficient hierarchies for huge scenes with millions of
rendering primitives, which has been explored to interactively display ecosystems
with plants and trees [Deussen et al. 2002] or other massive outdoor scenes [Wand
et al. 2001]. Finally, points are investigated by several researchers as a primitive for
modeling and editing [Stamminger et al. 2001, Zwicker et al. 2002, Pauly et al.
2003].

64

ConclusionsConclusions

• Point rendering as a resampling process
• High quality point splatting with antialiasing

using a prefiltering approach
• Performance

– 3 million high quality splats per second with
hardware support [Zwicker et al. 2004]

– 1 million points per second in software
• Various applications for point splatting have

been explored

In this talk, I have presented point rendering as a resampling process. Resampling
leads to high quality point splatting. It avoids aliasing artifacts using a prefiltering
approach and yields image quality equivalent anisotropic texture filtering. The
splatting algorithm can be implemented in software or using programmable vertex
and fragment stages of modern graphics processors. We have obtained a rendering
performance of three million splats per second with hardware support, and roughly
one million splats in software. Point rendering has been adopted in various
applications, because mesh reconstruction is not necessary and level-of-detail and
hierarchy construction is very simple even for highly complex geometries.

65

Future WorkFuture Work

• Rendering hardware
– Dedicated point rendering hardware
– Extension of current hardware

• Efficient approximations of exact EWA
splatting
– Higher performance without loss of image

quality
• Unifying rendering primitive for all sorts of

surface representations
– Rendering architecture for on the fly sampling

and rendering

In the future, we would like to think about dedicated rendering hardware for points,
or how to extend existing hardware to more efficiently support points. We would
also like to investigate efficient approximations of exact EWA splatting that do not
impact image quality, but provide higher rendering performance. Finally, points
could be used as a unifying rendering primitive for all sorts of surface
representations in a rendering architecture that performs on the fly sampling and
rendering.

66

AcknowledgmentsAcknowledgments

• Markus Gross, Mark Pauly, CGL at ETH
Zurich

• Hanspeter Pfister, Jeroen van Baar,
MERL Cambridge

• Liu Ren, Carnegie Mellon University
• Fredo Durand, MIT Graphics Group

67

ReferencesReferences
• [Levoy and Whitted 1985] The use of points as a display primitive,

technical report, University of North Carolina at Chapel Hill, 1985
• [Heckbert 1986] Fundamentals of texture mapping and image warping,

Master‘s Thesis, 1986
• [Grossman and Dally 1998] Point sample rendering, Eurographics

workshop on rendering, 1998
• [Levoy et al. 2000] The digital Michelangelo project, SIGGRAPH 2000
• [Rusinkiewicz et al. 2000] Qsplat, SIGGRAPH 2000
• [Pfister et al. 2000] Surfels: Surface elements as rendering primitives,

SIGGRAPH 2000
• [Zwicker et al. 2001] Surface splatting, SIGGRAPH 2001
• [Chen et al. 2001] POP: A Hybrid Point and Polygon Rendering System

for Large Data, IEEE Visualization 2001
• [Cohen et al. 2001] Hybrid simplification: combining multi-resolution

polygon and point rendering, IEEE Visualization 2001
• [Wand et al. 2001] The Randomized z-Buffer Algorithm: Interactive

Rendering of Highly Complex Scenes, SIGGRAPH 2001

68

ReferencesReferences
• [Stamminger et al. 2001] Interactive sampling and rendering for complex

and procedural geometry, Rendering Techniques 2001
• [Deussen et al. 2002] Interactive Visualization of Complex Plant

Ecosystems. IEEE Visualization 2002
• [Wand et al. 2002] Multi-Resolution Rendering of Complex Animated

Scenes. Eurographics 2002
• [Botsch et al. 2002] Efficient high quality rendering of point sampled

geometry, Eurographics Workshop on Rendering 2002
• [Zwicker et al. 2002] EWA Splatting, IEEE TVCG 2002
• [Ren et al. 2002] Object space EWA splatting: A hardware accelerated

approach to high quality point rendering, Eurographics 2002
• [Räsänen 2002] Surface Splatting: Theory, Extensions and Implementation,

MSc thesis 2002
• [Matusik et al. 2002] Image-based 3D photography using opacity hulls.

SIGGRAPH 2002, July 2002.

69

ReferencesReferences
• [Zwicker et al. 2002] Pointshop 3D: An interactive system for editing point-

sampled surfaces. SIGGRAPH 2002
• [Pauly et al. 2003] Shape modeling with point-sampled geometry. Siggraph

2003
• [Pajarola et al. 2003] Object-Space Point Blending and Splatting. In

Sketches & Applications Catalog SIGGRAPH 2003
• [Botsch et al. 2003] High-Quality Point-Based Rendering on Modern GPUs.

Pacific Graphics 2003
• [Gross et al. 2003] blue-c: A Spatially Immersive Display and 3D Video

Portal for Telepresence. SIGGRAPH 2003
• [Dachsbacher et al. 2003] Sequential point trees. SIGGRAPH 2003
• [Zwicker et al. 2004] Perspective accurate splatting. Graphics Interface

2004
• [Xu et al. 2004] Stylized rendering of 3D scanned realworld environments.

NPAR 2004

1

Efficient Data Structures
Marc Stamminger, University of Erlangen-Nuremberg

2

IntroductionIntroduction

• point rendering
– how to adapt point densities ?

• for a given viewing position, how can we get n
points that suffice for that viewer ?

– how to render the points ?
• given n points, how can we render an image

from them ?

When using points for efficient rendering, we have to consider two issues.
First, how to adapt the point densities for a given camera to avoid holes but not to
waste resources.
Second, how to render the selected points. We can use software or hardware based
approaches for point rendering or splatting. When using hardware acceleration, it is
very important to restrict data transfer between main memory and the GPU to a
minimum.

3

IntroductionIntroduction

• how to render the points ?
– project point to pixel, set pixel color
– hardware acceleration

• >80 mio. points per second (Radeon 9700)
• very fast, but bad support for splatting

The simplest way of rendering the points is to project them to the screen and set the
corresponding pixel.
Graphics hardware can do this using the point primitive very efficiently, at least as
long as we don‘t want to have sophisticated filtering and splatting techniques.
Current graphics hardware can render almost 100 million points per second.

4

IntroductionIntroduction

• for (i = 0; i < N; i++)
renderPointWithNormalAndColor
(x[i],y[i],z[i],nx[i],ny[i],nz[i],…);

→ ~10 mio points per second

• for (i = 0; i < N; i++)
renderPoint(x[i],y[i],z[i]);

→ ~20 mio points per second

• float *p = {...}
renderPoints(p,N);
→ >80 mio points per second

→ best performance with sequential
processing of large chunks !

immediate
mode

In this talk, we want to use hardware rendering for the points. This is by far the
fastest way to render points, and it can be foreseen that future hardware will support
high-quality splatting techniques better.
For hardware rendering, it is vital to think about the geometry submission to the
GPU.
When using e.g. OpenGLs immediate mode, we have a tremendous overhead of
functions calls and also memory bandwith problems. The more attributes we
associate with a single point sample, the worse it gets.
When rendering point primitives with a normal and color value, we can achieve a
point rate of approximately 10 million splats per second. Using coordinates only, we
achieve about 20 million points per second, so memory bandwith is the bottleneck.
The shown numbers are not really measured, they only give an idea of the
magnitude.
The most performant rendering is achieved by processing large chunks of data at
once, in particular, if this data is already stored in video memory.

5

IntroIntro

• in this talk: two approaches
– eco system rendering

with points, lines,
and triangles

– sequential point trees

In this talk, we will present two techniques for point rendering on graphics
hardware. The first one is optimal for objects like plants, with complex,
unconnected geometry. The second one is better suited for complex, but connected
geometry.

6

Eco System RenderingEco System Rendering

• point list
– array of random points

• for every frame
– compute n, render first n

10,000 1,000100,000

Let‘s start with the rendering of complex objects such as plants. Our idea is simple:
we precompute a list of random points on the object and store them together with
their normal and color in an array. Because the points are randomly chosen, we can
get n random points on the object by simply chosing the first n points.
So, for every frame we compute an appropriate number of points n and render the
first n points from the array. According to the observations before, this rendering of
a continuous segment of the array can be done at maximum speed by the GPU.

7

Eco System RenderingEco System Rendering

• pros
+ maximum efficiency
+ simple tradeoff speed-quality

• cons
- randomness generates random holes

10,000 1,000100,000

By increasing the point size, less points are required and speed can be easily
balanced versus quality.
The disadvantage is that the randomness generates holes. Avoiding these holes
requires to increase the number of points enormously, which results in a breakdown
of speed.

8

Eco System RenderingEco System Rendering

• ideal for plants
– very high complexity
– artifacts from holes acceptable
– other LOD-methods fail for complex topology

• bad for smooth surfaces
– holes are unacceptable
– triangles more appropriate
– better LODs available

However, for plants with many small surfaces (leaves), holes are not noticable and
can be tolerated. Interestingly, such unconnected topologies like trees are
particularily difficult for most other level of detail methods. For smooth, large,
closed surfaces, this approach is hardly useful and other techniques are better suited.

9

Eco System RenderingEco System Rendering

• same idea works with lines

points

lines

polygons

A similar idea works with lines. We can replace long, thin geometry in the distance
by lines, e.g. gras blades.

10

Eco System RenderingEco System Rendering

• line
rendering

11

Eco System RenderingEco System Rendering

• improved level-of-detail
triangles

points lines

triangles
points lines

triangles
points lines

triangles
points lines

We start our approach with a triangle model. Part of the triangles can be replaced by
lines, the rest by a set of points. These sets of lines and points are precomputed or
generated during the evaluation of the procedural plant model.
When we are close to the object, the full triangle model is rendered. When the
object is moved away, at some point the triangles that can be represented by the
lines are replaced by the line set. Furthermore, we start replacing more and more
triangle by their corresponding points. By this, we avoid that the triangles are
immediately replaced by points and we thus avoid the popping artifacts. When all
triangles are replaced by points, we can reduce the point number for distant objects.

12

Eco System RenderingEco System Rendering

13

Sequential Point TreesSequential Point Trees

• sequential point trees
– adaptive point selection and
– sequential processing

• rendering
– pre-computed point and attribute list
– render continuous segments only

point listrendered segment

The second technique presented in this talks are sequential point trees. SPTs are a
data structure that allows us to render levels of detail also of closed, smooth surfaces
without holes. SPTs can also be processed almost completely on the GPU with very
high point throughput.
As before, we precompute an array of points on the object and only process a
continuous part of this list.

14

Hierarchical ProcessingHierarchical Processing

• Q-Splat
– Rusinkiewicz et al., Siggraph 2000
– hierarchical point rendering

based on bounding sphere hierarchy

© Rusinkiewicz

R

R R R

R R R

Our method is based on the Q-Splat as introduced by Rusinkiewicz et al at Siggraph
2000.
The Q-Splat does hierarchical point rendering using a bounding sphere hierarchy.
Every node represents a part of the objects surface with a position, a radius and a
normal. During rendering this hierarchy is traversed by the CPU and the tree data
structure is used for frustum culling, backface culling and level of detail selection.

15

Q-Splat RenderingQ-Splat Rendering

• recursive rendering

image size > 1 pixel

→ traverse children

R R R

R R R

R

The traversal of the sphere hierarchy always begins at the root node.
The bounding sphere of the currently considered node is projected onto the image
plane. If its size is larger than a user defined threshold, e.g. 1 pixel, the image error
is too large and the child nodes are traversed.

16

Q-Splat RenderingQ-Splat Rendering

• recursive rendering

R R R

R R R

R

image

image size > 1 pixel

→ traverse children

As we can see in this illustration, the image size of the node in the next hierarchy
level is still slighty above our threshold.
So we skip this node, too…

17

Q-Splat RenderingQ-Splat Rendering

• recursive rendering

R R R

R R R

R

image

image size < 1 pixel

→ render disk

Finally, the image size of this node is clearly below our threshold and it is rendered.
Typically we render disks or simple opaque squares instead of spheres.

18

Hierarchical ProcessingHierarchical Processing

• straightforward, but drawbacks
• not continuously stored in array
• not sequential
• traversal by CPU, rendering by GPU
• CPU is bottleneck

→ sequential version ?

This kind of data processing is very simple and straightforward, but unfortunately it
has some major drawbacks for use with nowadays graphics hardware.
The rendered points are not continuously stored in an array and are not processed
sequentially. The CPU traverses the tree and invokes the rendering of independent
nodes. This ends up in a bottleneck and the power of the GPU is not fully used.
So what we would like to have, is a sequential version of the adaptive point
selection. So we can offload more work to the GPU and bypass the bottlenecks.

19

Sequential Point TreesSequential Point Trees

• Q-Splat: render node if
– image size ≤ threshold and
– image size of parent > threshold
– image size = radius / view distance

• store with node n.dmin = n.radius / threshold

• render node n if
– view distance(n) ≥ n.dmin and
– view distance(parent) < parent.dmin

To develop a sequential version of the traversal, let‘s have a look what happens with
a single node of the Q-Splat tree.
A node is rendered only if it‘s image size is below a certain threshold AND the
image size of it‘s parent node is above the threshold.
This second criterion is false, if a predecessor is already small enough to be
rendered, so the hierarchical traversal of the sub-tree would be skipped.
The image size of a node can be computed very easily. It is simply the radius of the
sphere over the view distance.
Instead of regarding the image size of a node, we use another equivalent measure.
For each node we can derive a minimum distance d_min, which equals to its radius
over the threshold. If the node is closer to the viewer than d_min, its image size is
too large and we don‘t want to render it.
Then we can redraft our criterion: a node is rendered, if it‘s view distance is above
or equal to d_min, and the view distance of its parent node is smaller than the
parents‘ d_min value.

20

Sequential Point TreesSequential Point Trees

• if we assume
view distance(n) ≈ view distance(parent)

• and set:
n.dmax = parent.dmin

• criterion for node n:
n.dmin ≤ view distance(n) < n.dmax

image size small enough parent image size too big

For now let‘s assume, that the view distances of child nodes and their parent nodes
are roughly equal.
In addition to the d_min value, we store a d_max value for each node, which is
simply the d_min value of its parent node.
In this way, we can get rid of the hierarchical data structure and define a two-sided
test as rendering criterion for a single node.
The d_min boundary guarantees, that the image size of the node is small enough, the
d_max boundary discards this node if its parent node should be rendered instead.

21

Sequential Point TreesSequential Point Trees

• example tree

[dmin,dmax]

This slide shows an example tree with 13 nodes. Each node brings along ist d_min
d_max interval as shown.

22

Sequential Point TreesSequential Point Trees

• loop over all tree nodes
• first sequential version

foreach tree node n
d = view distance(n);
if (n.dmin ≤ d < n.dmax)
renderPoint(n);

With this criterion we can formulate the rendering as a simple loop over all tree
nodes.
For each node, we calculate its view distance and render the node, if it passes the
interval test.

23

Sequential Point TreesSequential Point Trees

• account for
view distance(n) ≠
view distance(parent):
– n.dmax = parent.dmin + |parent-n|

– partially parent and some children
selected

– overdraw, but no visible artifacts

In general the view distance of a node and the view distance of its parent node are
not equal. So our previous assumption can cause rendering errors. To prevent this,
we introduce an interval overlap and increase a node‘s d_max value by the distance
between the child and the parent node.
This overlap ensures that no holes appear, but it also means that for some nodes
both, the node and some of its childrens are selected. This results in overdraw and
very slightly reduced performance, but we did not experience visible artefacts from
it.

24

Sequential Point TreesSequential Point Trees

• how enumerate nodes?
• sort by dmax

[dmin,dmax]

This slide shows an example tree. Each node brings along its d_min d_max interval.
To get a sequential version of the tree nodes, we need to enumerate the nodes so that
selected list entries for particular views are preferably densely clustered in a
segment of the list.
The solution we chose is, to sort the nodes by descending d_max values.
If the view distance to the object is greater than 10, we only render node A. If we
move closer to the object, let‘s say the distance is now 8, then the nodes B, C and D
are rendered. When moving even closer, we need to some of the blue nodes to
represend sufficient detail, for example the KLM nodes instead if the D node.

25

Sequential Point TreesSequential Point Trees

• dlow: lower bound on view distance(n)

dlow

During rendering, we calculate a lower bound of the node‘s view distances for the
whole object. This can be done very easily, for example by using bounding
volumes.

This value is denoted by d_low.

26

Sequential Point TreesSequential Point Trees

• cull nodes with dmax less than dlow
• interval test for remaining prefix

– view distance is not constant for all nodes !

dlow=8
dlow=4.5 dlow=3.5

All nodes, which have a d_max value smaller than our lower bound can be
immediatly skipped. These are the nodes at the tail of the list.
Only the nodes in a prefix of the list MAY pass the interval test.
On this slide, you can see the prefixes resulting from different three different d_low
values for our example tree.
Since the view distance is not constant for all nodes and the prefix contains nodes
not suitable for the current view, we still need culling for individual nodes by the
GPU.

27

Sequential Point TreesSequential Point Trees

• culling by GPU necessary, because d is not constant
over object

Up to now, we assumed that the view distance is the same for all points. In this case,
every view distance d defines front of points in the hierarchy that is to be rendered
for this view distance. The SPT is sorted such that this point front and all points
above them are the prefix of the SPT array. In fact, the view distance varies over the
object. By this, we have an additional (green) interval, where we between the point
front for the minimum and maximum view distance. For points inside this interval,
we have to evaluate the view distance and make the test again. The point front to be
rendered is in this interval region.

28

Sequential Point TreesSequential Point Trees

• CPU does per frame:
– compute dlow
– binary search: last node with dmax ≥ dlow
– send draw command for prefix to GPU
– store SPT in video memory

• GPU then does for every node n
– compute d = view distance(n)
– if n.dmin ≤ d < n.dmax

• render node

This slide summarizes all tasks needed for the rendering.
For each frame, the CPU computes the lower bound of node distances.
Using a binary search, the prefix can be determined very quickly and the CPU can
send the draw command to the GPU.
The sequential point tree is preferably stored in video memory as a point primitive
list, where the d_min d_max interval is stored as an attribute for each point.
The GPU, using vertex programs or vertex shaders, computes the view distance for
each node. The view distance is simply the z value of the clip coordinates of the
point. If a node passes the test, it is rendered, otherwise, the point primitive is culled
by moving it to infinity.

29

Sequential Point TreesSequential Point Trees

• CPU prefix selection (coarse granularity)
• GPU point selection (fine granularity)

sequential point tree

prefix with dmax ≥ dlow

culled because d < dmin

rendered
culled because d > dmax

So the CPU does fast coarse granularity culling and the GPU selects single points
for rendering.
This slide shows the whole sequential point tree and the selected prefix.
Nodes at the beginning of the prefix may be culled because they are too far up the
hierachy and thus too large. They are outside the d_min boundary. They are not
really critical, because in a tree with branching factor four, only ¾ of the nodes are
leaves. We could make an equivalent search for a left boundary, however, the list is
not sorted for d_min, so this search is costly and we will not find a tight bound.
At the end of the prefix nodes are culled, because they are to far down the hierarchy.
They are only within the prefix, because the prefix length is determined
conservatively.
Both tests have to be done by the GPU as they require the exact view distance of
each node.

30

Sequential Point TreesSequential Point Trees

• example

31

Sequential Point TreesSequential Point Trees

• Results
– culling by GPU: only 10 - 40%
– on a 2.4 GHz Pentium with Radeon 9700:
– CPU-Load < 20% (usually much less)
– > 50 Mio points after culling

Before we‘re going more into detail of the error measurements and improvements,
let‘s have a look at the results.
The percentage of points culled by the GPU depends on the variation of the view
distances over the object. In typical examples this fraction is 10 to 40% of the
prefix.
On a 2,4 GHz Pentium 4 processor with a radeon 9700, the CPU load is always
below 20%. Usually it is much less. When rendering a single sequential point tree,
the CPU load is even below 1%.
The effective point rate, that means the number of points which pass the interval test
and are rendered, is more than 50 million points per second.

32

Sequential Point TreesSequential Point Trees

• geometric error
measures
– perpendicular

error ep

– tangential
error et

Let‘s have a look at further improvements…
Every node in the hierarchy can be approximated by a disk with a certain center,
normal and diameter.
To introduce a more sophisticated error measure, we distinguish two different types
of geometric errors:
1.) The first one is the perpendicular error. It is the minimum distance between two
planes parallel to a parent disk, that encloses all child disks. It captures the fact, that
errors along edges are less acceptable.
2.) Second, we introduce the tangential error. It looks at the projection of the child
disks onto the parent disk. It measures if the parent disk covers and unnecessary
large area, resulting in typical errors at surface edges. We measure it by fitting two
parallel slabs of varying orientation around the projected child disks. The tangential
error is defined as the difference of the disk diameter and the width of the tightest
slab.

33

Sequential Point TreesSequential Point Trees

• error projected into image
– ep scales with sin(α)/d

et scales with cos(α)/d
α=angle(normal, view direction)

• single geometric error

• eg scales with 1/d

When the geometric errors are projected into the image, then the image space
counterpart of the perpendicular error is propotional to the sine of alpha and 1 over
d.
The tangential error in image space is proportional with the cosine of alpha and 1
over d. Where alpha is the angle between the disk normal and the view direction.
To fit these error measures into the sequential point trees, it‘s important to obtain a
single geometric error e_g, as shown on the slide, which scales with 1 over the view
distance.

34

Sequential Point TreesSequential Point Trees

• less, but larger splats in less detailed regions

Results:
In flat parts of the surface, less but larger splats are rendered, here shown in yellow
and green.
More detailed parts require more point samples shown in red.
The bottom right bar, shows the sequential point tree and the prefix sent to the GPU
in red and green. If the object moves away, the prefix becomes smaller. The blue
fraction of the list is culled by the CPU.

35

Sequential Point TreesSequential Point Trees

• what about colors ?
• in flat textured regions

– washing out texture detail

• add texture criterion
– if significant color variation in child nodes:

increase error to node diameter

Sequential Point Trees can also contain color information. Every leaf of the point
hierarchy represents a part of a surface and an average color can be assigned.
For inner nodes of the hierarchy the color values of the child nodes are averaged.
With color averaging, we have to reconsider our error measure. In flat regions with
small geometric error, large splats are rendered and the texture detail is washed out.
To avoid this, we increase a node‘s error to the points diameter, if the color of child
nodes varies significantly.

36

Sequential Point TreesSequential Point Trees

• combine errors

• etex =

• ecom = max(etex, eg)

diameter if texture varies

else0

image error = ecom / view distance
n.dmin = n.ecom / threshold

Both errors scale with 1 over d, and can be combined to a single error measure to fit
into the sequential point tree concept.
The texture error e_tex equals zero or the node`s diameter, depending on the color
variation of the child nodes.
The combined error e_com is then the maximum of e_tex and the geometric error
e_g.
The image error is then e_com over the view distance. And a node`s d_min value
for the interval test is then simply e_com over the threshold.

37

Sequential Point TreesSequential Point Trees

• enforce small splats, reduce blurring to
threshold

• point densities adapt to texture detail

This enforces small splats and the blurring is reduced to the error threshold. With
this measure, point densities adapt to texture detail as you can see on the left image.

38

Sequential Point TreesSequential Point Trees

• hybrid point-polygon rendering
• don‘t render large triangles with points

Sequential point trees can be extended to hybrid point-polygon rendering.
In these images, we can see a very artificial example of a pillar. On the left image, it
is smooth shaded, on the right hand side, the parts shown in red are rendered using
points, the parts with less curvature are rendered as triangles, shown in gray.

39

Sequential Point TreesSequential Point Trees

• combine with polygonal rendering
– for every triangle

• compute dmax = longest side / threshold
• remove all points from triangle with smaller dmax

– sort triangles for dmax
– during rendering

• send triangles with dmax < dlow to GPU
• on the GPU (vertex program)

– test d < dmax
– cull by alpha-test
– border case: differently classified vertices

partially rendered triangles

Rendering a triangle is reasonable as long as its longest side has an image size
above our error threshold.
Thus we can compute a d_max value for each triangle.
We can remove all point samples of a triangle which have a smaller d_max value
than the triangle. Because it will always pay off to render the triangle instead of
these points.
Like the point hierarchy, we sort all triangles according to their d_max value.
During rendering, the required prefix of the triangle list is determind in the same
way as for the point list.
A vertex program evaluates the d_max condition for every vertex and puts the result
into the alpha value of the vertex. Culling is then done by an alpha-test. By this,
triangles with differently classified vertices are rendered partially. Since this is a
border case, the corresponding point samples are also rendered and resulting holes
are automatically filled.

40

Sequential Point TreesSequential Point Trees

• pros
– very simple!
– continuous level of detail
– mostly on the GPU
– GPU runs at maximum efficiency

• cons
– no hierarchical view frustum culling
– currently: bad splatting support by GPU

The sequential point trees are very simple and easy to implement and provide
continuous level of detail rendering.
Since almost all work is moved to the GPU, the CPU load is very low and can be
used for other tasks.
If the point list is stored in video memory, the GPU runs at maximum efficiency and
the rendering speed is limited by the geometry processing, when using rather simple
splatting techniques.
The sequential point trees do not allow hierarchical frustum culling within an object.
Objects can only be culled on the whole or have to be split into several point trees.
And this is, what we did for backface culling: We split up all points samples into
several normal clusters and only render front facing clusters. This requires slightly
more computation, but skips about 50 percent of the point samples.
Unfortunately contemporary graphic hardware has bad support for splatting
techniques.

41

Sequential Point TreesSequential Point Trees

• video: sculpture garden

In this video, we can see a real-life example captured from a Radeon 9700. The
sculptures and the trees are rendered using sequential point trees, the other objects in
the scene and the sky is rendered as textured triangles.
The red-blue bar shows the very low CPU load required for this scene.
The flickering seen at the sculptures results from the simplistic splatting technique
we used for this demo.

42

Questions ?Questions ?

…thank you for your attention !

contact: marc.stamminger@cs.fau.de
url: www9.cs.fau.de/Research/Rendering

1

Spectral Processing of
Point-Sampled Geometry

Markus Gross

OverviewOverview

• Introduction
• Fourier transform
• Spectral processing pipeline
• Applications

– Spectral filtering
– Adaptive subsampling

• Summary

IntroductionIntroduction

• Idea: Extend the Fourier transform to
manifold geometry

Spectral representation of point-based objects
Powerful methods for digital geometry processing

IntroductionIntroduction

• Applications:

– Spectral filtering:
• Noise removal
• Microstructure analysis
• Enhancement

– Adaptive resampling:
• Complexity reduction
• Continuous LOD

Fourier TransformFourier Transform

• 1D example:

• Benefits:
– Sound concept of frequency
– Extensive theory
– Fast algorithms

∑
=

−
=

N

k

N
nkj

kn exX
1

2π

input signal

spectral basis function

output signal

Fourier TransformFourier Transform

• Requirements:
– Fourier transform defined on Euclidean domain

we need a global parameterization
– Basis functions are eigenfunctions of Laplacian

operator
requires regular sampling pattern so that basis functions
can be expressed in analytical form (fast evaluation)

• Limitations:
– Basis functions are globally defined

Lack of local control

2

ApproachApproach

• Split model into patches that:
– are parameterized over the unit-square

mapping must be continuous and should minimize
distortion

– are re-sampled onto a regular grid
adjust sampling rate to minimize information loss

– provide sufficient granularity for intended
application (local analysis)

process each patch individually and blend
processed patches

Spectral PipelineSpectral Pipeline

Patch Layout CreationPatch Layout Creation

Clustering Optimization

Samples Clusters Patches

Patch Layout CreationPatch Layout Creation

• Iterative, local optimization method

• Merge patches according to quality metric:

RegBNCS Φ⋅Φ⋅Φ⋅Φ=Φ

curvature

patch Size

patch boundary

spring energy regularization

NCΦ

BΦ

RegΦ

SΦ

Patch Layout CreationPatch Layout Creation

• Parameterize patches by orthogonal projection onto
base plane

• Bound normal cone to control distortion of mapping
using smallest enclosing sphere

Patch ResamplingPatch Resampling

• Patches are irregularly sampled

3

Patch ResamplingPatch Resampling

• Resample patch onto regular grid using hierarchical
push-pull filter (scattered data approximation)

Spectral AnalysisSpectral Analysis

• 2D discrete Fourier transform (DFT)
Direct manipulation of spectral coefficients

• Filtering as convolution:

Convolution: O(N2) multiplication: O(N)

• Inverse Fourier transform
Filtered patch surface

)()()(yFxFyxF ⋅=⊗

Spectral FiltersSpectral Filters

ideal low-pass Gaussian low-pass original

transfer function: spectral domain

transfer function: spatial domain

• Smoothing filters

Spectral FiltersSpectral Filters

• Microstructure analysis and enhancement

Spectral ResamplingSpectral Resampling

• Low-pass filtering
Band-limitation

• Regular Resampling
Optimal sampling rate
(sampling theorem)

Error control
(Parseval’s theorem)

Power Spectrum

ReconstructionReconstruction

• Filtering can lead to discontinuities at patch
boundaries

Create patch overlap, blend adjacent patches
region of overlap

Sampling rates

Point positions

Normals

4

ReconstructionReconstruction

• Blending the sampling rate

blended sampling
rate in region of
patch overlap

discretized
sampling rate on

regular grid

pre-computed
sampling patterns

TimingsTimings

Clustering

Patch
Merging

SDA

Analysis

Reconstruction

Time
9%

38%

23%

4%

26%

ApplicationsApplications

• Surface Restoration

Original Gaussian low-pass Wiener filter Patch layout

ApplicationsApplications

• Interactive filtering

ApplicationsApplications

• Adaptive Subsampling

4,128,614 pts. = 100% 287,163 pts. = 6.9%

Applications - WatermarkingApplications - Watermarking

• Spectral embedding and readout

Input model Patching & spectral
decomposition

Combined attack
(noise, clip, affine

transform)
Cotting, Weyrich, Pauly,
Gross, SMI 04

5

ExtensionsExtensions

• Scale spaces: levels of smoothness

• Sequence of progressively smoothed models
• Partitioning into spectral bands

FilteringFiltering

Pauly, Kobbelt, Gross, ACM
TOG, to appear

SummarySummary

• Versatile spectral decomposition of point-based
models

• Effective filtering and spectral analysis

• Adaptive resampling

• Efficient processing of large point-sampled
models

ReferenceReference

• Pauly, Gross: Spectral Processing of Point-sampled
Geometry, SIGGRAPH 2001

1

Mark Pauly Stanford University

Surface Simplification
Point-Based Computer Graphics Surface Simplification Mark Pauly

OverviewOverview

• Introduction
• Local surface analysis
• Simplification methods
• Error measurement
• Comparison

Point-Based Computer Graphics Surface Simplification Mark Pauly

IntroductionIntroduction

• Point-based models are often sampled very densely
• Many applications require coarser approximations, e.g.

for efficient

– Storage
– Transmission
– Processing
– Rendering

We need simplification methods for reducing the
complexity of point-based surfaces

Point-Based Computer Graphics Surface Simplification Mark Pauly

IntroductionIntroduction

• Example: Level-of-detail (LOD) rendering

10k 20k 60k 200k 2000k

Point-Based Computer Graphics Surface Simplification Mark Pauly

IntroductionIntroduction

• We transfer different simplification methods from triangle
meshes to point clouds:

• Hierarchical clustering
• Iterative simplification
• Particle simulation

• Depending on the intended use, each method has its
pros and cons (see comparison)

Point-Based Computer Graphics Surface Simplification Mark Pauly

Local Surface AnalysisLocal Surface Analysis

• Cloud of point samples describes underlying (manifold)
surface

• We need:
– Mechanisms for locally approximating the surface

MLS approach

– Fast estimation of tangent plane and curvature
principal component analysis of local neighborhood

2

Point-Based Computer Graphics Surface Simplification Mark Pauly

NeighborhoodNeighborhood

• No explicit connectivity between samples (as with
triangle meshes)

• Replace geodesic proximity with spatial proximity
(requires sufficiently high sampling density!)

• Compute neighborhood according to Euclidean distance

Point-Based Computer Graphics Surface Simplification Mark Pauly

NeighborhoodNeighborhood

• K-nearest neighbors

– Can be quickly computed using spatial data-
structures (e.g. kd-tree, octree, bsp-tree)

– Requires isotropic point distribution

Point-Based Computer Graphics Surface Simplification Mark Pauly

NeighborhoodNeighborhood

• Improvement: Angle criterion (Linsen)

– Project points onto tangent plane
– Sort neighbors according to angle
– Include more points if angle between subsequent

points is above some threshold

Point-Based Computer Graphics Surface Simplification Mark Pauly

NeighborhoodNeighborhood

• Local Delaunay triangulation (Floater)

– Project points into tangent plane
– Compute local Voronoi diagram

Point-Based Computer Graphics Surface Simplification Mark Pauly

Covariance AnalysisCovariance Analysis

• Covariance matrix of local neighborhood N:

• with centroid

Ni j

i

i

T

i

i

nn

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
= ,

11

pp

pp

pp

pp
C LL

∑
∈

=
Ni

iN
pp 1

Point-Based Computer Graphics Surface Simplification Mark Pauly

Covariance AnalysisCovariance Analysis

• Consider the eigenproblem:

• C is a 3x3, positive semi-definite matrix
All eigenvalues are real-valued
The eigenvector with smallest eigenvalue defines the least-
squares plane through the points in the neighborhood, i.e.
approximates the surface normal

}2,1,0{, ∈⋅=⋅ llll vvC λ

3

Point-Based Computer Graphics Surface Simplification Mark Pauly

Covariance AnalysisCovariance Analysis

• Covariance ellipsoid spanned by the eigenvectors scaled
with corresponding eigenvalue

Point-Based Computer Graphics Surface Simplification Mark Pauly

Covariance AnalysisCovariance Analysis

• The total variation is given as:

• We define surface variation as:

– Measures the fraction of variation along the surface normal, i.e.
quantifies how strong the surface deviates from the tangent
plane estimate for curvature

210
210

0 ,)(λλλ
λλλ

λσ ≤≤
++

=pn

210
2 λλλ ++=−∑

∈Ni
i pp

Point-Based Computer Graphics Surface Simplification Mark Pauly

Covariance AnalysisCovariance Analysis

• Comparison with curvature:

original mean curvature variation n=20 variation n=50

Point-Based Computer Graphics Surface Simplification Mark Pauly

Surface SimplificationSurface Simplification

• Hierarchical clustering

• Iterative simplification

• Particle simulation

Point-Based Computer Graphics Surface Simplification Mark Pauly

Hierarchical ClusteringHierarchical Clustering

• Top-down approach using binary space partition:
• Split the point cloud if:

– Size is larger than user-specified maximum or
– Surface variation is above maximum threshold

• Split plane defined by centroid and axis of greatest
variation (= eigenvector of covariance matrix with largest
associated eigenvector)

• Leaf nodes of the tree correspond to clusters
• Replace clusters by centroid

Point-Based Computer Graphics Surface Simplification Mark Pauly

Hierarchical ClusteringHierarchical Clustering

• 2D example

covariance
ellipsoid split plane

centroid

root

4

Point-Based Computer Graphics Surface Simplification Mark Pauly

Hierarchical ClusteringHierarchical Clustering

• 2D example

Point-Based Computer Graphics Surface Simplification Mark Pauly

Hierarchical ClusteringHierarchical Clustering

• 2D example

Point-Based Computer Graphics Surface Simplification Mark Pauly

Hierarchical ClusteringHierarchical Clustering

• 2D example

Point-Based Computer Graphics Surface Simplification Mark Pauly

Hierarchical ClusteringHierarchical Clustering

4,280 Clusters436 Clusters43 Clusters

Point-Based Computer Graphics Surface Simplification Mark Pauly

Hierarchical ClusteringHierarchical Clustering

• Adaptive Clustering

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• Iteratively contracts point pairs
Each contraction reduces the number of points by one

• Contractions are arranged in priority queue according to
quadric error metric (Garland and Heckbert)

• Quadric measures cost of contraction and determines
optimal position for contracted sample

• Equivalent to QSlim except for definition of
approximating planes

5

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• Quadric measures the squared distance to a set of
planes defined over edges of neighborhood
– plane spanned by vectors andppe −= i1 nee ×= 12

1e

ip

p2e

n

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• 2D example

• Compute fundamental
quadrics

• Compute initial point-pair
contraction candidates

• Compute edge costs

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• 2D example

0.564

0.447

0.3610

0.2711

0.223

0.1313

0.111

0.099

0.045

0.0414

0.032

0.026

priority queue

edge cost

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• 2D example

0.564

0.447

0.3610

0.2711

0.223

0.1313

0.111

0.099

0.045

0.0414

0.032

0.026

priority queue

edge cost

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

0.032

0.026

priority queue

edge cost

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

0.032

priority queue

edge cost

6

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

0.032

priority queue

edge cost

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

0.233

0.1313

0.111

0.099

0.065

0.0414

priority queue

edge cost

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

• 2D example

0.564

0.497

0.3610

0.2711

priority queue

edge cost

Point-Based Computer Graphics Surface Simplification Mark Pauly

Iterative SimplificationIterative Simplification

original model
(296,850 points)

simplified model
(2,000 points)

remaining point pair
contraction candidates

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• Resample surface by distributing particles on the
surface

• Particles move on surface according to inter-
particle repelling forces

• Particle relaxation terminates when equilibrium
is reached (requires damping)

• Can also be used for up-sampling!

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• Initialization
– Randomly spread particles

• Repulsion
– Linear repulsion force

only need to consider neighborhood of radius r

• Projection
– Keep particles on surface by projecting onto tangent

plane of closest point
– Apply full MLS projection at end of simulation

)()()(iii rkF ppppp −⋅−−=

7

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• 2D example

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• 2D example
• Initialization

– randomly spread particles

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• 2D example

• Repulsion
– linear repulsion force

)()()(iii rkF ppppp −⋅−−=

• Initialization
– randomly spread particles

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• 2D example

• Repulsion
– linear repulsion force

)()()(iii rkF ppppp −⋅−−=

• Initialization
– randomly spread particles

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• 2D example

• Repulsion
– linear repulsion force

)()()(iii rkF ppppp −⋅−−=

• Initialization
– randomly spread particles

• Projection
– project particles onto

surface

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• 2D example

• Repulsion
– linear repulsion force

)()()(iii rkF ppppp −⋅−−=

• Initialization
– randomly spread particles

• Projection
– project particles onto

surface

8

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• Adaptive simulation
– Adjust repulsion radius according to surface variation more

samples in regions of high variation

variation
estimation

simplified model
(3,000 points)

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

• User-controlled simulation
– Adjust repulsion radius according to user input

uniform original selective

Point-Based Computer Graphics Surface Simplification Mark Pauly

Particle SimulationParticle Simulation

Point-Based Computer Graphics Surface Simplification Mark Pauly

Measuring ErrorMeasuring Error

• Measure the distance between two point-sampled
surfaces using a sampling approach

• Maximum error:
Two-sided Hausdorff distance

• Mean error:

Area-weighted integral of point-to-surface distances

• Q is an up-sampled version of the point cloud that
describes the surface S

),(max),(max SdSS Q ′=′∆ ∈ qq

∑
∈

′=′∆
Q

Sd
Q

SS
q

q),(1),(avg

Point-Based Computer Graphics Surface Simplification Mark Pauly

Measuring ErrorMeasuring Error

• d(q,S) approximates the distance of point q to surface S
using the MLS projection operator

Point-Based Computer Graphics Surface Simplification Mark Pauly

Measuring ErrorMeasuring Error

original simplified upsampled error

9

Point-Based Computer Graphics Surface Simplification Mark Pauly

ComparisonComparison

• Error estimate for Michelangelo’s David simplified from
2,000,000 points to 5,000 points

Point-Based Computer Graphics Surface Simplification Mark Pauly

ComparisonComparison

• Execution time as a function of input model size
(reduction to 1%)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500

hierarchical clustering

iterative simplification

particle simulation

time
(sec)

input size

Point-Based Computer Graphics Surface Simplification Mark Pauly

ComparisonComparison

• Execution time as a function of target model size
(input: dragon, 535,545 points)

0

10

20

30

40

50

60

70

020406080100120140160180

hierarchical clustering

iterative simplification

particle simulation

target size

time
(sec)

Point-Based Computer Graphics Surface Simplification Mark Pauly

ComparisonComparison

• Summary

-

o

+

Implementation

++oParticle
Simulation

o+-Iterative
Simplification

--+Hierarchical
Clustering

ControlSurface
Error

Efficiency

Point-Based Computer Graphics Surface Simplification Mark Pauly

Point-based vs. Mesh
Simplification
Point-based vs. Mesh
Simplification

point-based simplification saves an expensive surface
reconstruction on the dense point cloud!

point-based simplification with
subsequent mesh reconstruction

mesh reconstruction with subsequent
mesh simplification (QSlim)

Point-Based Computer Graphics Surface Simplification Mark Pauly

ReferencesReferences

• Pauly, Gross: Efficient Simplification of Point-sampled
Surfaces, IEEE Visualization 2002

• Shaffer, Garland: Efficient Adaptive Simplification of
Massive Meshes, IEEE Visualization 2001

• Garland, Heckbert: Surface Simplification using Quadric
Error Metrics, SIGGRAPH 1997

• Turk: Re-Tiling Polygonal Surfaces, SIGGRAPH 1992
• Alexa et al. Point Set Surfaces, IEEE Visualization 2001

1

An Interactive System for Point-based
Surface Editing (Part I)

Markus Gross

OverviewOverview

• Introduction
• Pointshop3D System Components

– Point Cloud Parameterization
– Resampling Scheme
– Editing Operators

• Summary
• See course notes

Pointshop 3DPointshop 3D

• Interactive system for point-based surface
editing

• Generalize 2D photo editing concepts and
functionality to 3D point-sampled surfaces

• Use 3D surface pixels (surfels) as versatile
display and modeling primitive

Does not require intermediate triangulation

irregular point-
sampled model

irregular point-
sampled modelPointshop 3D

Input OutputSurface editing

ConceptConcept

Resampling Editing Operator

u

Parameterization

v

• Point cloud parameterization
– brings surface and brush into common reference frame

• Dynamic resampling
– creates one-to-one correspondence of surface and brush

samples

• Editing operator
– combines surface and brush samples

Key ComponentsKey Components

Φ

))()),(((BSS ΨΦΨΩ=′

Ψ

Ω

brushoriginal surfacemodified surface

ParameterizationParameterization

• Constrained minimum distortion
parameterization of point clouds

32

)(
)(
)(

)(]1,0[RP
z
y
x

X ⊂∈=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⇒∈ x

u
u
u

uu

2

ParameterizationParameterization

contraints = matching
of feature points

minimum distortion =
maximum smoothness

ParameterizationParameterization

• Find mapping X that minimizes objective
function:

{∑ ∫
∈

+−=
Mj P

jj dXXC uuxp)())(()(2 γε
{

fitting constraints
distortion

surface pointsbrush points

ParameterizationParameterization

• Measuring distortion

– Integrates squared curvature using local polar re-
parameterization

θθγ
θ

drX
r

2

2

2

),()(∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= uu
θ

u
r

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+=

)sin(
)cos(

),(
θ
θ

θ rXrX uu

ParameterizationParameterization

• Discrete formulation:

– Approximation: mapping is piecewise linear

2

1

2
~

)()()()(~ ∑ ∑∑
∈ = ∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂

∂
+−=

Mj

n

i Nj j

i

j

i
jj

i

UUUC
v
x

v
xp εu

ParameterizationParameterization

• Directional derivatives as extension of divided
differences based on k-nearest neighbors

ParameterizationParameterization

• HIerarchical solver for efficient computation of resulting
sparse linear least squares problem

2
2

1
,)(~ ubub AaUC

j
i

n

i
ijj −=⎟

⎠

⎞
⎜
⎝

⎛
−=∑ ∑

=

3

ReconstructionReconstruction

• Parameterized scattered data approximation

• Fitting functions
– Compute local fitting functions using local parameterizations
– Map to global parameterization using global parameter

coordinates of neighboring points

∑
∑Φ

=

i
i

i
ii

r

r
X

)(

)()(
)(

u

uu
u

fitting functions weight functions

normalization

ReconstructionReconstruction

reconstruction with
linear fitting functions

weight functions in
parameter space

ReconstructionReconstruction

• Reconstruction with linear fitting functions is
equivalent to surface splatting!
– Use the surface splatting renderer to reconstruct our

surface function (see chapter on rendering)

• Provides:
• Fast evaluation
• Anti-aliasing (Band-limit the weight functions

before sampling using Gaussian low-pass filter)
– Distortions of splats due to parameterization can be

computed efficiently using local affine mappings

SamplingSampling

• Different sampling strategies:
– Resample the brush, i.e., sample at the original

surface points
– Resample the surface, i.e., sample at the brush points
– Adaptive resampling, i.e., sample at surface or brush

points depending on the respective sampling density

• Dynamic sampling: see following chapter (Mark
Pauly)

Editing OperatorsEditing Operators

• Painting
– Texture, material properties, transparency

Editing OperatorsEditing Operators

• Sculpting
– Carving, normal displacement

displacement mapstexture map
carved and texture mapped

point-sampled surface

4

Editing OperatorsEditing Operators

• Engraving surface detail

Editing OperatorsEditing Operators

• Filtering appearance and geometry

Editing OperatorsEditing Operators

• Filtering appearance and geometry
– Scalar attributes, geometry

Advanced ProcessingAdvanced Processing
• Multiscale feature extraction

SummarySummary

• Pointshop3D provides a versatile platform
for research in point based graphics

• Uses points (3-dimensional pixels) as a
graphics primitive

• Generalizes 2D image editing tools to
point sampled geometry

• A variety of plug-ins for model cleaning,
filtering, watermarking etc.

• Version 2 supports advanced modeling
operations. More to come…

ReferenceReference

• Zwicker, Pauly, Knoll, Gross: Pointshop3D: An
interactive system for Point-based Surface Editing,
SIGGRAPH 2002

• check
http://graphics.ethz.ch/pointshop3d/

1

Shape Modeling
Mark Pauly Stanford University

Point-Based Computer Graphics Shape Modeling Mark Pauly

MotivationMotivation

• 3D content creation pipeline

Point-Based Computer Graphics Shape Modeling Mark Pauly

MotivationMotivation

• Surface representations
– Explicit surfaces (B-reps)

• Polygonal meshes
• Subdivision surfaces
• NURBS

• Implicit surfaces
• Level sets
• Radial basis functions
• Algebraic surfaces

☺ - Efficient rendering
☺ - Sharp features
☺ - Intuitive editing

☺ - Boolean operations
☺ - Changes of topology
☺ - Extreme deformations

Point-Based Computer Graphics Shape Modeling Mark Pauly

MotivationMotivation

• Surface representations
– Explicit surfaces (B-reps)

• Polygonal meshes
• Subdivision surfaces
• NURBS

• Implicit surfaces
• Level sets
• Radial basis functions
• Algebraic surfaces

/ - Boolean operations
/ - Changes of topology
/ - Extreme deformations

/ - Efficient rendering
/ - Sharp features
/ - Intuitive editing

Point-Based Computer Graphics Shape Modeling Mark Pauly

MotivationMotivation

• Surface representations
– Explicit surfaces (B-reps)

• Polygonal meshes
• Subdivision surfaces
• NURBS

• Implicit surfaces
• Level sets
• Radial basis functions
• Algebraic surfaces

• Hybrid Representation
• Explicit cloud of point

samples
• Implicit dynamic

surface model

Point-Based Computer Graphics Shape Modeling Mark Pauly

MotivationMotivation

• Point cloud representation
– Minimal consistency requirements for extreme

deformations (dynamic re-sampling)
– Fast inside/outside classification for boolean

operations and collision detection
– Explicit modeling and rendering of sharp feature

curves
– Integrated, intuitive editing of shape and appearance

2

Point-Based Computer Graphics Shape Modeling Mark Pauly

Interactive ModelingInteractive Modeling

• Interactive design and editing of point-
sampled models
– Shape Modeling

• Boolean operations
• Free-form deformation

– Appearance Modeling
• Painting & texturing
• Embossing & engraving

Point-Based Computer Graphics Shape Modeling Mark Pauly

Surface ModelSurface Model

• Goal: Define continuous surface from a set
of discrete point samples

discrete set of
point samples

P = { pi, ci, mi, ... }

continuous surface S
interpolating or
approximating P

Point-Based Computer Graphics Shape Modeling Mark Pauly

Surface ModelSurface Model

• Moving least squares (MLS) approximation
(Levin, Alexa et al.)
– Surface defined as stationary set of projection

operator ΨP Ö implicit surface model

– Weighted least squares optimization
• Gaussian kernel function

– local, smooth
– mesh-less, adaptive

{ }xxxS PP =Ψ∈=)(3R

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

+ - -

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Create new shapes by combining existing
models using union, intersection, or difference
operations

• Powerful and flexible editing paradigm mostly
used in industrial design applications
(CAD/CAM)

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Easily performed on implicit
representations
– Requires simple computations on the distance

function
• Difficult for parametric surfaces

– Requires surface-surface intersection
• Topological complexity of resulting surface

depends on geometric complexity of input
models

3

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Point-Sampled Geometry
– Classification

• Inside-outside test using signed distance
function induced by MLS projection

– Sampling
• Compute exact intersection of two MLS

surfaces to sample the intersection curve
– Rendering

• Accurate depiction of sharp corners and
creases using point-based rendering

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– given a smooth, closed

surface S and point p. Is p
inside or outside of the
volume V bounded by S?

S

p V

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– given a smooth, closed surface

S and point p. Is p inside or
outside of the volume V
bounded by S?

1. find closest point q on S

S

p

q

V

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– given a smooth, closed surface

S and point p. Is p inside or
outside of the volume V
bounded by S?

1. find closest point q on S
2.d=(p-q)·n defines signed

distance of p to S

p

q
n

S

V

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– given a smooth, closed

surface S and point p. Is p
inside or outside of the
volume V bounded by S?

1. find closest point q on S
2.d=(p-q)·n defines signed

distance of p to S
3.classify p as

– inside V, if d < 0
– outside V, if d > 0

p

q
n

S

V

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– represent smooth surface S by

point cloud P P
S

V

4

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– represent smooth surface S by

point cloud P

1. find closest point q in P p

P

q
n

S

V

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– represent smooth surface S by

point cloud P

1. find closest point q in P
2.classify p as

– inside V, if (p-q)·n < 0
– outside V, if (p-q)·n > 0

p

P

q
n

S

V

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– piecewise constant surface approximation leads to

false classification close to the surface

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– piecewise constant surface approximation leads to

false classification close to the surface

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– piecewise constant surface approximation leads to

false classification close to the surface

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– piecewise constant surface approximation leads to

false classification close to the surface

5

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– piecewise constant surface approximation leads to

false classification close to the surface

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Classification:
– use MLS projection of p for correct classification

)(pPΨ

n

p

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Sampling the intersection curve

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Newton scheme:
1. identify pairs of closest points

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Newton scheme:
1. identify pairs of closest points

1q
2q

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of tangent

spaces

r

1q
2q

6

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of tangent

spaces
3. re-project point on both surfaces

1q′
2q′

r

1q
2q

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Newton scheme:
1. identify pairs of closest points
2. compute closest point on intersection of tangent

spaces
3. re-project point on both surfaces
4. iterate

r ′
1q′

2q′

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Rendering sharp creases
– represent points on intersection curve with

two surfels that mutually clip each other

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Rendering sharp creases

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Rendering sharp creases
– easily extended to handle corners by allowing

multiple clipping

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Rendering sharp creases

Difference Union

7

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Rendering sharp creases

Difference

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Rendering sharp creases

Difference

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Rendering sharp creases

Difference

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Boolean operations can create intricate shapes
with complex topology

BA + BA ⋅

BA − AB −

Point-Based Computer Graphics Shape Modeling Mark Pauly

Boolean OperationsBoolean Operations

• Singularities lead to numerical instabilities
(intersection of almost parallel planes)

Point-Based Computer Graphics Shape Modeling Mark Pauly

Particle-based BlendingParticle-based Blending

• Boolean operations create
sharp intersection curves

• Particle simulation to create
smooth transition
– Repelling force to control

particle distribution
– Normal potentials to control

particle orientation

8

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

• Smooth deformation field F:R3→R3 that warps
3D space

• Can be applied directly to point samples

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

• How to define the deformation field?
Ö Painting metaphor

• How to detect and handle self-
intersections?
Ö Point-based collision detection, boolean

union, particle-based blending
• How the handle strong distortions?
Ö Dynamic re-sampling

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

• Intuitive editing paradigm using painting
metaphor
– Define rigid surface part (zero-region) and

handle (one-region) using interactive painting
tool

– Displace handle using combination of
translation and rotation

– Create smooth blend towards zero-region

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

one-region

zero-region

original
surface

deformed
surface

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

• Definition of deformation field:
– Continuous scale parameter tx

• tx = β (d0 / (d0 + d1))
• d0 : distance of x to zero-region
• d1 : distance of x to one-region

– Blending function
• β : [0,1] → [0,1]
• β ∈C0, β (0) = 0, β (1) = 1

– tx = 0 if x in zero-region
– tx = 1 if x in one-region

x
d0

d1

9

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

• Definition of deformation field:
– Deformation function

• F (x) = FT (x) + FR (x)

– Translation
• FT (x) = x + tx · v

– Rotation
• FR (x) = M(tx) · x

x
d0

d1

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

• Translation for three different blending functions

blending
function

deformed
surface

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

• Rotational deformation along two different
rotation axes

deformed
surface

original
surface

color-coded
scale parameter

Point-Based Computer Graphics Shape Modeling Mark Pauly

• Embossing effect

Free-form DeformationFree-form Deformation

bitmap
image

zero- and
one-regions

deformed
surface

Point-Based Computer Graphics Shape Modeling Mark Pauly

Collision DetectionCollision Detection

• Deformations can lead to self-intersections
• Apply boolean inside/outside classification

to detect collisions
• Restricted to collisions between

deformable region and zero-region to
ensure efficient computations

Point-Based Computer Graphics Shape Modeling Mark Pauly

Collision DetectionCollision Detection

• Exploiting temporal coherence

10

Point-Based Computer Graphics Shape Modeling Mark Pauly

Collision DetectionCollision Detection

collision
detected

boolean union
performed

particle-based
blending

• Interactive modeling session

Point-Based Computer Graphics Shape Modeling Mark Pauly

Dynamic SamplingDynamic Sampling

10,000 points 271,743 points

Point-Based Computer Graphics Shape Modeling Mark Pauly

Dynamic SamplingDynamic Sampling

• Large model deformations can lead to
strong surface distortions

• Requires adaptation of the sampling
density

• Dynamic insertion and deletion of point
samples

Point-Based Computer Graphics Shape Modeling Mark Pauly

Dynamic SamplingDynamic Sampling

• Surface distortion varies locally

color-coded
surface stretch

surface after
dynamic re-sampling

Point-Based Computer Graphics Shape Modeling Mark Pauly

Dynamic SamplingDynamic Sampling

1. Measure local surface stretch from first
fundamental form

2. Split samples that exceed stretch threshold
3. Regularize distribution by relaxation
4. Interpolate scalar attributes

Point-Based Computer Graphics Shape Modeling Mark Pauly

Dynamic SamplingDynamic Sampling

• 2D illustration

11

Point-Based Computer Graphics Shape Modeling Mark Pauly

Dynamic SamplingDynamic Sampling

Point-Based Computer Graphics Shape Modeling Mark Pauly

Free-form DeformationFree-form Deformation

• Interactive modeling session with dynamic sampling

original surface
with zero- and

one-regions

intermediate steps
of deformation

final
surface

Point-Based Computer Graphics Shape Modeling Mark Pauly

ResultsResults

• 3D shape modeling functionality has been
integrated into Pointshop3D to create a
complete system for point-based shape and
appearance modeling
– Boolean operations
– Free-form deformation
– Painting & texturing
– Sculpting
– Filtering
– Etc.

Point-Based Computer Graphics Shape Modeling Mark Pauly

ResultsResults

• Ab-initio design of an Octopus
– Free-form deformation with dynamic sampling from

69,706 to 295,222 points

Point-Based Computer Graphics Shape Modeling Mark Pauly

ResultsResults

• Modeling with synthetic and scanned data
– Combination of free-form deformation with collision

detection, boolean operations, particle-based
blending, embossing and texturing

Point-Based Computer Graphics Shape Modeling Mark Pauly

ResultsResults

• Boolean operations on scanned data
– Irregular sampling pattern, low resolution models

12

Point-Based Computer Graphics Shape Modeling Mark Pauly

ResultsResults

• Interactive modeling with scanned data
– noise removal, free-form deformation, cut-and-paste

editing, interactive texture mapping

Point-Based Computer Graphics Shape Modeling Mark Pauly

ConclusionConclusion

• Points are a versatile shape modeling
primitive
– Combines advantages of implicit and

parametric surfaces
– Integrates boolean operations and free-form

deformation
– Dynamic restructuring
– Time and space efficient implementations

Point-Based Computer Graphics Shape Modeling Mark Pauly

ConclusionConclusion

• Complete and versatile point-based 3D
shape and appearance modeling system
– Directly applicable to scanned data
– Suitable for low-cost 3D content creation and

rapid proto-typing

Point-Based Computer Graphics Shape Modeling Mark Pauly

ReferencesReferences

• Pauly: Point Primitives for Interactive Modeling and Processing of
3D Geometry, PhD Thesis, ETH Zurich, 2003

• Pauly, Keiser, Kobbelt, Gross: Shape Modeling with Point-sampled
Geometry, SIGGRAPH 03

• Pauly, Kobbelt, Gross: Multiresolution Modeling with Point-sampled
Geometry, ETH Technical Report, 2002

• Zwicker, Pauly, Knoll, Gross: Pointshop3D: An Interactive System
for Point-based Surface Editing, SIGGRAPH 02

• Adams, Dutre: Boolean Operations on Surfel-Bounded Solids,
SIGGRAPH 03

• Szeliski, Tonnesen: Surface Modeling with Oriented Particle
Systems, SIGGRAPH 92

• www.pointshop3d.com

4S E C T I O N

4SUPPLEMENTAL MATERIAL

Surface Representation with Point Samples. Marc Alexa

Shape Modeling with Points. Mark Pauly

Supplemental Notes on
Surface Representation with Point

Samples

Marc Alexa
Discrete Geometric Modeling Group

Department of Computer Science
Darmstadt U of Technology

Fraunhoferstr. 5, 64283 Darmstadt, Germany
phone: +49.6151.155.674, fax: +49.6151.155.669

Email: alexa@informatik.tu-darmstadt.de

April 26, 2004

This document contains supplemental notes on “Surface Representation with
Point Samples” as part of the SIGGRAPH course on “Point-based Computer Graph-
ics”. It should be used together with the slide set, which contains helpful illustra-
tions.

1 Introduction

Point sets are emerging as a surface representation. The particular appeal of points sets is their
generality: every shape can be represented by a set of points on its boundary, where the degree
of accuracy typically depends only on the number of points. Point sets do not have a fixed
continuity class or are limited to a certain topology as many other surface representations.

To define a manifold from the set of points, the inherent spatial interrelation among the points
has to be exploited as implicit connectivity information. A mathematical definition or algorithm
attaches a topology and a geometric shape to the set of points. This is non-trivial since it is
unclear what spacing of points represents connected respectively disconnected pieces of the
surface.

Representingthe surface with points is slightly different from the problem of reconstructing
a surface from point samples: The basic idea of representation is to use the points as the main
source of information about the shape. Efficient algorithms are applied to the points to determine
if a certain point in space is inside or outside of the shape, how far it is from the surface, to

1

project this point onto the surface, or to intersect other primitives with the surface. In contrast,
reconstruction is typically concerned with converting the point set into another representation,
where these algorithmic goals are easier to perform.

A consequence of this view is that we are interested in local algorithms. Only local algorithms
have the premise to be efficient when used to perform certain local operations on very large point
sets. Specifically, we’d like to avoid the construction of a global connectivity structure among
the points. We admit that doing this can lead to very good reconstruction results, however, it also
has some drawbacks, which we won’t discuss here. Despite the lack of global structure, we wish
that putting all the local computations together would result in a smooth and (where reasonable)
manifold surface.

2 Notation & Terms

We assume that the pointsP = {pi ∈ R3}, i ∈ {1, . . . ,N}, are sampled from an unknown sur-
faceS , and that they might contain some noise due to the imperfect sampling process. Some
sampling processes additionally provide normal information in each point, which we assume to
be represented asN = {ni ∈ R3,‖ni‖= 1}.

We assume that data isirregular, i.e. that the points are not sampled from a regular lattice in
space.

Our goal is to define computational methods for the interrogation or manipulation of a point
x∈R3. These computational tools indirectly define a surfaceŜ from the pointsP (and possibly
the normalsN). We understand the termlocality as the extent of space or the number of points
that are necessary to perform the computations forx. A global method will potentially require
all points inP to perform the computations.

The reconstructed surface is said to beinterpolating if P ∈ Ŝ , otherwise it is approximat-
ing. We will almost exclusively look at the case of approximation. Approximating the points
takes into account that the surface is assumed to be not too wiggly and that the points contain
some noise. An approximation allows smoothing this noise and providing a reasonably behaved
surface.

Before we approach the general surface representation problem, we’ll recall some basic meth-
ods for the interpolation or approximation of functional data. For this, we assume that each point
pi = (qi , fi) is composed of a positionqi in parameter space (R2 in our setting) and a valuefi at
this position.

3 Interpolation and approximation of functional data

For now, our goal is to determine a functionf that interpolates or approximates the given con-
straintspi = (qi , fi), i.e. f̂ (qi) ≈ fi . Defining such a function means to describe an algorithm
that computes for everyx ∈ Rd a function valuef̂ (x).

We start with a very simple approach: givenx, find the closest location for which a function
value is defined, i.e. minj ‖q j −x‖. If the minimum is not unique, choose the one with smallest

2

index j. Then setf̂ (x) to f j . More formally, we define

f̂ (x) = q j ,0 < j < i ⇒‖q j −x‖< ‖qi = x‖, i < j < N⇒‖q j −x‖ ≤ ‖qi = x‖ (1)

The result is a function that interpolates the points but is not continuous.
The obvious idea to improve the continuity off̂ is to combine the values of several close

points. In general, our approach looks like this:

f̂ (x) = ∑
i

wi(x) fi , (2)

wherewi(x) are weight functions appropriate to combine the values of several points in a location
x.

Depending on how the set of ’close’ points is identified and how the weight functions are com-
pute based on the set of close points, several methods with different properties can be derived.
We will take a close look at the following ideas:

Voronoi techniques Identify the regions for which the location of data pointqi is closest and
exploit the adjacency of these regions.

RBF Attach a (radial) function to each data point that describes how it influences space.

Shepard Collect points in a certain radius and weight them based on distance.

MLS Collect points in a certain radius and weight them so that the resulting function would
reproduce a given class of functions.

We will first look at these approaches and then broaden the discussion by introducing (adaptive)
regular spatial subdivisions based on the last approach.

3.1 Voronoi techniques

We note that a certain set of locationsx has the property‖q j −x‖ ≤ ‖qi−x‖, j 6= i, i.e. is closest
to q j . This set of points is the Voronoi cellCj , i.e. formally

Cj = {x,‖q j −x‖ ≤ ‖qi = x‖, j 6= i} (3)

Note that two Voronoi cellsCi andCj might have some points in common (pointsx for which
‖qi −x‖= ‖q j −x‖. If Ci ∩Cj 6= /0 we callCi andCj or, equivalently,u and j neighbors.

We can use the concept of Voronoi cells and neighboring data points in different ways to
improve the continuity off̂ . We will only sketch these ideas as it turns out that computing
Voronoi cells is a global problem.

Connecting all neighboring locationsqi andq j defines a geometric graph, the so called De-
launay graph. In most cases all faces of this graph are triangles. Triangulating the remaining
faces with 4 or more edges generates the Delaunay triangulation. Let{Ti, j,k} be the triangles
spanned byqi ,q j ,qk. Note that the signed area of a triangle spanned byx1,x2,x3 is

A(x1,x2,x3) =
1
2

det(x1,x2,x3) (4)

3

The weights for defininĝf are barycentric coordinates for the triangle that containsx. To com-
pute those, we need to identify(i, j,k) so thatx ∈Ti, j,k. To compute this, note that

x ∈Ti, j,k ⇐⇒ sgnA(x,qi ,q j) = sgnA(x,q j ,qk) = sgnA(x,qk,qi). (5)

Then, barycentric coordinates w.r.t. the locationsqi ,q j ,qk are defined as

w(x)i =
A(x,q j ,qk)
A(qi ,q j ,qk)

,w(x) j =
A(x,qk,qi)
A(qi ,q j ,qk)

,w(x)k =
A(x,qi ,q j)
A(qi ,q j ,qk)

. (6)

In essence,̂f is defined as the Delaunay triangulation of the locations{qi} lifted to the heights
{ fi}. As such,f̂ is a continuous function, with discontinuous derivatives along the edges of the
triangulation.

The Voronoi cells can be further exploited to achieve an interpolating functionf̂ with contin-
uous derivatives. To derive the weights forx, compute the Voronoi cellCx for x if it was added
to the set of points. Then weights could be defined as

wi(x) =
|Cx∩Ci |
|Cx|

, (7)

i.e. as the relative area the cellCx shares with the original cells{Ci}. There are alternative
definitions for the weights based on this general concept, leading to additional properties forf̂ .

3.2 Radial Basis Functions

A basic and very general approach is to model the weight functions as radial functions

wi(x) =
ci

fi
θ(‖x−qi‖)⇔ wi(x) fi = ciθ(‖x−qi‖), (8)

whereθ is a function that describes the influence ofqi on x based on the distance between the
two locations.

In this approach, all weight functionswi are essentially the same and only differ by a linear
factor. Note that the method is already fully defined for a fixed functionθ in case we ask for
interpolation: Requirinĝf (q j) = f j leads to

f̂ (q j) = ∑
i

ciθ(‖q j −qi‖) = f j , (9)

which is, in fact, a system of linear equations:
θ(‖q0−q0‖) θ(‖q0−q1‖) θ(‖q0−q2‖) · · ·
θ(‖q1−q0‖) θ(‖q1−q1‖) θ(‖q1−q2‖) · · ·
θ(‖q2−q0‖) θ(‖q2−q1‖) θ(‖q2−q2‖) · · ·

...
...

...
...

c0

c1

c2
...

=

f0
f1
f2
...

 (10)

So, before we are able to compute the weights we first need to solve this linear system. This
requires that the system has a solution, which means the data points allow being interpolated

4

with the given functions. As the matrix depends only on values ofθ , solvability obviously
depends on the choice ofθ .

Standard choices for the radial functionθ areθ(δ)= δ−ν or the Gaussianθ(δ)= exp(δ 2/h2).
However, another concern makes these functions impractical: Each point influences every other
point, making the approach global. This can also be recognized from the fact that the a dense
linear system has to be solved beforef̂ could be evaluated in any point.

In an attempt to make the solution local we should use locally supported radial functions. This
means, we can choose a distance parameterε. If two points are further apart thenε the function
θ attached to either of them vanishes in the other point, i.e.δ > ε ⇒ θ(δ) = 0.

Popular choices with good properties are Wendland’s radial functions [Wen95], because they
consist of polynomial pieces with low degree (i.e. they are easy to compute) and lead to solvable
linear systems. The particular function to be used depends on the space in which the locations
qi live.

Using these locally supported functions leads to sparse linear systems, which can be solved
in almost linear time. Nevertheless, strictly speaking this is a global solution, as the inverse of a
sparse matrix is not necessarily sparse. Practically speaking this means moving one point could
potentially influence points further away thenε by a cascade of effects on other points.

On the other hand, the sparse linear system has to be solved only once. This defines the linear
factors{ci}, which in turn define the weight functionswi(x). Evaluating f̂ (x) is typically very
cheap, asθ has to be evaluated only for few close points.

3.3 Least squares fitting

I assume that most readers are familiar with the idea of least squares fitting a polynomial to
given data. Here, we will rediscover this method in our setting, by introducing the concept of a
precision set. I hope this presentation eases the understanding of the following techniques.

As before, we represent̂f at x as∑i wi(x) fi . We ask thatf̂ has a certain precision, which
is described by a precision setG : If the pairs(qi , fi) happen to be sampled from a function
contained in the precision set (sayg∈ G), then we wish that̂f results to be exactly that function.
We can formalize this requirement as follows: For everyg ∈ G the weight functions have to
satisfy

g(x) = ∑
i

wi(x)g(qi). (11)

As a more concrete example, consider the precision set of quadratic polynomialsg(x) =
a+bTx+xTCx. Look at the following system of equations

1 = ∑
i

wi(x)1

x0 = ∑
i

wi(x)qi0

...

x2
0 = ∑

i

wi(x)q2
i0

...

(12)

5

and note that the set of linear combinations of these equations

a+bTx+xTCx = ∑
i

wi(x)
(

a+bTqi +qT
i Cqi

)
. (13)

is, in fact, the requirement of reproducing any function from the precision set of quadratic poly-
nomials.

We can write the system of equations in matrix form as

Qw(x) = z. (14)

Typically, we will have more points than dimensions in the space of polynomials, i.e. the system
is underdetermined. We need to restrict the weights further. A common way to do this would be
to ask that sum of squared weights is minimal, i.e.

min
{wi(x)}

∑
i

wi(x) = min
w(x)

w(x)Tw(x). (15)

How could we find this minimum, subject to the linear constraints given in Eq. 14? Assume we
know the solution vectorw(x). Now look at the polynomial(a,b0, . . .)Qw(x). We can certainly
choose the polynomial coefficients(a,b0, . . .) so that this polynomial attains a minimum or a
maximum for the given weight vectorw(x). So instead of minimizing only squared weights, we
try to minimize

w(x)Tw(x)− (a,b0, . . .)Qw(x), (16)

where we have the polynomial coefficients as additional degrees of freedom. This approach
helps to include the linear constraints in the minimization, at the cost of additional variables to
solve for. A necessary condition for the minimum is that all partial derivatives are identical zero.
Taking all partial derivatives w.r.t. the weights and setting to zero leads to

w(x)T− (a,b0, . . .)Q = 0⇐⇒ w(x) = QT(a,b0, . . .)T (17)

Using that in Eq. 14 yields
QQT(a,b0, . . .)T = z, (18)

which is identical to the normal equation for least squares fitting a polynomial and also shows
that the solution is independent of the locationx. Once the polynomial coefficients are deter-
mined one could indeed solve for the weights atx, however, in this case it is easier to compute
f̂ using the representation as a polynomial.

Notice that the solution we have presented works for any precision set that could be repre-
sented as finite linear space.

3.4 Moving Least Squares

We will follow the basic ideas of the last section. The only modification is that we localize
weights. We do this by incorporating a separation measure into the minimization of squared
weights:

min
{wi(x)}

∑
i

w2
i (x)η(‖qi −x‖) = min

w(x)
w(x)TE(x)w(x) (19)

6

The separation measureη(‖qi −x‖) penalizes the influence of points atqi far away fromx, i.e.
the function increases with the distance betweenqi andx.

The solution to this constrained minimization is similar to the uniform situation. Now one has
to solve

w(x)TE(x)− (a,b0, . . .)Q = 0 (20)

which leads to
w(x) = E(x)−1QT(a,b0, . . .)T. (21)

This can be inserted into the constraint equationQw(x) = z to get the polynomial coefficients:(
QE(x)−1QT

)
(a,b0, . . .)T = z (22)

We see that the polynomial coefficients result from a weighted least squares system. The weight-
ing comes from theη−1, which we callθ for convenience. It depends on the locationx, because
η depends onx. The resulting approach could also be interpreted like this: In each locationx
determine a locally weighted least squares fitting polynomial and use the value of this polyno-
mial atx (a ’moving’ least squares approximation [LS98, Lev98]). In this interpretation it seems
the approximating values of̂f (x) are computed independently for different locations, so it might
not be immediately clear that̂f is a continuously differentiable function. Our derivation off̂ ,
however, reveals that it is, ifη (or, better,E(x)) is continuously differentiable.

If θ is locally supported (i.e. vanishes for large distances betweenx andqi) the computations
for x are also local, as they depend only on the data points that are within the support. Forη(0) =
0 (i.e.θ(0) = ∞) the resulting function̂f interpolates the points. Notice that the statements about
the continuity of f̂ hold also for the case of local support and/or interpolation.

The coefficients of the polynomial could be used to find the weights as

w(x) = E(x)−1Q
(

QE(x)−1QT
)−1

z. (23)

Now we take a closer look at the special case of asking only for constant precision. Then,Q
is a row vector containing only ones andz = 1. ThenE(x)−1Q is a row vector containing the
termsθ(‖qi −x‖) andQE(x)−1QT is the sum of these terms. This means we get the following
weights for locationx when asking only for constant precision:

w j(x) =
θ(‖q j −x‖)

∑i θ(‖qi −x‖)
(24)

This type of weight is commonly called aPartition of Unity, because the weights sum up to one
everywhere. Usingθ(δ) = δ−r , r > 0 we rediscover a particular and well-known instance of
Partition of Unity: Shepard’s interpolation method [She68, FN80].

3.5 Adaptive spatial subdivisions

The MLS method associates a local approximation with each location in the parameter domain.
For the evaluation of̂f (x) this means one has to compute the polynomial coefficients (or, the
weightswi) for each locationx. An approach to reduce the amount of computations is to divide

7

the parameter space into cells and use only one approximating function per cell. Of course, to
achieve an overall continuous approximation we make the cells slightly overlapping and blend
the local approximations in the areas of overlap. For this blending, we use a Partition of Unity,
however, now derived from the cells rather than the points. The benefit of computing the local
approximations and the weights for the cells is simply that we can construct the cells so that we
have much less cells than points. Because of blend function that sum up to one are a natural
choice this approach is called Partition of Unity approach in some other communities [BM97,
GS00, GS02a, GS02b].

To be more concrete, let the cells be denotedΩi . Together they form an overlapping covering
of the parameter domain, i.e. the intersection of neighboring cells has non-zero area. With each
cell Ωi we associate a weight functionwi and a local (polynomial) approximation̂fi of the points
within Ωi . Then the global approximating function is given as

f̂ (x) = ∑
i

wi(x) f̂i (25)

How do we compute the local approximationsf̂i and the weightswi(x)? The local approxima-
tions could be simply low degree polynomials derived from least squares fitting to the points con-
tained inΩi . The weights could be computed by starting from a blend functionθi that has support
only inside the cellΩi , i.e. vanishes outside the cell and then derivingw j(x) = θ(x)/∑i θi(x),
very similar to the MLS situation.

A good choice ofθ depends on the shape of the cell. For spherical cells with radiusRi

centered atci the quadratic B-splineb(t) yields a reasonable low degree approximation of a
Gaussian asθi(x) = b(‖ci −x‖/Ri). For box-shaped cells, the quadratic B-spline could be used
in a tensor product. For example, given a box with centerci and edge lengthse0,e1, . . . this
yieldsθi(x) = b(2‖ci0−x0‖/e0) ·b(2‖ci1−x0‖/e1) Of course, other choices are possible.

Having these ingredients together, it remains to find a reasonable decomposition of the pa-
rameter space into cells. here, reasonable means that each cell contains not too many points, so
that the local approximation is accurate, but also not too few, because than the number of cells
is large (and, the local approximation could become ambiguous). For irregular data this could
be very difficult.

A much better strategy is to use adaptive subdivisions: We start by subdividing the parameter
domain into few cells. For example, we divide the space into half along each dimension and
then slightly increase the size of the cells in all dimensions to generate the necessary overlap.
For example, in the plane this generates a 2 by 2 grid of rectangular cells. In each of the cells
we compute a local (low degree polynomial) approximation. Then we compute the max-norm
error of these local approximations. If this error exceeds a certain threshold, this cell is subdi-
vided again, and the procedure is applied to the sub-cells. In the plane, the result is a quadtree
(though with slightly larger cells to provide the overlap), where the error of the local approxi-
mation is bounded by a given threshold in each cell. Once this is achieved, weight functions are
determined for the cells, and̂f could be evaluated.

In fact, we don’t need to build all approximations before starting to evaluatef̂ – this can be
done on the fly only where needed: For the evaluation off̂ (x) we determine all cells containing
x and compute local approximations. Then the error is determined and the cells are subdivided
if necessary. This procedure is repeated for the sub-cells and so on, until the error is bounded.

8

For the cells with bounded error that containx, f̂i(x) andwi(x) and determined to assemblef̂ .
A pseudo-code for the evaluation off̂i is given below. For evaluatinĝf this function has to be
called with a cell that contains all points inP:

Evaluate f̂ (Ωi ,x,ε)
if (f̂i is not created yet)then

Createf̂i and computee= maxq j∈Ωi ‖ f j − f̂i(qi)‖;
if (e> ε) then

Create subcells{ωk};
for each ωk

Evaluate f̂ (ωk,x,ε);
end for

else (error is below bound)
f̂ (x) = f̂ (x)+wi(x)∗ f̂i(x);
σw = σw +wi(x);

end if
f̂ (x) = f̂ (x)/σw;

This adaptive approach has several nice properties: The approximation error is bounded, be-
cause the max-norm error of̂f cannot be larger than the max-norm error in any of the cells.
This is a result of the weight functions summing up to one. All computations are purely local,
resulting a an almost linear run time behavior. In fact, for practical distributions of points the
algorithm scales linearly with the number of points. Another consequence of data locality is that
out-of-core or parallel implementations are straightforward.

4 Normals

So far we have considered functional data. Now we turn to the problem of approximating a
surface represented by pointsP in space. In this setting, we don’t have a suitable parameter
domain to directly apply the techniques explained above. It turns out, that almost all approaches
compensate for this lack of information by using or approximating tangent planes or normals on
or close to the point set.

Normals might be part of the data, or not. If normals are missing, we can try to estimate them
as follows: Assume we want to compute the normaln in a locationq in space. The points close
to q describe the surface aroundq. A tangent inq should be as close as possible to these close
points.

Determining a tangent plane aroundq can be formulated as a least squares problem. We search
a planeH(x) : nTq = nTpi ,‖n‖= 1 passing throughq that minimizes the squares(nT(q−pi))2.
However, we want to consider only few pointspi close toq. We could do this by either using
only thek-nearest neighbors ofq, or by weighting close points with a locally supported weight
functionθ . Because thek-nearest neighbor approach could be simulated by using a hat function
with appropriate radius forθ , we will only detail the locally weighted version. Then,n is defined

9

by the following minimization problem:

min
|n‖=1

∑
i

(
nTpi −q)

)2
θ(‖pi −pq‖) (26)

This is a non-linear optimization problem, because of the quadratic constraint‖n‖= 1. To arrive
at a computable solution, we use the outer product matrices(pi −q)(pi −q)T and rewrite the
functional to be minimized as

m(n) = nT

(
∑

i

(pi −q)(pi −q)Tθ(‖pi −q‖)

)
n, (27)

and inspect the eigenvalue/eigenvector decomposition of the sum of outer products

∑
i

(pi −q)(pi −q)T = Ediag(λ0,λ1, . . .)ET. (28)

Using this decomposition we see that in transformed coordinatesETn the functionalm(n) =
nTEdiag(λ0,λ1, . . .)ETn has only pure quadratic terms, and each of these quadratic terms has
an eigenvalue as coefficient. Letλ0 ≤ λ1, . . ., thenm(n) clearly attains its minimum among all
unit-length vectors formvETn = (1,0,0, . . .)T. This means,n is the eigenvector corresponding
to the smallest eigenvalue.

Fitting a tangent plane will only yield a normal direction, not an orientation. We assume that
the correct orientation can be derived from inside/outside information generated using scanning
the object.

5 Implicit surfaces from points and offset points

The basic idea of approaches based on implicit surfaces is to assume that all points on the surface
have zero value, i.e. the surface is implicitly defined by

S = {x| f̂ (x) = 0}. (29)

In this setting, the point set delivers a set of constraints of the form

f̂ (pi) = 0. (30)

Now, our approach is to apply the techniques for local function estimation presented in the
preceding section. However, all of these methods would result inf̂ = 0, as this perfectly satisfies
all constraints. We obviously need additional non-zero constraints. These additional constraints
have to be generated based on the given point data.

The normals can be used to generate additional point constraints forf̂ . A standard trick is
this: Move a small step (sayδ) from pi in normal direction outwards from the surface. This
point ispi +δni . Requiref̂ to beδ at this point. The surface could be additionally supported by
also moving to the inside and requiring that the value atpi −δni is−δ .

A potential danger of this approach is that thepi +δni is not reallyδ away from the surface,
because we the step is so large that we have moved towards some other part of the surface. A

10

good strategy to check and avoid this is to compute the closest point topi +δni . If this is nopi ,
the step sizeδ has to be reduced until this holds true.

If a spatial subdivision is used to organize the points this is another good way to add non-zero
constraints. In each of the corners and centers of a cell the distance to the surface is approximated
as the smallest distance to any point of the set. A sign for the distance can be computed from
inside/outside information. For small distances, the distance to the closest point becomes less
reliable. We propose to rather compute the distances to thek-nearest points (k = 3) and check
that they all have the same sign.

The result of either procedure is a set of additional constraints of the form

f̂ (pN+i) = di . (31)

Together with the constraintŝf (pi) = 0 they can be used to approximate a functionf̂ using any
of the techniques for approximating functions as described in the last section.

Several works discuss the details of using RBF for approximating the implicit function [Mur91,
MYR∗01, CBC∗01, DST01, TO02, DTS02, OBS03], spatial subdivisions have been used to-
gether with Partition of Unity weights, either RBF approximations in a k-d tree [TRS04], or
local polynomial and specific sharp edge functions in the cells of an octree [OBA∗03].

6 Implict surface from points and tangent frames

Rather than generating additional point constraints to make the standard function approximation
techniques applicable we could also try to adapt them to the more general setting. An underlying
idea of several approaches in this direction is to estimate local tangent frames and then use a
standard technique in this local tangent frame.

6.1 Hoppe’s and related approaches

A simple approach to generate an implicit functionf̂ based on the normals is due to Hoppe
[HDD∗92]: For a point in spacex compute the closest pointpi in P. Then setf̂ (x) to ni(pi −
x), i.e. the signed distance to the tangent plane throughpi . This yields a piecewise linear
approximation of signed distances to the surface. The set of points in space associated to the
same pointpi form the Voronoi cell aroundpi . So, another viewpoint on this is that we use local
linear approximations, however, for Voronoi cells we use a local frame based on the tangent
plane.

One can compute a smoother surface approximation by exploiting the Voronoi cells around
the points and using Voronoi interpolation as explained in the preceding section. This has been
exploited by Boissonnat et al. [BC00].

6.2 MLS surfaces

The MLS surfaceSP of P is defined implicitly by a projection operator. The basic idea for
projecting a pointr ontoSP is based on two steps: First, a locally tangent reference domainH is
computed. Then, a local bivariate polynomial is fitted overH to the point set.

11

However, to compensate for points with some distance to the surface, we don’t restrict the tan-
gent plane to pass through the pointr . Yet, we still want to weight the influence of points based
on the distance to the origin of the tangent frame. This leads to a more complex minimization
problem, however, yields the desired projection property.

Specifically, the local reference domainH = {x|〈n,x〉 −D = 0,‖n‖ = 1 is determined by
minimizing

N

∑
i=1

(〈n,pi − r − tn〉)2
θ(‖pi − r − tn‖) (32)

among all normal directionsn and offsetst. Let qi be the projection ofpi onto H, and fi the
height of pi over H, i.e fi = n · (pi − q). The polynomial approximationg is computed by
minimzing the weighted least squares error

N

∑
i=1

(g(xi ,yi)− fi)
2

θ(‖pi − r − tn‖) (33)

The projection ofr is given by

MLS(r) = r +(t +g(0,0))n (34)

Formally, the surfaceSP is the set of points that project onto themselves. We can also define the
surface in the standard notation using

f̂ (x) = ‖(t +g(0,0))n(x)‖ (35)

The projection procedure itself has turned out to be a useful computational method for com-
puting points on the surface. We point the reader to [Lee00, ABCO∗01, PGK02, PKG02,
ABCO∗03, FCOAS03, Lev03, PKKG03] for details on the properties, extensions, and imple-
mentation of this approach.

6.3 Surfaces from normals and weighted averages

Inspired by MLS surfaces, we can also define the surface implicitly based on normal directions
and weighted averages. The implicit functionf : R3 → R describes the distance of a pointx to
the weighted averagea(x) projected along the normal directionn(x):

f̂ (x) = n(x) · (a(x)−x) (36)

where the weighted average of points at a locations in space is

a(s) =
∑N−1

i=0 θ(‖s−pi‖)pi

∑N−1
i=0 θ(‖s−pi‖)

. (37)

If θ is locally supported one has to make sure to computef̂ only in the support of the weights.
Computing the weighted average and the local tangent frame also allows to define boundaries
of the surface in a natural way: We inspect the relative location of the weighted averagea(x) in
the points. For points far away from the point set the distance||x−a(x)|| increases, while we

12

expect this distance to be rather small for locations close to (or “inside”) the points. The main
idea for defining a boundary is to require||x−a(x)|| to be less than a user-specified threshold.

For computing points on the surface, several efficient curve-surface intersection and projection
operators can be implemented. These intersections can be computed independent of normal
orientation. More details can be found in [AA03b, AA03a, AA04]

Acknowledgements

Numerous people have contributed to this work. I gratefully acknowledge the help of Nina
Amenta, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, Markus Gross, Leonidas Guibas,
David Levin, J̈org Peters, Ulrich Reif, Claudio Silva, Denis Zorin, and several anonymous re-
viewers.

This work was supported by a grants from the European Union, the German Ministry of
Science and Education (BMBF), the Israeli Ministry of Science, the German Israeli Foundation
(GIF), and the Israeli Academy of Sciences (center of excellence).

13

References

[AA03a] ADAMSON A., ALEXA M.: Approximating and intersecting surfaces from points.
In Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry
processing(2003), Eurographics Association, pp. 230–239.

[AA03b] A DAMSON A., ALEXA M.: Ray tracing point set surfaces. InProceedings of
Shape Modeling International(2003).

[AA04] A DAMSON A., ALEXA M.: Approximating bounded, non-orientable surfaces
from points. InProceedings of Shape Modeling International 2004(2004), IEEE
Computer Society. accepted for publication.

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D., SILVA C. T.:
Point set surfaces. InProceedings of the conference on Visualization ’01(2001).

[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D., SILVA C. T.:
Computing and rendering point set surfaces.IEEE Transactions on Computer
Graphics and Visualization 9, 1 (2003), 3–15.

[BC00] BOISSONNATJ.-D., CAZALS F.: Smooth shape reconstruction via natural neigh-
bor interpolation of distance functions. InProceedings of the 16th Annual Sym-
posium on Computational Geometry (SCG-00)(N. Y., June 12–14 2000), ACM
Press, pp. 223–232.

[BM97] BABUšKA I., MELENK J. M.: The partition of unity method.International Jour-
nal of Numerical Methods in Engineering 40(1997), 727–758.

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B., MITCHELL T. J., FRIGHT W. R.,
MCCALLUM B. C., EVANS T. R.: Reconstruction and representation of 3d objects
with radial basis functions. InProceedings of ACM SIGGRAPH 2001(2001),
Computer Graphics Proceedings, Annual Conference Series, pp. 67–76.

[DST01] DINH H. Q., SLABAUGH G., TURK G.: Reconstructing surfaces using anisotropic
basis functions. InInternational Conference on Computer Vision (ICCV) 2001
(Vancouver, Canada, July 2001), pp. 606–613.

[DTS02] DINH H. Q., TURK G., SLABAUGH G.: Reconstructing surfaces by volumetric
regularization.IEEE Transactions on Pattern Analysis and Machine Intelligence
24, 10 (October 2002), 1358–1371.

[FCOAS03] FLEISHMAN S., COHEN-OR D., ALEXA M., SILVA C. T.: Progressive point set
surfaces.ACM Transactions on Graphics (TOG) 22, 4 (2003), 997–1011.

[FN80] FRANKE R., NIELSON G.: Smooth interpolation of large sets of scattered data.In-
ternational Journal of Numerical Methods in Engineering 15(1980), 1691–1704.

14

[GS00] GRIEBEL M., SCHWEITZER M. A.: A Particle-Partition of Unity Method for
the solution of Elliptic, Parabolic and Hyperbolic PDE.SIAM J. Sci. Comp. 22, 3
(2000), 853–890.

[GS02a] GRIEBEL M., SCHWEITZER M. A.: A Particle-Partition of Unity Method—Part
II: Efficient Cover Construction and Reliable Integration.SIAM J. Sci. Comp. 23,
5 (2002), 1655–1682.

[GS02b] GRIEBEL M., SCHWEITZER M. A.: A Particle-Partition of Unity Method—Part
III: A Multilevel Solver. SIAM J. Sci. Comp. 24, 2 (2002), 377–409.

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD J., STUETZLE W.: Sur-
face reconstruction from unorganized points.Computer Graphics (Proceedings of
SIGGRAPH 92) 26, 2 (July 1992), 71–78.

[Lee00] LEE I.-K.: Curve reconstruction from unorganized points.Computer Aided Geo-
metric Design 17, 2 (February 2000), 161–177.

[Lev98] LEVIN D.: The approximation power of moving least-squares.Math. Comp. 67
(1998), 1517–1531.

[Lev03] LEVIN D.: Mesh-independent surface interpolation.Geometric Modeling for
Scientific Visualization(2003).

[LS98] LANCASTER P., SALKAUSKAS K.: Surfaces generated by moving least squares
methods.Mathematics of Computation 37(1998), 141–158.

[Mur91] MURAKI S.: Volumetric shape description of range data using “Blobby Model”.
Computer Graphics 25, 4 (July 1991), 227–235. Proceedings of ACM SIGGRAPH
1991.

[MYR ∗01] MORSEB. S., YOO T. S., RHEINGANS P., CHEN D. T., SUBRAMANIAN K. R.:
Interpolating implicit surfaces from scattered surface data using compactly sup-
ported radial basis functions. InShape Modeling International 2001(Genova,
Italy, May 2001), pp. 89–98.

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G., SEIDEL H.-P.: Multi-level par-
tition of unity implicits. ACM Transactions on Computer Graphics (SIGGRAPH
2003 Proceedings) 22, 3 (2003), 463–470.

[OBS03] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: A multi-scale approach to 3d scat-
tered data interplation with compactly supported basis functions. InProceedings
of Shape Modeling International 2003(May 2003).

[PGK02] PAULY M., GROSSM., KOBBELT L. P.: Efficient simplification of point-sampled
surfaces. InProceedings of the conference on Visualization ’02(2002), pp. 163–
170.

15

[PKG02] PAULY M., KOBBELT L., GROSSM.: Multiresolution Modeling of Point-Sampled
Geometry. Tech. rep., ETH Zurich, Department of Computer Science, 2002.

[PKKG03] PAULY M., KEISERR., KOBBELT L. P., GROSSM.: Shape modeling with point-
sampled geometry.ACM Transactions on Graphics (TOG) 22, 3 (2003), 641–650.

[She68] SHEPARD D.: A two dimensional interpolation function for irregular spaced data.
In Proceedings of 23rd ACM National Conference(1968), pp. 517–524.

[TO02] TURK G., O’BRIEN J.: Modelling with implicit surfaces that interpolate.ACM
Transactions on Graphics 21, 4 (October 2002), 855–873.

[TRS04] TOBOR I., REUTER P., SCHLICK C.: Multiresolution reconstruction of implicit
surfaces with attributes from large unorganized point sets. InProceedings of Shape
Modeling International (SMI 2004)(2004). in press.

[Wen95] WENDLAND H.: Piecewise polynomial, positive definite and compactly supported
radial basis functions of minimal degree.Advances in Computational Mathematics
4 (1995), 389–396.

16

Shape Modeling with Points

Supplemental Course Notes

SIGGRAPH 2004

Mark Pauly

May 12, 2004

2

Chapter 1

Local Surface Analysis
Mark Pauly

This part of the course notes describes some of the fundamental techniques that are used to define
more sophisticated processing algorithms for point-based surfaces. In particular, efficient methods
for estimating local surface properties, such as normal vector and curvature, are described. These
computations are based on local neighborhoods of point samples, which are defined as subsets of a
given point cloud P that satisfy some local neighborhood relation. Also, the moving least squares
(MLS) surface model is discussed, which defines a smooth manifold surface from the point cloud and
allows the evaluation of the signed distance function.

The concept of a 2-manifold surface embedded in 3-space is crucial for the algorithms described in
these notes. The following definition of a manifold surface is taken from [dC76]:
Definition: A subset S ⊂ IR3 is a 2-manifold surface, if for each x ∈ S, there exists a neighborhood V
in IR3 and a map X : U → V ∩ S of an open set U ⊂ IR2 onto V ∩ S ⊂ IR3 such that

• X is differentiable, i.e., if X(u, v) = (x(u, v), y(u, v), z(u, v)) for (u, v) ∈ U then the functions x,
y, and z have continuous partial derivatives of all orders in U ,

• X is a homeomorphism, i.e., the inverse X−1 : V ∩ S → U exists and is continuous,

• for each u ∈ U , the differential dXu is one-to-one.

Note that the definition of a surface is based on local (possibly infinitesimal) neighborhoods. Intrinsic
properties of the surface, such as tangent plane or Gaussian curvature, are defined with respect to such
neighborhoods (see [dC76] for details).

1.1 Local Neighborhoods

In the discrete setting, a local neighborhood can be defined through spatial relations of the sample
points. Given a point p ∈ P , a local neighborhood is defined as an index set Np, such that each
pi, i ∈ Np satisfies a certain neighborhood condition. This condition should be set in such a way
that the points of Np adequately represent a small, local surface patch around the point p. For the
computations described below it is important that local neighborhoods only depend on the geometric
locations of the point samples in space, not on some global combinatorial structure associated with the
point cloud. If the point cloud is locally uniform, the k-nearest neighbors relation is most commonly
used to define local neighborhoods. Other relations, e.g., local Delaunay neighbors [FR01], or Linsen’s
method [Lin01] can be used for non-uniformly sampled models.

3

4 CHAPTER 1. LOCAL SURFACE ANALYSIS

1.1.1 Local Sampling Density

An important measure for analyzing point-sampled surfaces is the local density of the point samples,
i.e., the number of samples per unit area. The local sampling density ρi at a sample point pi ∈ P
can be estimated by computing the sphere with minimum radius ri centered at pi that contains the
k-nearest neighbors to pi. By approximating the intersection of the underlying surface and this sphere
with a disc, ρi can be defined as ρi = k/(πr2

i). This discrete estimation of local sampling density can
be extended to a continuous function ρ : IR3 → IR+ using scattered data approximation. A continuous
density function ρ(x) is useful because it provides for each point x on the surface S an estimate of the
sampling density of a small patch around x. Similarly, an estimate for the local sample spacing can
be derived as η(x) = 1/

√
ρ(x). η measures the average distance of sample points within the sphere

defined by the k-nearest neighbors.

1.2 Covariance Analysis

Based on the k-neighborhood relation described above, local surface properties at a point p ∈ P can
be estimated using a statistical analysis of the neighboring samples. In particular, eigenanalysis of the
covariance matrix of the point positions and normals of a local neighborhood yields efficient algorithms
for estimating normal vectors, and surface and normal variation (to be defined below). Let p̄ be the
centroid of the neighborhood of p, i.e.,

p̄ =
1

|Np|
∑
i∈Np

pi

The 3 × 3 covariance matrix C for the sample point p is then given as

C =

⎡
⎣ pi1 − p̄

· · ·
pik

− p̄

⎤
⎦

T

·
⎡
⎣ pi1 − p̄

· · ·
pik

− p̄

⎤
⎦ , ij ∈ Np (1.1)

C describes the statistical properties of the distribution of the sample points in the neighborhood
of point p by accumulating the squared distances of these points from the centroid p̄. Consider the
eigenvector problem C · vl = λl · vl, l ∈ {0, 1, 2}. Since C is symmetric and positive semi-definite,
all eigenvalues λl are real-valued and the eigenvectors vl form an orthogonal frame, corresponding to
the principal components of the point set defined by Np [Jol86]. The λl measure the variation of the
pi, i ∈ Np, along the direction of the corresponding eigenvectors. The total variation, i.e., the sum of
squared distances of the from the centroid is given by∑

i∈Np

‖pi − p̄‖2 = λ0 + λ1 + λ2.

Normal Estimation

Assuming λ0 ≤ λ1 ≤ λ2 , it follows that the plane T (x) : (x − p̄) · v0 = 0 through p̄ minimizes the
sum of squared distances to the neighbors of p [Jol86]. Thus v0 approximates the surface normal np

at p, or in other words, v1 and v2 span the tangent plane at p (see Figure 1.1 (a)). A straightforward
extension to this scheme uses weighted covariances, typically applying a Gaussian or polynomial weight
function that drops with increasing distance to p [AA03a].

Normal Orientation

A consistent orientation of the normal vectors can be computed using a method based on the Euclidean
minimum spanning tree of the point cloud, as described in [HDD∗94]. The algorithm starts with an

1.2. COVARIANCE ANALYSIS 5

extremal point, e.g., the sample with largest z-coordinate, and orients its normal to point away from
the centroid of the point cloud. The normal vector of each adjacent point in the minimum spanning
tree can then be oriented based on the assumption that the angle of the normal vectors of adjacent
points is less than π/2 (see Figure 1.1 (b)). If the underlying surface is orientable (note that some
surface are nonorientable, e.g., the Moebius strip) and the sampling distribution is sufficiently dense,
then a consistent orientation of the normals will be obtained after all points of the point cloud have
been visited.

query ball

covariance

ellipsoid
v0

p
T

Figure 1.1: Normal estimation (2D for illustration). (a) Computing the tangent plane using covariance
analysis, (b) normal orientation using a minimum spanning tree, where the red normals have been
flipped, since the angle to the next adjacent oriented normal is larger then π/2.

Surface Variation

λ0 quantitatively describes the variation along the surface normal, i.e., estimates how strongly the
points deviate from the tangent plane. The surface variation at point p in a neighborhood of size n is
defined as

σn(p) =
λ0

λ0 + λ1 + λ2
.

The maximum surface variation σn(p) = 1/3 is assumed for completely isotropically distributed points,
while the minimum value σn(p) = 0 indicates that all points lie in a plane. Note also that λ1 and
λ2 describe the variation of the sampling distribution in the tangent plane and can thus be used to
estimate local anisotropy [PGK02].

Normal Variation

A similar method for local surface analysis considers the covariance matrix of the surface normals, i.e.,

C′ =
∑
i∈Np

nT
i · ni.

Let λ′
0 ≤ λ′

1 ≤ λ′
2 be the eigenvalues of C′ with corresponding eigenvectors v′

0,v
′
1, and v′

2. As Garland
discusses in [Gar99], λ′

2 measures the variation of the surface normals in the direction of the mean
normal, while λ′

1 measures the maximum variation on the Gauss sphere. Thus the normal variation
can be defined as σ′

n(p) = λ′
1. Garland also analyzes the covariance matrix of the normal vectors in

the context of differential geometry. He shows that under mild conditions on the smoothness of the
surface, the eigenvectors v0, v1, and v2 converge to the direction of minimum curvature, maximum
curvature, and mean normal, respectively, when sampling density goes to infinity. Figure 1.2 compares
surface variation and normal variation for the Max Planck model consisting of 139,486 points. With
increasing neighborhood size, a smoothing of the variation estimates can be observed.

6 CHAPTER 1. LOCAL SURFACE ANALYSIS

σ15 σ40 σ150 σ'15 σ'40 σ'150

Figure 1.2: Comparison of surface variation (left) and normal variation (right) for increasing size of
the local neighborhoods.

1.3 Moving Least Squares Surfaces

Given a point cloud P the goal of a point-based surface model is to define a surface S that approximates
or interpolates the sample points pi ∈ P . For the algorithms defined in these notes the surface model
should satisfy the following requirements:

• Smoothness: The surface should be smooth and differentiable, preferably in a controllable man-
ner. This means that there should be some mechanism to adjust the smoothness depending on
the intended application.

• Locality: The evaluation of the surface model should be local, i.e., only points within a certain
distance should influence the definition of the surface at a particular location. Locality is desirable
to enable local modifications without affecting the global shape of the surface. It also increases
the efficiency of the computations.

• Stability: The evaluation of the surface model should be stable and robust, even for non-uniform
sampling distributions. This means that the surface model needs to be adaptive, i.e dependent
on the local sampling density.

Methods for interpolating or approximating functions in IRd from a discrete set of scattered data values
have been studied extensively in the past. Examples include reconstruction using finite elements,
radial basis functions, and moving least squares (MLS) approximation [LS86]. The latter two are
advantageous because they are mesh-less, i.e., do not require a consistent tessellation of the function
domain.

Recently, Levin has introduced an extension of the moving least squares approximation to sur-
faces [Lev03]. This method can be used for computing local approximations of the surface represented
by a point cloud, and to evaluate the corresponding signed distance function. The idea is to locally
approximate the surface by polynomials that minimize a weighted least squares error at the data
points. Since the method is solely based on Euclidean distance between sample points, no additional
combinatorial structure on the point cloud is required.

Given a point set P , the MLS surface S(P) is defined as the stationary set of a projection operator
ΨP , i.e., S(P) = {x ∈ IR3|ΨP (x) = x}. The operator ΨP is defined by a two-step procedure:

• Compute a local reference plane H = {y ∈ IR3|y · n − D = 0} by minimizing the weighted sum
of squared distances ∑

i

(pi · n − D)2φ(‖pi − q‖), (1.2)

1.3. MOVING LEAST SQUARES SURFACES 7

where q is the orthogonal projection of x onto H . The reference plane defines a local coordinate
system with q at the origin. Let (ui, vi, fi) be the coordinates of the point pi in this coordinate
system, i.e., (ui, vi) are the parameter values in H and fi is the height of pi over H .

• Compute a bivariate polynomial p̃(u, v) that minimizes∑
i

(p(ui, vi) − fi)2φ(‖pi − q‖) (1.3)

among all p ∈ Π2
m.

The projection of x onto S(P) is then given as ΨP (x) = q + p̃(0, 0) ·n. Figure 1.3 illustrates the MLS
projection for a curve example in 2D. The left image shows a single projection of a point x onto the
MLS curve S(P) depicted on the right. In [Lev98] Levin analyzes the smoothness and convergence rate,

x

q

P

HΨP(x) S(P)

Figure 1.3: 2D illustration of the MLS projection.

which leads him to the conjecture that the smoothness of S(P) directly depends on the smoothness
of φ, i.e., if φ ∈ Ck then S(P) ∈ Ck. The kernel function φ thus controls the shape of the surface
S(P). A suitable choice for φ is the Gaussian, i.e., φ(x) = e−x2/h2

, where h is a global scale factor that
determines the kernel width. The Gaussian kernel has been used successfully in different applications
(see also [ABCO∗01, AA03b, FCOAS03]) and will be used in most of the algorithms discussed in these
notes.

The scale factor h can be understood as the characteristic scale of S(P), i.e., features that are
smaller than h will be smoothed out. In this sense the MLS projection operator implements a low-pass
filter, whose filter width can be controlled by the parameter h. Figure 1.4 shows an example an MLS
surface computed with different scale factors.

h=1 h=2 h=4

Figure 1.4: Smoothing effect of the MLS projection. The Gaussian kernel width has been doubled for
each image from left to right.

8 CHAPTER 1. LOCAL SURFACE ANALYSIS

Signed Distance Function

An important tool for local surface analysis is the signed distance function d+ : IR3 → IR that measures
for each point x ∈ IR3 the signed distance to the surface S. Using the MLS projection an approximate
distance function can be defined as d(x) = ‖x − ΨP (x)‖. If S is closed and the normals on S are
consistently oriented, e.g., always pointing outward of the surface (see Section 1.2), then the signed
distance function can be formulated as d+(x) = (x − ΨP (x)) · n, where n is the surface normal at
ΨP (x) with ‖n‖ = 1.

Computing the MLS Projection

The MLS projection method defined above consists of two steps: Computation of the local reference
plane H and computation of the least-squares polynomial p̃ with respect to that reference plane. The
former requires a non-linear optimization, since the distances used in the kernel function depend on
the projection q of the point of interest x onto the unknown reference plane. Alexa et al. [ABCO∗01]
use Powell iteration to compute D and n in Equation 1.2. A different approach is to try and estimate
directly, which determines n = (x−q)/‖x−q‖ and D = q·n. This can be achieved using a Newton-type
iteration based on a geometric gradient estimation as described in [PKG02].

Given the reference plane H , all points in P are projected into a local reference frame defined by H .
The computation of the polynomial p̃ is now a linear weighted least squares approximation, which can
be computed using normal equations. For example, a cubic polynomial leads to a linear system with 10
unknowns, which can be solved using a standard linear solver. Both computation of the reference plane
and the fitting polynomial require order O(n) computations, since they involve the entire point cloud.
However, since the value of the weight function drops quickly with distance, efficient approximation
schemes can be applied to significantly reduce the complexity of the computations. For example, Alexa
et al. [ABCO∗01] use a multi-pole scheme, where they cluster groups of points that are far away from
the point of interest into a single point and use this representative in the optimization. A different
approach is to only collect points within a sphere sr of radius r centered at x, such that the weight
for each point outside this sphere is so small that the influence in the least-squares optimization is
negligible. For example, given an MLS scale factor h, r can be set to 3h to yield an MLS weight of
less then 0.001 in Equations 1.2 and 1.3 for all points outside of sr.

Adaptive MLS Surfaces

So far the MLS surface approximation has been defined with a fixed Gaussian kernel width h. Finding
a suitable h can be difficult for non-uniformly sampled point clouds, however. A large scale factor
will cause excessive smoothing in regions of high sampling density. Even worse, if the filter kernel
is too small, only very few points will contribute significantly to Equations 1.2 and 1.3 due to the
exponential fall-off of the weight function. This can cause instabilities in the optimization because of
limited precision of the computations, which lead to wrong surface approximations.

Figure 1.5 shows an example of a locally uniformly sampled surface that cannot be approximated
adequately using a global scale factor. The surface is defined using a concentric sine wave whose
wavelength and amplitude gradually increases towards the rim of the surface (see Figure 1.5 (c)).
Similarly, the sampling density decreases towards the boundary as illustrated in Figures 1.5 (b) and (d).
Thus the surface detail is coupled with the sampling density, i.e., in regions of high sampling density
the surface exhibits high-frequency detail, whereas low-frequency detail is present where the surface
is sampled less densely. Figure 1.5 (e) to (g) shows reconstructions of the central section of this
surface using a regular sampling grid of 100× 100 sample points. The Gaussian used in Figure 1.5 (e)
causes substantial smoothing and leads to a significant loss of geometric detail in the central area. In
Figures 1.5 (f) and (g) the kernel width has been successively halved, which improves the approximation
in the central region but leads to increasing instability towards the boundary. To cope with this
problem, the MLS approximation needs to adapt to the local sampling density. In regions of high

1.3. MOVING LEAST SQUARES SURFACES 9

center centerrim rim

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (h)

Figure 1.5: A surface that cannot be reconstructed using a fixed kernel width. (a) surface, (b) sampling
pattern, (c) vertical cross-section of surface, (d), sample spacing, (e) - (g), MLS approximation of the
region shown in (h) using 10k sample points for different kernel widths, (i) adaptive MLS approxima-
tion, (j) estimate of the local sample spacing, where blue corresponds to low values, while red indicates
high values.

sampling density a small Gaussian kernel should be applied to accurately reconstruct potential high
geometric detail. If the sampling density is low, the kernel width needs to be bigger to improve the
stability of the approximation.

Given the continuous local sampling density estimate ρ of Section 1.1.1, the MLS approximation
can be extended in the following way: Instead of using a fixed scale factor h for all approximation, a
dynamically varying scale factor can be defined as h(x) = h/ρ(x), where x is the point that is to be
projected onto the MLS surface. Figure 1.5 (i) shows an example of an adaptive MLS surface using the
same input point cloud and sampling pattern as in (e) to (g). Observe that the high-frequency detail
is faithfully recovered within the limits of the resolution of the sampling grid and that no instabilities
occur at the surface boundary.

10 CHAPTER 1. LOCAL SURFACE ANALYSIS

Chapter 2

Surface Simplification
Mark Pauly

Point-sampled surfaces often describe complex geometric objects using millions or even billions of
sample points (see for example [LPC∗00]). Reducing the complexity of such data sets is one of the
key processing techniques for the design of scalable modeling and visualization algorithms. Surface
simplification provides a means to generate the required approximations of a given surface that use
fewer sample points than the original point model. These approximations should of course resemble
the original surface as closely as possible. This part of the notes describes various surface simplification
techniques for point-sampled models.

Formally, the goal of point-based surface simplification can be stated as follows: Let S be a manifold
surface defined by a point cloud P . Given a target sampling rate n < |P |, find a point cloud P ′ with
|P ′| = n such that the distance ε = d(S, S′) of the corresponding surface S′ to the original surface S
is minimal. Alternatively, a target distance ε can be specified and the goal is to find the point cloud
P ′ such that d(S, S′) ≤ ε and |P ′| is minimal.

These objectives require the definition of a metric d that measures the geometric distance between
the original and the simplified surface. As will be described in Section 2.4.1 a discrete surface distance
metric can be defined using the MLS projection operator.

In practice, finding the global optimum to the above problems is intractable [AS94]. Most existing
surface simplification techniques therefore use different heuristics based on local error measures. In
the following, three different approaches will be described and analyzed [PGK02]:

• Clustering methods split the point cloud into a number of disjoint subsets, each of which is
replaced by one representative sample (see Section 2.1).

• Iterative simplification successively contracts point pairs in a point cloud according to a quadric
error metric (Section 2.2).

• Particle simulation computes new sampling positions by moving particles on the point-sampled
surface according to inter-particle repulsion forces (Section 2.3).

These methods are extensions and generalizations of mesh simplification algorithms to point clouds,
targeted towards densely-sampled organic shapes stemming from 3D acquisition, iso-surface extraction
or sampling of implicit functions. They are less suited for surfaces that have been carefully designed
in a particular surface representation, such as low-resolution polygonal CAD data.

Furthermore, the goal is to design algorithms that are general in the sense that they do not require
any knowledge of the specific source of the data. For certain applications this additional knowledge
could be exploited to design more effective simplification algorithms, but this would also limit the
applicability of these methods.

11

12 CHAPTER 2. SURFACE SIMPLIFICATION

The algorithms described in this chapter differ in a number of aspects such as quality of the gen-
erated surfaces, computational efficiency and memory overhead. These features are discussed in a
comparative analysis in Section 2.4. The purpose of this analysis is to give potential users of point-
based surface simplification suitable guidance for choosing the right method for their specific applica-
tion. Real-time applications, for instance, will put particular emphasis on efficiency and low memory
footprint. Methods for creating surface hierarchies favor specific sampling patterns (e.g., [Tur01]),
while visualization applications require accurate preservation of appearance attributes, such as color
or material properties.

Earlier methods for simplification of point-sampled models have been introduced by Alexa et
al. [ABCO∗01] and Linsen [Lin01]. These algorithms create a simplified point cloud that is a true
subset of the original point set by ordering iterative point removal operations according to a surface
error metric. While both papers report good results for reducing redundancy in point sets, pure sub-
sampling unnecessarily restricts potential sampling positions, which can lead to aliasing artifacts and
uneven sampling distributions. To alleviate these problems, the algorithms described here re-sample
the input surface and implicitly apply a low-pass filter (e.g., clustering methods perform a local aver-
aging step to compute the cluster’s centroid). In [PG01], Pauly and Gross introduced a re-sampling
strategy based on Fourier theory. They split the model surface into a set of patches that are re-sampled
individually using a spectral decomposition. This method directly applies signal processing theory to
point-sampled geometry, yielding a fast and versatile point cloud decimation method. Potential prob-
lems arise due to the dependency on the specific patch layout and difficulties in controlling the target
model size by specifying spectral error bounds.

2.1 Clustering

Clustering methods have been used in many computer graphics applications to reduce the complexity
of 3D objects. Rossignac and Borrel, for example, used vertex clustering to obtain multi-resolution
approximations of complex polygonal models for fast rendering [RB93]. The standard strategy is to
subdivide the model’s bounding box into grid cells and replace all sample points that fall into the
same cell by a common representative. This volumetric approach has some drawbacks, however. By
using a grid of fixed size this method cannot adapt to non-uniformities in the sampling distribution.
Furthermore, volumetric clustering easily joins unconnected parts of a surface, if the grid cells are
too large. To alleviate these shortcomings, surface-based clustering techniques can be applied, where
clusters are build by collecting neighboring samples while regarding local sampling density. Two
general approaches for building clusters will be described in these notes. An incremental method,
where clusters are created by region-growing, and a hierarchical approach that splits the point cloud
into smaller subsets in a top-down manner [SG01]. Both methods create a set of clusters {Ci}, such
that for every point pj ∈ P there exists a unique cluster Ci with pj ∈ Ci. The simplified point cloud
is then obtained by replacing each cluster Ci by a representative sample, typically its centroid given
as

p̄i =
1

|Ci|
∑
j∈Ci

pj . (2.1)

2.1.1 Incremental Clustering

Starting from a random seed point pj ∈ P , a cluster C0 is built by successively adding nearest neigh-
bors. This incremental region-growing is terminated when the size of the cluster reaches a maximum
bound. Additionally, the maximum allowed variation σn of each cluster can be restricted (see Sec-
tion 1.2). This results in a curvature-adaptive clustering method, where more and smaller clusters
are created in regions of high surface variation. The next cluster C1 is then build by starting the
incremental growth with a new seed chosen from the neighbors of C0 and excluding all points of from

2.1. CLUSTERING 13

C0 the region-growing. This process is terminated when all sample points of P have been assigned to
a cluster in {Ci}.

Due to fragmentation, this method creates many clusters that did not reach the maximum size
or variation bound, but whose incremental growth was restricted by adjacent clusters. To obtain a
more even distribution of clusters, sample points of all clusters that did not reach a minimum size
and variation bound (typically half the values of the corresponding maximum bounds) are distributed
to neighboring clusters (see Figure 2.1). Note that this potentially increases the size and variation
of the clusters beyond the user-specified maxima. Figure 2.2 illustrates incremental clustering, where
oriented circular splats are used to indicate the sampling distribution.

C0 C1

C2

Figure 2.1: Fragmentation of incremental clustering. Gray dots correspond to sample points that are
assigned to clusters that reached the necessary size and variation bounds. All other points are stray
samples (blue dots) and will be attached to the cluster with closest centroid.

Figure 2.2: Uniform incremental clustering: The left image illustrates the corresponding clusters on
the original point set (296,850 points), while the right image shows the simplified point set (2,413
points).

14 CHAPTER 2. SURFACE SIMPLIFICATION

2.1.2 Hierarchical Clustering

An alternative method for computing the set of clusters recursively splits the point cloud using a binary
space partition. The point cloud P is split, if

• the size |P | is larger than the user specified maximum cluster size nmax, or

• the variation σn(P) is above a maximum threshold σmax.

The split plane is defined by the centroid of P and the eigenvector v2 of the covariance matrix of with
largest corresponding eigenvector (see also Figure 1.1). Hence the point cloud is always split along
the direction of greatest variation [SG01]. If the splitting criterion is not fulfilled, the point cloud P
becomes a cluster Ci. As shown in Figure 2.3, hierarchical clustering builds a binary tree, where each
leaf of the tree corresponds to a cluster. A straightforward extension to the recursive scheme uses a
priority queue to order the splitting operations [BW00, SG01]. While this leads to a significant increase
in computation time, it allows direct control over the number of generated samples, which is difficult
to achieve by specifying nmaxand σmax only. Figure 2.4 illustrates adaptive hierarchical clustering.

split plane

covariance
ellipsoid

centroid

v2

leaf node = cluster

Figure 2.3: Three intermediate steps of the hierarchical clustering algorithm. (a) 2D sketch, (b)
uniform hierarchical clustering for the Max Planck model.

2.2 Iterative Simplification

A different strategy for point-based surface simplification iteratively reduces the number of points using
an atomic decimation operator. This approach is very similar to mesh-based simplification methods
for creating progressive meshes [Hop96]. Decimation operations are usually arranged in a priority
queue according to an error metric that quantifies the error caused by the decimation. The iteration
is then performed in such a way that the decimation operation causing the smallest error is applied

2.3. PARTICLE SIMULATION 15

Figure 2.4: Adaptive hierarchical clustering: The left image illustrates the clusters on the original
point set, while the right image shows the simplified point set (1,831 points). The size of the splats on
the right image is proportional to the corresponding cluster size.

first. Earlier work [ABCO∗01, Lin01] uses simple point removal, i.e., points are iteratively removed
from the point cloud, resulting in a simplified point cloud that is a true subset of the original point set.
As discussed above, this can lead to undesirable artifacts, which can be avoided by using point-pair
contraction instead of point removal. This extension of the common edge collapse operator replaces
two points p1 and p2 by a new point p̄ implicitly applying a low-pass filter by computing a weighted
average of the contracted point pair.

To rate the cost of a contraction operation, an adaptation of the quadric error metric is used as
presented for polygonal meshes in [GH97]. The idea there is to approximate the surface locally by a
set of tangent planes and to estimate the geometric deviation of a mesh vertex v from the surface by
the sum of the squared distances to these planes. The error quadrics for each vertex v are initialized
with a set of planes defined by the triangles around that vertex and can be represented by a symmetric
4 × 4 matrix Qv. The quality of the collapse (v1,v2) → v̄ is then rated according to the minimum of
the error functional Qv̄ = Qv1 + Qv2 .

In order to adapt this technique to the decimation of unstructured point clouds, manifold surface
connectivity is replaced by the k-nearest neighbor relation (see Section 1.1). The error quadrics for
every point sample p are initialized by estimating a tangent plane Ei for every edge that connects p
with one of its neighbors pi. This tangent plane is spanned by the vectors ei = p−pi and bi = ei ×n,
where n is the estimated normal vector at p. After this initialization the point cloud decimation works
exactly like mesh decimation with the point p̄ inheriting the neighborhoods of its ancestors and and
being assigned the error functional Qp̄ = Qp1 +Qp2. Figure 2.5 shows an example of a simplified point
cloud created by iterative point-pair contraction.

2.3 Particle Simulation

In [Tur92], Turk introduced a method for re-sampling polygonal surfaces using particle simulation.
The desired number of particles is randomly spread across the surface and their position is equalized
using a point repulsion algorithm. Point movement is restricted to the surface defined by the individual
polygons to ensure an accurate approximation of the original surface. Turk also included a curvature
estimation method to concentrate more samples in regions of high curvature. Finally, the new vertices

16 CHAPTER 2. SURFACE SIMPLIFICATION

Figure 2.5: Iterative simplification of the Max Planck model from 296,850 (left) to 2,000 sample points
(middle). The right image shows all remaining potential point-pair contractions indicated as an edge
between two points. Note that these edges do not necessarily form a consistent triangulation of the
surface.

are re-triangulated yielding the re-sampled triangle mesh. This scheme can easily be adapted to point-
sampled geometry.

2.3.1 Spreading Particles

Turk initializes the particle simulation by randomly distributing points on the surface. Since a uniform
initial distribution is crucial for fast convergence, this random choice is weighted according to the area
of the polygons. For point-based models, this area measure can be replaced by a density estimate (see
Section 1.1.1). Thus by placing more samples in regions of lower sampling density (which correspond
to large triangles in the polygonal setting), uniformity of the initial sample distribution can ensured.

2.3.2 Repulsion

For repulsion the same linear force term is used as in [Tur92], because its radius of influence is finite,
i.e., the force vectors can be computed very efficiently as,

Fi(p) = k(r − ‖p− pi‖) · (p − pi), (2.2)

where Fi(p) is the force exerted on particle p due to particle pi, k is a force constant and r is the
repulsion radius. The total force exerted on p is then given as

F (p) =
∑
i∈Np

Fi(p), (2.3)

where Np is the neighborhood of p with radius r. Using a 3D grid data structure, this neighborhood
can be computed efficiently in constant time.

2.3.3 Projection

In Turk’s method, displaced particles are projected onto the closest triangle to prevent the particles
from drifting away from the surface. Since no explicit surface representation is available, the MLS
projection operator (see Section 1.3) is applied to keep the particles on the surface. However, applying

2.4. COMPARISON 17

this projection every time a particle position is altered is computationally too expensive. Therefore, a
different approach has been used: A particle p is kept close to the surface by simply projecting it onto
the tangent plane of the point p′ of the original point cloud that is closest to p. The full moving least
squares projection is only applied at the end of the simulation, which alters the particle positions only
slightly and does not change the sampling distribution noticeably.

2.3.4 Adaptive Simulation

Using the variation estimate of Section 1.2, more points can be concentrated in regions of high curvature
by scaling their repulsion radius with the inverse of the variation σn. It is also important to adapt the
initial spreading of particles accordingly to ensure fast convergence. This can be done by replacing the
density estimate ρ by ρ · σn. Figure 2.6 gives an example of an adaptive particle simulation.

Figure 2.6: Simplification by adaptive particle simulation. The left image shows the repulsion radius
on the original model determined from the surface variation estimate. Blue indicates a large radius,
while red indicates small radius. On the right, a simplified model consisting of 3,000 points is shown,
where the size of the splats is proportional to the repelling force of the corresponding particle.

Scaling of the repulsion radius also provides an easy means for user-controlled surface re-sampling.
For this purpose a painting tool can be used (see also Chapter 4) that allows the user to directly
paint the desired repulsion radius onto the surface and thus control the sampling distribution of the
re-sampled surface. As illustrated in Figure 2.7, particle simulation automatically creates smooth
transitions between areas of different sampling density.

2.4 Comparison

The previous sections have introduced different algorithms for point-based surface simplification. As
mentioned before, none of these methods attempts to find an optimal point distribution with respect
to a global distance metric, but rather uses some built-in heuristics to approximate such an optimum:

• Clustering methods try to partition the point cloud into clusters of equal size and/or surface
variation, assuming that each cluster describes an equally important part of the surface.

• Iterative simplification optimizes locally according to the quadric error metric.

18 CHAPTER 2. SURFACE SIMPLIFICATION

Figure 2.7: Uniform and user-controlled particle simulation. The model in the middle has been sim-
plified to 2,000 points in the left image using uniform repulsion forces. On the right, the repulsion
radius has been scaled down to 10% around the eye, leading to a higher concentration of samples in
this region.

• Particle simulation is based on the assumption that a minimum of the potential energy of the
particles minimizes the distance between original and re-sampled surface.

Since these heuristics are fundamentally different, the surfaces generated by these algorithms will differ
significantly in general. Thus, to evaluate and compare the quality of the simplified surfaces, some
generic technique for measuring the geometric distance between two point-sampled surfaces is required.
This distance measure should be general in the sense that no additional knowledge about the specific
method used to generate the simplified surface should be required. Further aspects in the evaluation
of the various simplification algorithms include sampling distribution of the simplified model, time and
space efficiency, and implementation issues.

2.4.1 Surface Error

Assume that two point clouds P and P ′ are given, which represent two surfaces S and S′, respectively.
The distance, or error, between these two surfaces is measured using a sampling approach similar to
the method applied in the Metro tool [CRS].

Let Q be a set of points on S and let d(q, S′) = minx∈S′d(q,x) be the minimum distance of a
point q ∈ Q to the surface S′. Then two error measures can be defined:

• Maximum error:
∆max(S, S′) = maxq∈Qd(q, S′) (2.4)

The maximum error approximates the two-sided Hausdorff distance of the two surfaces. Note that
the surface-based approach is crucial for meaningful error estimates, as the Hausdorff distance
of the two point sets P and P ′ does not adequately measure the distance between S and S′.

• Average error:

∆avg(S, S′) =
1
|Q|

∑
q∈Q

d(q, S′) (2.5)

The average error approximates the area-weighted integral of the point-to-surfaces distances.

2.4. COMPARISON 19

The point set Q is created using the uniform particle simulation of Section 2.3. This allows the user
to control the accuracy of the estimates 2.4 and 2.5 by specifying the number of points in Q. To obtain
a visual error estimate, the sample points of Q can be color-coded according to the point-to-surface
distance and rendered using a standard point rendering technique (see Figures 2.9 and 2.10).

d(q, S′) is calculated using the MLS projection operator Ψ with linear basis functions (see Sec-
tion 1.3). Effectively, Ψ approximates the closest point q′ ∈ S such that q = q′ + d · n for a q ∈ Q,
where n is the surface normal at q′ and d is the distance between q and q′ (see Figure 2.8). Thus the
point-to-surface distance d(q, S′) is given as d = ‖q− q′‖.

}S

S'

q

p

p'
q'

d

Figure 2.8: Measuring the distance between two surfaces S(red curve) and S′ (black curve) represented
by two point sets P (red dots) and P ′ (black dots). P is up-sampled to Q (blue dots) and for each
q ∈ Q a base point q′ ∈ S′ is found (green dots). The point-to-surface distance d(q, S′) is then equal
to d = ‖q − q′‖.

Figure 2.9: Measuring surface error. From left to right: original surface, simplified point cloud, surface
obtained by up-sampling the simplified point cloud, color-coded error, where blue corresponds to a
small error, while red indicates a large error.

Figure 2.10 shows visual and quantitative error estimates (scaled according to the objects bounding
box diagonal) for the David model that has been simplified from 2,000,606 points to 5,000 points.
Uniform incremental clustering has the highest average error. Since all clusters consist of roughly
the same number of sample points, most of the error is concentrated in regions of high curvature.
Adaptive hierarchical clustering performs slightly better, in particular in the geometrically complex
regions of the hair. Iterative simplification and particle simulation provide lower average error and
distribute the error more evenly across the surface. In general the iterative simplification method using
quadric error metrics has been found to produce the lowest average surface error. Clustering methods

20 CHAPTER 2. SURFACE SIMPLIFICATION

perform worse with respect to surface error, because they do not have the fine-grain adaptivity of
the iterative simplification and particle simulation methods. For example, consider the hierarchical
clustering algorithm as illustrated in Figure 2.3. The split planes generated in the earlier stages of the
recursion are propagated down to all subsequent levels. This means that once a top-level split plane
has been chosen, the method cannot adapt to local variations across that split plane, which leads to
increased surface error.

(a) uniform incremental clustering

∆avg
 = 6.32 * 10-4 ∆max

 = 0.0049

(b) adaptive hierarchical clustering

∆avg
 = 6.14 * 10-4 ∆max

 = 0.0046

(c) iterative simplification

∆avg
 = 5.43 * 10-4 ∆max

 = 0.0052

(d) particle simulation

∆avg
 = 5.69 * 10-4 ∆max

 = 0.0061

Figure 2.10: Surface Error for Michelangelos David simplified from 2,000,606 points to 5,000 points.

2.4.2 Sampling Distribution

Apart from the geometric error, the distribution of samples within the surface can be an important
aspect for certain applications. As mentioned before, all simplification algorithms described here create
a point cloud that is in general not a subset of the original sample set. Where this is required, methods
such as those presented by Alexa et al. [ABCO∗01] or Linsen [Lin01] are preferable.

For clustering methods the sampling distribution in the final model is closely linked to the sampling
distribution of the input model. In some applications this might be desirable, e.g., where the initial
sampling pattern carries some semantic information, such as in geological models. Other applications,
e.g., pyramid algorithms for multi-level smoothing [KCVS98] or texture synthesis [Tur01], require uni-
form sampling distributions, even for highly non-uniformly sampled input models. Here non-adaptive
particle simulation is most suitable, as it distributes sample points uniformly and independently of the
sampling distribution of the underlying surface. As illustrated in Figure 2.7, particle simulation also
provides a very easy mechanism for locally controlling the sampling density by scaling the repulsion
radius accordingly. While similar effects can be achieved for iterative simplification by penalizing cer-
tain point-pair contractions, particle simulation offers much more intuitive control. Note that none of
the surface simplification methods described above gives any guarantees that the resulting point cloud
satisfies specific sampling criteria (see eg [ABK98]). It is rather left to the application to specify a
suitable target sampling rate.

2.4.3 Computational Effort

Figure 2.11 shows computation times for the different simplification methods both as a function of
target model size and input model size. Due to the simple algorithmic structure, clustering methods
are by far the fastest simplification techniques discussed in these notes. Iterative simplification has
a relatively long pre-computing phase, where initial contraction candidates and corresponding error
quadrics are determined and the priority queue is set up. The simple additive update rule of the
quadric metric (see Section 2.2) make the simplification itself very efficient, however. In the current

2.4. COMPARISON 21

implementation particle simulation is the slowest simplification technique for large target model sizes,
mainly due to slow convergence of the relaxation step. A possible improvement is the hierarchical
approach introduced in [WH94]]. The algorithm would start with a small number of particles and
relax until the particle positions have reached equilibrium. Then particles are split, their repulsion
radius is adapted and relaxation continues. This scheme can be repeated until the desired number of
particles is obtained.

0
50

100
150
200
250
300
350
400
450
500

0 500 1000 1500 2000 2500 3000 3500

Incremental Clustering
Hierarchical Clustering
Iterative Simplification
Particle Simulation

Execution time (secs.)

input model size (*1000)

St.Matthew

David

Drag
on

Ige
a

Isi
sSa

nt
a

0

10

20

30

40

50

60

70

020406080100120140160180

Incremental Clustering
Hierarchical Clustering
Iterative Simplification
Particle Simulation

simplified model size (*1000)

Execution time (secs.)

(a) (b)

Figure 2.11: Execution times for simplification, measured on a Pentium 4 (1.8GHz) with 1Gb of main
memory: (a) as a function of target model size for the dragon model (435,545 points), (b) as a function
of input model size for a simplification to 1%.

It is interesting to note that for incremental clustering and iterative simplification the execution
time increases with decreasing target model size, while hierarchical clustering and particle simulation
are more efficient the smaller the target models. Thus the latter are more suitable for real-time
applications where the fast creation of coarse model approximations is crucial.

2.4.4 Memory Requirements and Data Structures

Currently all simplification methods discussed in these notes have been implemented in-core, i.e.,
require the complete input model as well as the simplified point cloud to reside in main memory.
For incremental clustering a balanced kd-tree is used for fast nearest-neighbor queries, which can be
implemented efficiently as an array [Sed98], requiring 4 ·n bytes, where n is the size of the input model.
Hierarchical clustering builds a BSP tree, where each leaf node corresponds to a cluster. Since the
tree is built by re-ordering the sample points, each node only needs to store the start and end index
in the array of sample points and no additional pointers are required. Thus this maximum number
of additional bytes is 2 · 2 · 4 · m, where m is the size of the simplified model. Iterative simplification
requires 96 bytes per point contraction candidate, 80 of which are used for storing the error quadric
(floating point numbers are stored in double precision, since single precision floats lead to numerical
instabilities). Assuming six initial neighbors for each sample point, this amounts to 6/2 · 96 · n bytes.
Particle simulation uses a 3D grid data structure with bucketing to accelerate the nearest neighbor
queries, since a static kd-tree is not suitable for dynamically changing particle positions. This requires
a maximum of 4 · (n + k) bytes, where k is the resolution of the grid. Thus incremental clustering,
iterative simplification and particle simulation need additional storage that is linearly proportional to
the number of input points, while the storage overhead for hierarchical clustering depends only on the
target model size.

22 CHAPTER 2. SURFACE SIMPLIFICATION

2.4.5 Comparison to Mesh Simplification

Figure 2.12 shows a comparison of point-based simplification and simplification for polygonal meshes.
In (a), the initial point cloud is simplified from 134,345 to 5,000 points using the iterative simplifica-
tion method of Section 2.2. The resulting point cloud has then been triangulated using the surface
reconstruction method of [GJ02]. In (b), the input point cloud has first been triangulated and the
resulting polygonal surface has then been simplified using the mesh simplification tool QSlim [GH97].
Both methods produce similar results in terms of surface error and both simplification processes take
approximately the same time (approx. 3.5 seconds). However, creating the triangle mesh from the
simplified point cloud took 2.45 seconds in (a), while in (b) reconstruction time for the input point
cloud was 112.8 seconds. Thus when given a large unstructured point cloud, it is much more efficient to
first do the simplification on the point data and then reconstruct a mesh (if desired) than to first apply
a reconstruction method and then simplify the triangulated surface. This illustrates that point-based
simplification methods can be very useful when dealing with large geometric models stemming from
3D acquisition.

(a) point-based simplification (b) mesh-based simplification

Figure 2.12: Comparison of point-based (a) and mesh-based (b) surface simplification. Error images
are shown on the left, final triangulated surfaces on the right.

Chapter 3

Shape Modeling
Mark Pauly

Modeling the shape of 3D objects is one of the fundamental techniques in digital geometry processing.
In this chapter two fundamental modeling approaches for point-sampled geometry will be discussed:
Boolean operations and free-form deformation [PKKG03]. While the former are concerned with build-
ing complex objects by combining simpler shapes, the latter defines a continuous deformation field
in space to smoothly deform a given surface. Boolean operations are most easily defined on implicit
surface representations, since the required inside-outside classification can be directly evaluated on
the underlying scalar field. On the other hand, free-form deformation is a very intuitive modeling
paradigm for explicit surface representations. For example, mesh vertices or NURBS control points
can be directly displaced according to the deformation field. For point-based representations, the hy-
brid structure of the MLS surface model can be exploited to integrate these two modeling approaches
into a unified shape modeling framework. Boolean operations can utilize the approximated signed dis-
tance function defined by the MLS projection (see Section 1.3) for inside-outside classification, while
free-form deformations operate directly on the point samples.

3.1 Boolean Operations

A common approach in geometric modeling is to build complex objects by combining simpler shapes
using boolean operations (see Figure 3.1). In constructive solid geometry (CSG) objects are defined
using a binary tree, where each node corresponds to a union, intersection, or difference operation and
each leaf stores a base shape. Operations such as ray-tracing, for example, are then implemented
by traversing this tree structure. More commonly, surfaces are defined as boundary representations
(BReps) of solids. Here boolean operations have to be evaluated explicitly, which requires an algorithm
for intersecting two surfaces. Computing such a surface-surface intersection can be quite involved,
however, in particular for higher order surfaces (see for example [KM97]).

As will be demonstrated below, the MLS projection operator can be used both for inside/outside
classification as well as for explicitly sampling the intersection curve. The goal is to perform a boolean
operation on two orientable, closed surfaces S1 and S2 that are represented by two point clouds P1

and P2, to obtain a new point cloud P3 that defines the resulting surface S3. P3 consists of two
subsets Q1 ⊆ P1 and Q2 ⊆ P2 plus a set of newly generated sample points that explicitly represent
the intersection curves. Thus in order to perform a boolean operation for point-sampled geometry, the
following techniques are required:

• a classification predicate to determine the two sets Q1 and Q2,

• an algorithm to find samples on the intersection curve, and

23

24 CHAPTER 3. SHAPE MODELING

• a rendering method that allows to display crisp features curves using point primitives.

A + B A - B A * B

Figure 3.1: Boolean operations of a sphere A and a cylinder B. The bottom row illustrates the sampling
distribution.

3.1.1 Classification

The goal of the classification stage is to determine which p ∈ P1 are inside or outside the volume
enclosed by the surface S2 and vice versa. For this purpose a classification predicate ΩP is defined
such that for x ∈ IR3

ΩP (x) =

{
1 x ∈ V

0 x /∈ V,
(3.1)

where V is the volume bounded by the MLS surface S represented by the point cloud P . Let y ∈ S
be the closest point on S from x. It is well-known from differential geometry that, if S is continuous
and twice differentiable, the vector x− y is aligned with the surface normal ny at y [dC76]. If surface
normals are consistently oriented to point outwards of the surface, then (x − y) · ny > 0, if and only
if x /∈ V . Since only a discrete sample P of the surface is given, the closest point y on S is replaced
by the closest point p ∈ P . Thus x is classified as outside,if (x− p) · np > 0, i.e., if the angle between
x − p and the normal np at is less than π/2 (see Figure 3.2, left image). This discrete test yields
the correct inside/outside classification of the point x, if the distance ‖x− p‖ is larger than the local
sample spacing ηp at p. If x is extremely close to the surface, the classification could fail, as illustrated
in the right image of Figure 3.2. In this case the exact closest point y ∈ S is approximated using the
MLS projection. Since for classification only an inside/outside test is of interest, the performance can
be significantly improved by exploiting local coherence: ΩP (x) = ΩP (x′) for all points x′ that lie in
the sphere around x with radius ‖x − p‖ − ηp. Thus the number of closest point queries and MLS
projections can be reduced drastically, in practice up to 90 percent.

Given the classification predicate Ω, the subsets Q1 and Q2 can be computed as shown in Ta-
ble 3.1. As Figure 3.3 illustrates, the resulting inside/outside classification is very robust and easily
handles complex, non-convex surfaces. Observe that boolean operations can create a large number of
disconnected components, i.e., can lead to a significant change in genus.

3.1. BOOLEAN OPERATIONS 25

x
np

ny
p
y

p

y

np

ny

x
>90

o

Figure 3.2: Inside/outside test. For x very close to the surface, the closest point p ∈ P can yield a
false classification (right image). In this case, x is classified according to its MLS projection y.

Q1 Q2

S1 ∪ S2 {p ∈ P1||ΩP2(p) = 0} {p ∈ P2||ΩP1(p) = 0}
S1 ∩ S2 {p ∈ P1||ΩP2(p) = 1} {p ∈ P2||ΩP1(p) = 1}
S1 − S2 {p ∈ P1||ΩP2(p) = 0} {p ∈ P2||ΩP1(p) = 1}
S2 − S1 {p ∈ P1||ΩP2(p) = 1} {p ∈ P2||ΩP1(p) = 0}

Table 3.1: Classification for Boolean operations.

A + B A * B

A - B B - A

Figure 3.3: Boolean operations of a blue dragon (A) and a white dragon (B).

3.1.2 Intersection Curves

Taking the union of Q1 and Q2 will typically not produce a point cloud that accurately describes the
surface S3, since the intersection curve of the two MLS surfaces S1 and S2 is not represented adequately.
Therefore, a set of sample points that lie on the intersection curve is explicitly computed and added
to Q1∪Q2, to obtain the point cloud P3. First, all points in Q1 and Q2 are found that are close to the

26 CHAPTER 3. SHAPE MODELING

intersection curve by evaluating the distance function induced by the MLS projection operator. From
all closest pairs (q1 ∈ Q1,q2 ∈ Q2) of these points a point q on the intersection curve is computed
using a Newton-type iteration. This is done as follows (see Figure 3.4 (a-d)): Let r be the point on
the intersection line of the two tangent planes of q1 and q2 that is closest to both points, i.e., that
minimizes the distance ‖r−q1‖+‖r−q2‖. r is the first approximation of q and can now be projected
onto S1 and S2 to obtain two new starting points q′

1 and q′
2 for the iteration. This procedure can be

repeated iteratively until the points q1 and q2 converge to a point q on the intersection curve. Due
to the quadratic convergence of the Newton iteration, this typically requires less than three iterations.
The sampling density estimation of Section 1.1 is used to detect whether the sampling resolution of

intersection curve

Q1 Q2

S1 S2
q1 q2

r

q2'q1' r'

(a) (b)

(c) (d)

Figure 3.4: Sampling the intersection curve. (a) closest pairs of points in Q1 and Q2, (b) first estimate
r, (c) re-projection, (d) second estimate r′.

the two input surfaces differs significantly in the vicinity of the intersection curve. To avoid a sharp
discontinuity in sampling density, the coarser model is up-sampled in this area to match the sampling
density of the finer model, using the dynamic sampling method of Section 3.2.2.

Note that the above Newton scheme also provides an easy mechanism for adaptively refining the
intersection curve. A simple subdivision rule is evaluated to create a new starting point for the Newton
iteration, e.g., the average of two adjacent points on the curve. Applying the iteration then yields a
new sample on the intersection curve (see Figure 3.5).

(a) (c)(b)

Figure 3.5: Adaptive refinement. (a) original intersection curve, (b) new point inserted in region of
high curvature, (c) final, adaptively sampled intersection curve.

3.1. BOOLEAN OPERATIONS 27

3.1.3 Rendering Sharp Creases

The accurate display of the intersection curves requires a rendering technique that can handle sharp
creases and corners. For this purpose an extension of the surface splatting technique presented
in [ZPvG01] is used [ZRB∗04]. In this method, each sample point is represented by a surfel, an
oriented elliptical splat that is projected onto the screen to reconstruct the surface in image space. A
point on the intersection curve can now be represented by two surfels that share the same center, but
whose normals stem from either one of the two input surfaces. During scan-conversion, each of these
surfels is then clipped against the plane defined by the other to obtain a piecewise linear approximation
of the intersection curve in screen space (see Figure 3.6). This concept can easily be generalized to
handle corners as shown in Figure 3.6 (e).

(d)(b)

(a) (e)

(c)

Figure 3.6: Rendering the intersection curve. (a) mutual clipping of two surfels on the intersection
curve, (b) boolean differences on the bunny model, (c) zoom of the intersection curves, (d) sampling
distribution, where samples on the intersection curve are rendered using two red half ellipses, (e) an
example of a corner.

Figure 3.7 shows an example of a difficult boolean operation of two identical cylinders that creates
two singularities. While the classification and intersection curve sampling work fine, the rendering
method produces artifacts. This is due to numerical instabilities, since the clipping planes of two
corresponding surfels are almost parallel. However, such cases are rare in typical computer graphics
applications, e.g., digital character design. As such, the algorithms for boolean operations are less
suited for industrial manufacturing applications, where robust handling of degenerated cases is of
primary concern.

3.1.4 Particle-Based Blending

As illustrated in Figure 3.1, boolean operations typically produce sharp intersections. In some applica-
tions it is more desirable to create a smooth blend between the two combined surface parts. To smooth
out the sharp creases created by boolean operations an adaptation of oriented particles [ST92] can be
used. The idea is to define inter-particle potentials in such a way that the minimum of the global
potential function yields a smooth surface that minimizes curvature. Summing up these potentials
yields a particle’s total potential energy. From this potential energy one can derive the positional and
rotational forces that are exerted on each particle and compute its path of motion under these forces.

28 CHAPTER 3. SHAPE MODELING

Figure 3.7: A difficult boolean difference operation that creates two singularities.

Additionally, an inter-particle repulsion force is applied to equalize the particle distribution (see
also Section 2.3). All forces are scaled with a smooth fall-off function that measures the distance to
the intersection curve to confine the particle simulation to a small area around the intersection curve
without affecting other parts of the surface.

Figure 3.8 shows the particle-based blending for the intersection of two planes, where the degree
of smoothness can be controlled by the number of iterations of the simulation. In Figure 3.9, a more
complex blending operation is shown. A union operation of three tori has created numerous sharp
intersection curves as shown in (a). These can be blended simultaneously as illustrated in (b) using
the particle simulation described above. The same blending technique can of course also be applied to
the intersection and difference operations described in Section 3.1.

3.2 Free-Form Deformation

Apart from composition of surfaces using boolean operations, many shape design applications require
the capability to modify objects using smooth deformations [Bar84, SP86]. These include bending,
twisting, stretching, and compressing of the model surface. For this purpose a point-based free-form
deformation tool is described that allows the user to interactively deform a surface by specifying a
smooth deformation field [PKKG03].

The user first defines a deformable region χd ⊂ S on the model surface and marks parts of this region
as a control handle. The surface can then be modified by pushing, pulling or twisting this handle. These
user interactions are translated into a continuous tensor-field, which for each point in the deformable
region defines a translatory and rotational motion under which the surface deforms. The tensor-field
is based on a continuously varying scale parameter t ∈ [0, 1] that measures the relative distance of a
point from the handle. The closer a point is to the handle, the stronger will the deformation be for
that point. More precisely, let χ1 ⊂ χd be the handle, also called one-region, and χ0 = S − χd the
zero-region, i.e., all points that are not part of the deformable region. For both zero- and one-region
distance measures d0 and d1,respectively, are defined as

dj(p) =

{
0 p ∈ χj

minq∈χj ‖p− q‖ p /∈ χj

(3.2)

for j = 0, 1. From these distance measures the scale parameter t is computed as t = β(d0(p)/(d0(p) +
d1(p))), where β : [0, 1] → [0, 1] is a continuous blending function with β(0) = 0 and β(1) = 1. Thus t =
0 for p ∈ χ0 and t = 1 for p ∈ χ1. Using this scale parameter, the position of a point p ∈ χd after the

3.2. FREE-FORM DEFORMATION 29

initial configuration 10 iterations

20 iterations 50 iterations

100 iterations 200 iterations

Figure 3.8: Particle simulation to blend two intersecting planes. Gray particles participate in the
simulation, blue points indicate the fixed boundary.

Figure 3.9: Boolean union of three tori. Left: Reconstruction with sharp feature curves, right: Feature
curves have been blended using particle simulation.

deformation is determined as p′ = F (p, t), where F is a deformation function composed of a translatory
and a rotational part. The deformation function can be written as F (p, t) = FT (p, t)+FR(p, t), where

• FT (p, t) = p + t · v with v a translation vector and

• FR(p, t) = R(a, t ·α) ·p, where R(a, α) is the matrix that specifies a rotation around axis a with
angle α.

Figure 3.10 shows a translatory deformation of a plane where the translation vector v is equal to
the plane normal. This figure also illustrates the effect of different choices of the blending function

30 CHAPTER 3. SHAPE MODELING

β. In Figure 3.11, two rotational deformations of a cylinder are shown, while a combination of both
translatory and rotational deformations is illustrated in Figure 3.16.

To perform a free-form deformation the user only needs to select the zero- and one-regions and
choose an appropriate blending function. She can then interactively deform the surface by displacing
the handle with a mouse or trackball device, similar to [KCVS98]. This gives the method great
flexibility for handling a wide class of free-form deformations, while still providing a simple and intuitive
user interface. The deformable region and the handle can be specified using a simple paint tool that
allows the user to mark points on the surface by drawing lines, circles, rectangles, etc. and applying
flood filling and erasure. The system also supports pre-defined and user-editable selection stencils,
which can be used to create embossing effects (Figure 3.12).

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 3.10: Deformations of a plane for three different blending functions. Left: Blending function,
middle: Color-coded scale parameter, where blue indicates the zero region (t = 0) and red the one-
region (t = 1), right: Final textured surface.

3.2.1 Topology Control

An important issue in shape design using free-form deformation is the handling of self-intersections.
During deformation, parts of the deformable region can intersect other parts of the surface, which leads
to an inconsistent surface representation. A solution to this problem requires a method for detecting
and resolving such collisions.

3.2. FREE-FORM DEFORMATION 31

a2

a1

(a) (b) (c) (d)

Figure 3.11: Rotational deformations of a cylinder. (a) original, (b) color-coded scale parameter, (c)
rotation around axis a1, (d) rotation around axis a2.

Figure 3.12: Embossing effect. The Siggraph label on the top left has been converted to a selection
stencil using simple image processing tools. This stencil can then be mapped to a surface, where
blue color corresponds to the zero-region and red to the one-region. Subsequent deformation yields an
embossing effect as shown on the right.

Collision Detection

Similar to boolean operations, this requires an inside/outside classification to determine which parts
of the surface have penetrated others. Thus the classification predicate defined in Section 3.1 can be
used for this purpose. First, the closest point p ∈ χ0 to each sample point p ∈ χd is computed. This
defines an empty sphere sp around p with radius ‖p − q‖. If the point p only moves within this
sphere during deformation, it is guaranteed not to intersect with the zero-region (see Figure 3.13). So
additionally to exploiting spatial coherence as for boolean classification, this approach also exploits the
temporal coherence induced by the smooth deformation field. The classification predicate Ω has to be
re-evaluated only when p leaves sp, which at the same time provides a new estimate for the updated
sphere sp.

Collision Handling

There are different ways to respond to a detected collision. The simplest solution is to undo the last
deformation step and recover the surface geometry prior to the collision. Alternatively, the penetrating
parts of the surface can be joined using a boolean union operation to maintain the validity of the surface.

Figure 3.14 shows an editing session, where a deformation causes a self-intersection. After perform-
ing a boolean union, a sharp intersection curve is created as shown in (d). In the context of free-form
deformation it is often more desirable to create a smooth transition between the two combined surface
parts. Thus the particle simulation described in Section 3.1.4 can be used to blend the intersection
region.

32 CHAPTER 3. SHAPE MODELING

s2

s1

p2

p1

χ0

χ0

χd

Figure 3.13: Temporal coherence for collision detection during deformation. The points p1 and p2 can
move with the spheres s1 and s2, resp., without intersecting the zero-region.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.14: Interactive modeling session with collision detection. (a - b) intermediate steps of the
deformation, (c) collision detection, where the blue part has been detected as self-intersecting, (d),
boolean union with sharp intersection curve, (e - f), particle-based blending with different fall-off
functions.

3.2.2 Dynamic Sampling

Large deformations may cause strong distortions in the distribution of sample points on the surface
that can lead to an insufficient local sampling density. To prevent the point cloud from ripping apart
and maintain a high surface quality, new samples have to be included where the sampling density

3.2. FREE-FORM DEFORMATION 33

becomes too low. This requires a method for measuring the surface stretch to detect regions of
insufficient sampling density. Then new sample points have to be inserted and their position on the
surface determined. Additionally, scalar attributes, e.g., color values or texture coordinates, have to
be preserved or interpolated.

Measuring Surface Stretch

The first fundamental form known from differential geometry [dC76] can be used to measure the local
distortion of a surface under deformation. Let u and v be two orthogonal tangent vectors of unit
length at a sample point p. The first fundamental form at p is defined by the 2 × 2 matrix[

u2 u · v
u · v v2

]
(3.3)

The eigenvalues of this matrix yield the minimum and maximum stretch factors and the corresponding
eigenvectors define the principal directions into which this stretching occurs. When applying a defor-
mation, the point p is shifted to a new position p′ and the two tangent vectors are mapped to new
vectors u′ and v′. Local stretching implies that u′ and v′ might no longer be orthogonal to each other
nor do they preserve their unit length. The amount of this distortion can be measured by taking the
ratio of the two eigenvalues of Equation 3.3 (local anisotropy) or by taking their product (local change
of surface area). When the local distortion becomes too strong, new samples have to be inserted to
re-establish the prescribed sampling density. Since Equation 3.3 defines an ellipse in the tangent plane
centered at p with the principal axes defined by the eigenvectors and eigenvalues, p can be replaced
by two new samples p1 and p2 that are positioned on the main axis of the ellipse (see Figure 3.15).

Deformation RelaxationSplitting

(a) (b) (c)

Figure 3.15: Dynamic sampling. Top row: Deformation of a plane. (a) local stretching: blue corre-
sponds to zero stretch, while red indicates maximum stretch, (b) surface after re-sampling, (c) sampling
distribution. Bottom row: illustration of point insertion.

34 CHAPTER 3. SHAPE MODELING

3.2.3 Filter Operations

Whenever a splitting operation is applied, both the geometric position and the scalar function values
for the newly generated sample points have to be determined. Both these operations can be described
as the application of a filtering operator: A relaxation filter determines the sample positions while an
interpolation filter is applied to obtain the function values.

Relaxation

Introducing new sample points through a splitting operation creates local imbalances in the sampling
distribution. To obtain a more uniform sampling pattern, a relaxation operator is applied that moves
the sample points within the surface (see Figure 3.15). Similar to [Tur92] (see also Section 2.3) a
simple point repulsion scheme is used with a repulsion force that drops linearly with distance. This
confines the radius of influence of each sample point to its local neighborhood, which allows very
efficient computation of the relaxation forces. The resulting displacement vector is then projected into
the points tangent plane to keep the samples on the surface.

Interpolation

Once the position of a new sample point p is fixed using the relaxation filter, the associated function
values need to be determined. This can be achieved using an interpolation filter by computing a local
average of the function values of neighboring sample points. The relaxation filter potentially moves
all points of the neighborhood of p. This tangential drift leads to distortions in the associated scalar
functions. To deal with this problem a copy of each point that carries scalar attributes is created and
its position is fixed during relaxation. In particular, for each sample that is split a copy is maintained
with its original data. These points will only be used for interpolating scalar values, they are not part
of the current geometry description. Since these samples are dead but their function values still live,
they are called zombies. Zombies will undergo the same transformation during a deformation operation
as living points, but their positions will not be altered during relaxation. Thus zombies accurately
describe the scalar attributes without distortions. Therefore, zombies are only used for interpolation,
while for relaxation only living points are considered. After an editing operation is completed, all
zombies will be deleted from the representation.

Figure 3.16 illustrates this dynamic re-sampling method for a very large deformation that leads to
a substantial increase in the number of sample points. While the initial plane consists of 40,000 points,
the final model contains 432,812 points, clearly demonstrating the robustness and scalability of the
method in regions of extreme surface stretch.

3.2.4 Down-Sampling

Apart from lower sampling density caused by surface stretching, deformations can also lead to an
increase in sampling density, where the surface is squeezed. It might be desirable to eliminate samples
in such regions while editing, to keep the overall sampling distribution uniform. However, dynamically
removing samples also has some drawbacks. Consider a surface that is first squeezed and then stretched
back to its original shape. If samples get removed during squeezing, surface information such as color
will be lost, which leads to increased blurring when the surface is re-stretched. Thus instead of dynamic
sample deletion, an optional garbage collection is performed at the end of the editing operation. To
reduce the sampling density, any of the simplification methods of Chapter 2 can be used.

3.2. FREE-FORM DEFORMATION 35

Zombie

New Samples

Deformation RelaxationSplitting Deletion of zombiesInterpolation

Figure 3.16: A very large deformation using a combination of translatory and rotational motion.
The left column shows intermediate steps with the top image indicating zero- and one-regions. Each
point of the surface carries texture coordinates, which are interpolated during re-sampling and used
for texturing the surface with a checkerboard pattern. The bottom row illustrates this interpolation
process, where the function values are indicated by vertical lines.

36 CHAPTER 3. SHAPE MODELING

Chapter 4

Appearance Modeling
Mark Pauly

The previous chapter has discussed boolean operations and free-form deformation for point-based
shape modeling. Apart from the mere geometric shape, which is described by the position of the
sample points in space, 3D objects also carry a number of additional attributes, such as color or
material properties, that determine the overall appearance of the surface. In this chapter, a number of
tools and algorithms for interactively editing surface appearance attributes will be discussed [ZPKG02].
These methods can be understood as a generalization of common photo editing techniques from 2D
images to 3D point-sampled surfaces.

4.1 Overview

This section gives an overview of the appearance modeling functionality for point-sampled models
implemented in Pointshop3D (www.pointshop3d.com) by defining a surface editing operation on an
abstract level. A brief analysis of 2D photo editing identifies three fundamental building blocks of an
interactive editing operation: Parameterization, re-sampling, and editing. It will be shown that these
concepts can be extended from 2D photo editing to 3D surface editing. For this purpose an operator
notation will be introduced that allows a wide variety of editing operations to be defined in a unified
and concise way. The fundamental differences between functional images and manifold surfaces lead
to different implementations of these operators, however.

4.1.1 2D Photo Editing

A 2D image I can be considered as a discrete sample of a continuous image function containing image
attributes such as color or transparency. Implicitly, the discrete image always represents a continuous
image, yet image editing operations are typically performed directly on the discrete samples. A general
image editing operation can be described as a function of a given image I and a brush image B. The
brush image is used as a generic tool to modify the image I. Depending on the considered operation
it may be interpreted as a paint brush or a discrete filter, for example.

The editing operation involves the following steps: First, a parameter mapping Φ has to be found
that aligns the image I with the brush B. For example, Φ can be defined as the translation that
maps the pixel at the current mouse position to the center of B. Next, a common sampling grid for
I and B has to be established, such that there is a one-to-one correspondence between the discrete
samples. This requires a re-sampling operator Ψ that first reconstructs the continuous image function
and then samples this function on the common grid. Finally, the editing operator Ω combines the
image samples with the brush samples using the one-to-one correspondence established before. The

37

38 CHAPTER 4. APPEARANCE MODELING

resulting discrete image I ′ is then obtained using a concatenation of the operators described above as
I ′ = Ω(Ψ(Φ(I)), Ψ(B)). The goal is to generalize this operator framework to irregular point-sampled
surfaces, as illustrated in Figure 4.1. Formally, this can be done by replacing the discrete image I by
a point cloud P that represents a surface S. The discrete sample points can be considered as a direct
extension of image pixels, carrying the attributes shown in Figure 4.4 (a). This motivates the term
surfel, short for surface element, similar to pixel, which stands for picture element (see also [ZPvG01]).
The transition from image to surface has the following effects on the individual terms of the operator
notation introduced above:

Parameterized patch Φ(S)

Resampled patch Ψ(Φ(S))

Brush Ψ(B)

Modified patch

Ψ

Ω

Original point-based surface

Φ

Modified point-based surface

Figure 4.1: Overview of the operator framework for point-based surface editing.

Parameterization Φ

For photo editing, the parameter mapping Φ is usually specified by a simple, global 2D to 2D affine
mapping, i.e., a combination of translation, scaling, and rotation. Mapping a manifold surface onto a
2D domain is much more involved, however. Therefore, the user interactively selects subsets, or patches,
of S that are parameterized individually. In general, such a mapping leads to distortions that cannot
be avoided completely. Section 4.2 will describe two algorithms for computing a parameterization that
correspond to two different interaction schemes: Parameterization by orthogonal projection for inter-
active brush painting, and a method to compute a constrained minimum distortion parameterization.
The latter allows the user to control the mapping in an intuitive manner by setting corresponding

4.1. OVERVIEW 39

feature points both on the parameter plane and the surface, respectively.

Re-sampling Ψ

Images are usually sampled on a regular grid, hence signal processing methods can be directly applied
for re-sampling. However, the sampling distribution of surfaces is in general irregular, requiring al-
ternative methods for reconstruction and sampling. For this purpose a parameterized scattered data
approximation can be used that reconstructs a continuous function from the samples (see [ZPKG02]).
This continuous function can then be evaluated at the desired sampling positions.

Editing Ω

Once the parameterization is established and re-sampling has been performed, all computations take
place on the discrete samples in the 2D parameter domain. Hence the full functionality of photo editing
systems can be applied for texturing and texture filtering. Additionally, operations that modify the
geometry, e.g., sculpting or geometry filtering, can easily be incorporated into the system. As will be
described in Section 4.1.3, all of these tools are based on the same simple interface that specifies an
editing tool by a set of bitmaps and few additional parameters. For example, a sculpting tool is defined
by a 2D displacement map, an alpha mask and an intrusion depth.

4.1.2 Interaction Modes

The appearance attributes of a point-sampled model can be manipulated using two different interaction
schemes:

Brush Interaction

In this interaction mode the user moves a brush device over the surface and continuously triggers editing
events, e.g., painting operations (see Figure 4.2). The brush is positioned using the mouse cursor and
aligned with the surface normal at the current interaction point. This means that the parameterization
is continuously and automatically re-computed and re-sampling is performed for each editing event. A
complete editing operation is then performed using a fixed brush image.

parameter plane

sample points
orthogonal projection

Figure 4.2: Brush interaction: Left: Cursor movement, middle: Parameterization by orthogonal pro-
jection onto the brush plane (2D for illustration), right: Painted surface.

Selection Interaction

Here the user first selects a subset of the surface called a patch and defines the parameter mapping
interactively by imposing point constraints (see Figure 4.3). Based on this fixed parameterization,

40 CHAPTER 4. APPEARANCE MODELING

various editing operations can be applied. Hence parameterization and re-sampling operators are
evaluated once, while different editing operators can be applied successively.

Figure 4.3: Selection Interaction: Left: Feature points on parameter plane, middle: Feature points on
surface, right: Final texture-mapped surface.

4.1.3 Brush Interface

All appearance modeling operations are based on a generic brush interface (see also Figure 4.1). A
brush is defined as a M × N grid B, where each grid point bmn stores all the surface appearance
attributes shown in Figure 4.4 (a). Each individual bitmap, e.g., the diffuse color image {cmn}, defines
a brush channel that represents a corresponding continuous attribute function, similar to the surface
samples P that represent the continuous surface S. Additionally, each brush channel carries an alpha
mask that can be used for blending the brush coefficients with the surface coefficients as described
in Section 4.4. The channel {dmn} defines a bitmap of displacement coefficients that can be used for
sculpting operations, such as normal displacement or carving. Figure 4.4 shows a typical brush that
combines texture, geometry and material properties to support flexible editing operations.

4.2 Parameterization

This section describes two different methods to compute a parameterization for a point-sampled surface
that correspond to the two interaction schemes defined above. For brush interaction the parameter
mapping will be computed by a simple orthogonal projection, while an optimization method is ap-
plied for computing a constrained minimum distortion parameterization for selection interactions (see
also [ZPKG02]). To define the parameterization Φ, the user first selects a subset S′ of the surface S,
described by a point cloud P ′ ⊆ P . A mapping Φ : P ′ → [0, 1] × [0, 1] is then computed that assigns
parameter coordinates ui to each point pi ∈ P ′.

4.2.1 Orthogonal Projection

A simple method for computing a parameter mapping is dimension reduction. 2D parameter values
for a point pi ∈ P ′ can be obtained by simply discarding one of the three spatial coordinates. With an
appropriate prior affine transformation, this amounts to an orthogonal projection of the sample points
onto a plane. This plane can either be specified by the user, or computed automatically according
to the distribution of the sample points, e.g., as a least-squares fit. Using covariance analysis (see
Section 1.2), the normal vector of the parameter plane would then be chosen as the eigenvector of
the covariance matrix with smallest corresponding eigenvalue. Figure 4.5 shows examples of texture-
mapping operations using a parameterization obtained by orthogonal projection. In general, such a
mapping will exhibit strong distortions and discontinuities, leading to inferior editing results. However,

4.2. PARAMETERIZATION 41

diffu
se color

norm
al d

isplacement

specular c
olor

ambient c
oeffic

ient

diffu
se coeffic

ient

specular c
oeffic

ient

shininess

{ bmn } = { cmn, dmn, smn, ka,mn, kd,mn, ks,mn, smn}

(a)

(b)

Figure 4.4: Brush interface: (a) a brush specified by a set of bitmaps, (b) the brush applied to a
surface. The zooms on the right show the surface under different illumination to illustrate how the
reflectance properties have been modified.

if the surface patch is sufficiently small, distortions will be small too and no discontinuities will occur.
Thus orthogonal projection is a suitable parameterization method for brush interactions, where the
parameter plane is defined by the surface normal at the tool cursor and the surface patch is defined
by the projection of the brush onto the surface, as shown in Figure 4.2.

(a) (b)

Figure 4.5: The Max Planck model parameterized by orthogonal projection from the front. (a) texture
mapped surface, (b) the color-coded first derivative of the parameterization measures the stretch of
the mapping, where blue corresponds to minimum, red to maximum stretch.

4.2.2 Constrained Minimum Distortion Parameterization

As Figure 4.5 illustrates, orthogonal projection leads to strong distortions in the parameterization.
Furthermore, it provides little support for interactive control of the mapping by the user. Consider the

42 CHAPTER 4. APPEARANCE MODELING

typical texture mapping operation shown in Figure 4.3. The goal is to map a 2D image of a human
face onto a laser-range scan of a different face. It is certainly desirable to minimize the distortion
of the mapping. Equally important, however, is a good correspondence of feature points, e.g., the
tip of the nose in the image should be mapped onto the tip of the nose on the surface. Thus some
mechanism is needed that allows the user to define corresponding feature points both in the image
and on the surface. These point-to-point correspondences are then incorporated as constraints into an
optimization that computes the mapping [Lev01]. First, an objective function for a continuous surface
patch is defined that penalizes high distortion as well as the approximation error of the feature point
constraints. A suitable discretization then yields a system of linear equations that can be solved using
conjugate gradient methods.

Objective Function

A continuous parameterized surface SX can be defined by a mapping

X : [0, 1]× [0, 1] → SX ⊂ IR3,

which for each parameter value u = (u, v) ∈ [0, 1] × [0, 1] determines a point x = X(u) ∈ SX on the
surface SX . The mapping X defines a parameterization of the surface SX . Let U = X−1 be the inverse
mapping, i.e., a function that assigns parameter coordinates u to each point x ∈ SX . The distortion
of the parameter mapping can be measured using the cost function

Cdist(X) =
∫

H

γ(u)du,

where H = [0, 1]× [0, 1],

γ(u) =
∫

θ

(
∂2

∂r2
Xu(θ, r)

)2

dθ,

and

Xu(θ, r) = X

(
u + r

[
cos θ
sin θ

])
.

γ(u) is defined as the integral of the squared second derivative of the parameterization in each radial
direction at a parameter value u using a local polar re-parameterization Xu(θ, r). If γ(u) vanishes,
the parameterization is arc length preserving, i.e., defines a polar geodesic map at u. Additionally,
a set M of point-to-point correspondences can be specified such that a point pj of the point cloud
corresponds to a point uj in the parameter domain. These point pairs serve as constraints that are
approximated in a least-squares sense using the cost function

Cfit(X) =
∑

j

(X(uj) − pj)2.

The two cost functions Cdist and Cfit can be combined into the objective function C(X) = Cfit(X) +
β ·Cdist(X), where β is an additional parameter that allows to control the relative weight of the fitting
error and distortion measure. This derivation of the objective function follows Levy’s method for
triangle meshes [Lev01]. By replacing the mesh connectivity with a point neighborhood relation as
defined in Section 1.1, a discrete formulation of the objective function can be derived for point-sampled
surfaces. This requires a discretization of the directional derivatives in γ(u), which can be obtained
using divided differences on a discrete set of normal sections. For a complete derivation, the reader is
referred to [ZPKG02]. When substituting X for U , the discrete objective function finally has the form

C̃(U) =
∑

j

(
bj −

∑
i

aj,iui

)2

= ‖b− Au‖2, (4.1)

4.2. PARAMETERIZATION 43

where u is the vector of all unknowns ui = (ui, vi)T . The coefficients aj,i result from the discretization
of the second derivatives and the bj are derived from the fitting constraints. Using normal equations,
the linear least squares problem of Equation 4.1 can be transformed to a sparse system of linear
equations, which can be solved with conjugate gradient methods.

Nested Iteration

A standard approach for improving the convergence of iterative conjugate gradient solvers is nested
iteration. The system is first solved on a coarse representation and this solution is propagated to the
finer representation. Since each unknown in Equation 4.1 corresponds to a sample of the model point
cloud, a coarser representation can be obtained using the clustering methods described in Section 2.1.
This scheme can be recursively extended to a hierarchy of nested approximations as illustrated in
Figure 4.6. Special care has to be taken to define the constraints on the coarser levels, as the original
point pair correspondences were defined on the finest level. A simple solution is to just propagate the
constraint to the centroid of the cluster it belongs to. If a point carries more than one constraint at a
certain level, all but one of the constraints are removed on this level to maintain the injectivity of the
mapping.

simplify by

clustering

simplify by

clustering

simplify by

clustering

set up

linear system

solve

equations

set up

linear system

solve

equations

set up

linear system

solve

equations

set up

linear system

solve

equations

Figure 4.6: Hierarchy used for nested iteration. The top-row shows the clusters color-coded on the
original point cloud.

44 CHAPTER 4. APPEARANCE MODELING

Discussion

Figure 4.7 shows the influence of the parameter β in the objective function C(X). As the images
illustrate, it allows the user to define a trade-off between the approximation of the fitting constraints
and the smoothness of the mapping. Floater has presented a different approach to compute a parame-
terization for point-sampled surfaces using shape preserving weights [FR01]. In his method the system
of equations is obtained by expressing each unknown as a convex combination of its neighbors. This
means that the boundary of the surface has to be mapped onto a convex region in parameter space. In
the above formulation no such constraints have been imposed, which allows the method to be used as
an extrapolator. Note that at least three point-pair correspondences are required to define the map-
ping. Figure 4.8 shows two examples of a texture mapping operation using the minimum distortion

Figure 4.7: Influence of the weighting parameter β of the objective function. The top images illustrate
the feature point correspondences, the bottom row show the resulting mapping for different values of
β.

parameterization. As described in Section 4.1.2, this type of operation requires the user to interactively
define corresponding feature points both on the 2D image and on the 3D point-sampled surface, as
shown on the left. Figure 4.9 illustrates the distortion of these parameterizations by mapping a regular
square grid texture onto the surface.

4.3 Re-Sampling

The mapping function Φ defines a parameter value ui for each pi ∈ P ′ of the selected surface patch
S′. To create a one-to-one correspondence between the surface samples pi ∈ P ′ and the brush samples
bmn ∈ B, either the surface or the brush needs to be re-sampled. Note that the brush samples are
implicitly parameterized, i.e., each bmn has parameter coordinates (m/M, n/N) ∈ [0, 1].

4.3.1 Re-sampling the Brush

Re-sampling the brush is performed by evaluating the continuous brush function represented by the
discrete brush bitmaps at the parameter values of the sample points of the surface patch. The most

4.3. RE-SAMPLING 45

Figure 4.8: Texture mapping using the minimum distortion parameterization. The images on the left
show the corresponding feature points. On the right, the final textured surface is shown.

Figure 4.9: Illustration of local stretching for the texture mapping examples of Figure 4.8. The image
on the right shows the color-coded first derivative of the parameterization, where blue denotes minimum
absolute value and red denotes maximum absolute value.

simple reconstruction uses piecewise constant basis functions which amounts to nearest neighbor sam-
pling. As Figure 4.10 (a) illustrates, this can lead to severe aliasing artifacts, which can be reduced by
applying a Gaussian low-pass filter to the brush function prior to sampling. This filtering is analogous

46 CHAPTER 4. APPEARANCE MODELING

to the elliptical weighted average (EWA) filtering used in point rendering and the reader is referred
to [ZPvG01] for further details. Note that if the model surface is sampled substantially less densely
than the brush, Gaussian filtering will lead to significant blurring. If the brush contains high-frequency
detail, this information cannot be accurately mapped onto the surface without introducing new samples
into the model.

Figure 4.10: Re-sampling the brush on a model consisting of 40,880 points. (a) nearest-neighbor
sampling, (b) - (d) Gaussian filtering with increasing filter width.

4.3.2 Re-sampling the Surface

To overcome the problem of information loss when re-sampling the brush, an alternative sampling
method re-samples the surface to exactly map the M ×N sampling grid of the brush. For this purpose
a parameterized scattered data approximation is used. This method reconstructs a continuous surface
from the discrete sample points, which can then be sampled at the parameter values of the brush
samples. The idea is to compute local polynomial fitting functions at each pi ∈ P ′ that are blended
using a mapping from the local parameter plane of the fitting functions into the global parameter space
of the surface (see [ZPKG02] for details). Figure 4.11 shows various examples of editing operations
where the surface has been re-sampled according to the sampling grid of the brush. If the sampling
resolution of the brush decreases, surface detail is lost. This is complementary to the situation described
above, where brush information was lost due to insufficient sampling density of the model surface.

Figure 4.11: Re-sampling the surface. The sampling resolution of the brush varies from 500 × 500
pixels in (a), 250 × 250 pixels in (b), 100× 100 pixels in (c), 50× 50 to pixels in (d).

4.4 Surface Editing

The re-sampling method of Section 4.3 provides samples of the surface SΨ = Ψ(Φ(S)) and of the
brush BΨ = Ψ(B) with identical sampling distribution. Thus the two can be combined by applying
an editing operator directly on the discrete coefficients. Note that both SΨ and BΨ represents all the

4.4. SURFACE EDITING 47

sample attributes shown in Figure 4.4 (a). Depending on the intended functionality, an editing operator
will then manipulate a subset of these surface attributes, such as diffuse color or spectral coefficient.
In the following some of the editing operators will be described that have been implemented in the
Pointshop3D system. A prime will denote the manipulated attributes, e.g., x′

i describes the position
of a sample of the edited surface. Quantities that stem from the brush are marked with a bar, e.g., c̄i

is the diffuse color of a brush sample. All other variables are part of the surface function.

4.4.1 Painting

Painting operations modify surface attributes by alpha-blending corresponding surface and brush co-
efficients. For example, the diffuse color can be altered by applying the painting operator on the color
values, i.e., c′i = ᾱi · ci + (1 − ᾱi) · c̄i, where ᾱi is an alpha value specified in the brush function (see
Figure 4.12 (a)). Similarly, painting can be applied to other attributes.

(a) (b)

Figure 4.12: Editing operations on the Chameleon (101,685 points): (a) texture painting, where the
flowers shown on the left have been alpha-blended onto the surface, (b) texture filtering, where an
oil-paint filter has been applied to the left half of the model.

4.4.2 Sculpting

The system supports two variations of sculpting operations that modify the geometry of the surface.
The first option is to apply normal displacements to the sample positions, i.e., x′

i = xi + d̄i · ni, where
d̄i is a displacement coefficient given in the brush function. As illustrated in Figure 4.14 (a), this type
of editing operation is particularly suitable for embossing or engraving. On the other hand, a carving
operation is motivated by the way artists work when sculpting with clay or stone. It implements
a ”chisel stroke” that removes parts of the surface in the fashion of a boolean intersection (see also
Section 3.1). The editing tool is defined using a least squares plane fitted at the touching point of the
tool cursor and an intrusion depth. The new sample position is then given by

x′
i =

{
b̄i + d̄i · n̄ ‖xi − b̄i < d̄i

xi otherwise,

where b̄i is the base point on the reference plane and n̄ is the plane normal (see Figure 4.13). Carving
operations can also be applied to rough surfaces (see Figure 4.14 (b)), where normal displacements fail
due to the strong variations of the surface normals.

48 CHAPTER 4. APPEARANCE MODELING

4.4.3 Filtering

Filtering is a special kind of editing operation that modifies the samples of the original model using
a user-specified filter function f . First, the filter function is applied to SΨ yielding Sf

Ψ = f(SΨ).
Then filtered and original attributes are combined using the brush function for alpha blending. As an
example, consider texture filtering, i.e., c′i = ᾱ · cf

i + (1 − ᾱ) · ci, where cf
i is the filtered color value

(illustrated in Figure 4.12 (b)). The filter function is usually implemented as a discrete convolution.
Therefore, arbitrary discrete linear filters can be implemented by simply choosing the appropriate
kernel grid. Filters can be applied to any attribute associated with a sample, e.g., color, normal, or
distance from the reference plane for geometric offset filtering. Note that filtering with large kernels
can be implemented efficiently in the spectral domain, similar to [PG01].

original samples

new samples
original samples

new samples

n
_

bi

_

Figure 4.13: Normal displacements vs. carving. (a) brush image, (b) normal displacement, (c) carving.

Figure 4.14: Editing operations. Normal displacements (left) and carving on a rough surface (right).

Chapter 5

Pointshop3D
Mark Pauly

This chapter describes Pointshop3D, a software platform for point-based shape and appearance mod-
eling [ZPKG02, PKKG03]. Most of the algorithms presented in this course have been implemented
and analyzed within this framework. A brief description of the main components is followed by a more
detailed discussion on data structures for spatial queries.

5.1 System Overview

Pointshop3D is designed as a modular software platform and implementation test-bed for point-based
graphics applications. It provides a set of kernel functions for loading, storing, modifying, and rendering
point-sampled surfaces. Most of the functionality is implemented in various tools and plug-ins that
are briefly discussed below. A more detailed description of the software architecture and user interface
can be found in the online documentation available at www.pointshop3d.com.

5.1.1 Tools and Plug-ins

The interaction metaphor of Pointshop3D is similar to common photo editing tools. Figure 5.1 shows
a screen shot of the main user interface, where the most important interaction tools are annotated:

• The color picker tool allows to extract sample attributes from the model.

• The selection tool is used to select parts of the surface, e.g., to create a patch for selection
interactions.

• The navigation tool controls the camera position and the relative orientation of different objects
with respect to the world coordinate system.

• The brush tool implements brush interactions.

• The deformation tool supports free-form deformation as described in Section 3.2.

• The eraser tool allows to remove parts of the surface.

• The filter tool implements various filters (see Section 4.4.3).

• The lighting tool controls the position of the light source.

• The parameterization tool allows the specification of point constraints for computing a minimum
distortion parameterization (see Section 4.2.2).

49

50 CHAPTER 5. POINTSHOP3D

• The template tool is a place-holder that supports easy extensions of the system by adding new
tools.

• The What’s this? tool provides an online help.

• The color chooser tool allows to select an rgb color from a palette for brush painting.

• The brush builder is used to create new brushes (see Figure 4.4) for brush interactions.

• The brush chooser stores a list of pre- or user-defined brushes used for brush interactions.

• The tool settings viewer displays additional parameters of the currently active tool.

• The preview renderer icon activates the preview renderer.

• The object chooser selects a certain object within the scene.

Color Choser Tool

Selection Tool

Navigation Tool

Brush Tool

Deformation Tool

Eraser Tool

Filter Tool

Lighting Tool

Parameterization Tool

Template Tool

Color Picker Tool

What's this? Tool

Brush Builder

Brush Chooser

Tool Settings Viewer

Preview Renderer

Object Chooser

Figure 5.1: The main Pointshop3D interface.

Each of these tools can be configured as described in the online documentation of Pointshop3d.
Additional functionality, e.g., a watermarking method, is implemented as plug-ins that are accessible
via the main menu. Tools and plug-ins are implemented as dynamic link libraries and can be loaded
dynamically at run-time, which makes the system easily extensible.

5.2. DATA STRUCTURES 51

5.2 Data Structures

The central computational primitive required by the algorithms described in the previous chapters is
closest points query: Given a point x ∈ IR3, find the point(s) pi ∈ P , such that ‖x − pi‖ is minimal.
Closest point queries occur in two different contexts:

• The neighborhood relation defined in Section 1.1 is based on the k-closest points of a sample in
P . In this case the query point is part of the set of point samples, i.e., x ∈ P . The number of
required closest points ranges from 8 to 20 for, e.g., normal estimation (Section 1.2), to up to
about 200 for multi-scale variation estimation for feature classification [PKG03].

• Spatial queries are also required for the MLS projection (Section 1.3), boolean classification
(Section 3.1), and collision detection (Section 3.2.1). Here the query point can be arbitrary, i.e.,
in general, and typically only a single closest point is required.

The performance of the algorithms implemented in Pointshop3D critically depends on efficient data
structures for such queries. The requirements for these data structures vary considerably, depending on
the specific context. For example, multi-scale feature classification [PKG03] applies nearest neighbor
queries with varying neighborhood size for static objects, while particle simulation (Section 2.3) requires
closest point queries for completely dynamic point distributions. Other operations, e.g., the filtering
methods applied during free-form deformation (Section 3.2) operate on models with dynamic point
locations, but mostly constant neighborhood relations.

In the design of appropriate data structures, one is typically faced with trade-off between efficient
construction/updating of the data structure and fast query response. In Pointshop3D two main data
structures, kd-trees and dynamic grids, have been implemented. Kd-trees feature fast query response,
yet perform poorly when new points need to be inserted or existing points updated or removed.
Dynamic grids provide efficient updating at the expense of slower query response times.

5.2.1 Kd-Trees

Bentley introduced kd-trees as a generalization of binary search trees in higher dimensions [Ben75].
A number of improvements have been proposed since then, see for example [FBF77, Spr91]. Kd-trees
are binary trees, where each node is associated with a cubical cell and a plane orthogonal to one of
the three coordinate axes. The plane splits the cell into two sub-cells, which correspond to two child
nodes in the tree. The cells of the leaf nodes are called buckets and represent the whole space.

In Pointshop3D, kd-trees are built in a recursive top-down approach, where the sliding-midpoint
rule is used to determine the split axis (see [AF00]). Average time complexity for the construction of
the tree is O(n log n) for a point cloud consisting of n sample points. To compute the k-closest points
from a given location x ∈ IR3, the tree is traversed from the root until the bucket containing x is found.
From this leaf node, the k-closest points are determined by back-trapping towards the root. Finding
the k-closest points takes O(k + log n) time on average, insertions and updates of single points require
time O(log n) [Sam90].

5.2.2 Dynamic Grids

Dynamic grids have been implemented as a data structure for closest point queries in dynamic settings.
The idea is to subdivide space into a regular grid of cubical cells, each of which stores a list of all points
that fall within its cell [Hec97]. Range queries can be performed by scan-converting the query sphere to
determine all cells that potentially contain samples located within the query range. Each of these cells
is then processed by testing all points of the cell against the query sphere. To accommodate variations
of point density over time, the grid can be re-structured dynamically as described in [Hec97].

Finding the correct grid cell for a point x ∈ IR3 that lies within the object’s bounding box takes
O(1) time. Thus a dynamic grid for n samples can be constructed in O(n) time and the insertion and

52 CHAPTER 5. POINTSHOP3D

Data Structure Construction Insertion Update Query
List O(n) O(1) O(1) O(n)
Grid O(n) O(1) O(1) O(m)

Kd-tree O(n log n) O(log n) O(log n) O(log n)

Table 5.1: Average time complexity for spatial data structures used for closest point queries. n is the
number of points in P , m is the average number of points in each grid cell. Update refers to a change
of sample position or a sample point deletion.

updating of a single point takes O(1) time. Since each grid cell stores a linear list of points, the average
time complexity of a query is O(m), where m is the average number of points per cell. Note that a
linear list of all sample points is a special case of a grid data structure consisting of only one grid cell.

Figure 5.2 shows a 2D illustration of the kd-tree and grid data structures. Table 5.1 compares
the average time complexity of these data structures for typical operations used in the algorithms of
Pointshop3D.

1

2
3

4

5

67

8

(a) (b)

Figure 5.2: Spatial data structures for closest point queries, where the red dot indicates the query
location and the black circle shows the query sphere. (a) kd-tree, where the numbers indicate the
order in which the buckets are traversed, (b) dynamic grid, where the gray cells mark the intersection
with the query sphere.

5.2.3 Neighborhood Caching

For many processing methods the k-closest points of a sample point have to be determined to establish
local neighborhood relations (see Section 1.1). Often the point cloud is static or semi-dynamic, i.e.,
point locations vary but neighborhood relations remain (mostly) constant. If neighborhood relations
have to be used multiple times, the efficiency of the computations can be improved considerably by
caching these neighborhoods. Each sample point explicitly stores a list of its k-nearest neighbors
computed using a kd-tree or a dynamic grid. This defines an adjacency graph that is comparable to
a connectivity graph for triangle meshes. Unlike the latter, the adjacency graph does not define a
consistent manifold surface, however. Thus the construction of the adjacency graph is significantly
more efficient than the reconstruction of a triangle mesh from a given point cloud.

5.2.4 Spatial Queries in Pointshop3D

This section discusses the use of the data structures described above in the algorithms of Pointshop3D.

5.2. DATA STRUCTURES 53

Surface Simplification

Spatial data structures for surface simplification have already been discussed in Section 2.4.4. Incre-
mental clustering (Section 2.1.1) uses kd-trees for nearest neighbor queries, since the point cloud is
static. Hierarchical clustering (Section 2.1.2) builds a BSP-tree and does not require closest point
queries. Iterative simplification (Section 2.2) builds an explicit adjacency graph using kd-trees during
initialization, which is maintained during simplification. Particle simulation (Section 2.3) makes use
of dynamic grids, since individual particles experience significant drifts along the surface, which leads
to dynamically changing point neighborhoods.

Boolean Classification

For boolean operations (Section 3.1), two static objects are positioned relative to each other by the
user. Since the resulting affine transformation can be directly incorporated into the query, no updates
of point locations are required. Thus closest point queries for classification are implemented using
kd-trees.

Free-Form Deformation

For free-form deformation (Section 3.2) closest point queries are required to evaluate the distance
functions dj (see Equation 3.2) for computing the scale factor t. This is done once at the beginning
of the modeling session, so no dynamic updates are required while the user interactively deforms the
surface. Thus a kd-tree is most suitable for scale factor computation.

Collision Detection

For collision detection (Section 3.2.1) the classification predicate Ω (see Equation 3.1) has to be eval-
uated for dynamically varying point locations. Since performance is most critical, the algorithm only
detects collisions of the deformable region with the zero-region. Since the latter is described by a
static point cloud, kd-trees can be used for efficient closest point queries. Thus the collision detection
algorithm in its current version cannot detect collisions of the deformable region with itself.

Particle-Based Blending

The blending method based on oriented particles (Section 3.1.4) uses the dynamic grid data structure.
Since the particle simulation is mostly used to smooth out the sharp creases created by boolean
operations (see Figure 3.9), particles experience a small spatial displacement during the simulation.
Thus the neighborhood relations typically remain constant for a certain number of iterations. This
can be exploited to improve the performance by caching the neighborhoods as discussed above.

Dynamic Re-sampling

When dynamically sampling the surface during deformation (Section 3.2.2), the relaxation and inter-
polation filters require nearest neighbor information for samples in the deformable region. Since these
samples vary in position and new samples are inserted dynamically, kd-trees cannot be used efficiently.
The dynamic grid data structure has also been found to be unsuitable, due to the relatively high
cost of a spatial query. The relaxation filter shifts the point locations only slightly, which typically
does not change the neighborhood relation significantly. Therefore, neighborhoods are computed at
the beginning of the interaction and cached during deformation (see above). When new points are
inserted, neighborhoods have to be updated, however. Since new samples are created by splitting an
existing sample into two, the corresponding neighborhood relations can be propagated from the parent
sample to its child samples. To maintain neighborhood consistency, each sample stores bidirectional
neighborhood relations, i.e., a list of its neighbors and a list of samples of which itself is a neighbor.

54 CHAPTER 5. POINTSHOP3D

Bibliography

[AA03a] Adamson A., Alexa M.: Approximating and intersecting surfaces from points. In
Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing
(2003), Eurographics Association, pp. 230–239.

[AA03b] Adamson A., Alexa M.: Ray tracing point set surfaces. In Proceedings of Shape
Modeling International (2003).

[ABCO∗01] Alexa M., Behr J., Cohen-Or D., Fleishman S., Levin D., Silva C. T.: Point
set surfaces. In Proceedings of the conference on Visualization ’01 (2001).

[ABK98] Amenta N., Bern M., Kamvysselis M.: A new Voronoi-based surface reconstruction
algorithm. Computer Graphics 32, Annual Conference Series (1998), 415–421.

[AF00] Arya S., Fu H.-Y. A.: Expected-case complexity of approximate nearest neighbor
searching. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms (2000), Society for Industrial and Applied Mathematics, pp. 379–388.

[AS94] Agarwal P. K., Suri S.: Surface approximation and geometric partitions. In Proceed-
ings of the fifth annual ACM-SIAM symposium on Discrete algorithms (1994), Society for
Industrial and Applied Mathematics, pp. 24–33.

[Bar84] Barr A. H.: Global and local deformations of solid primitives. In Proceedings of the 11th
annual conference on Computer graphics and interactive techniques (1984), ACM Press,
pp. 21–30.

[Ben75] Bentley J. L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18, 9 (1975), 509–517.

[BW00] Brodsky D., Watson B.: Model simplification through refinement. In Graphics Inter-
face (May 2000), pp. 221–228.

[CRS] Cignoni P., Rocchini C., Scopigno R.: Metro: Measruring error on simplififed
surfaces. In Computer Graphics Forum, pp. 167–174.

[dC76] do Carmo M. P.: Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.

[FBF77] Freidman J. H., Bentley J. L., Finkel R. A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw. 3, 3 (1977), 209–226.

[FCOAS03] Fleishman S., Cohen-Or D., Alexa M., Silva C. T.: Progressive point set surfaces.
ACM Transactions on Graphics (TOG) 22, 4 (2003), 997–1011.

[FR01] Floater M. S., Reimers M.: Meshless parameterization and surface reconstruction.
Comput. Aided Geom. Des. 18, 2 (2001), 77–92.

55

56 BIBLIOGRAPHY

[Gar99] Garland M.: Quadric-Based Polygonal Surface Simplification. PhD thesis, Computer
Science Department, Carnegie Mellon University, 1999.

[GH97] Garland M., Heckbert P. S.: Surface simplification using quadric error metrics. In
Proceedings of the 24th annual conference on Computer graphics and interactive techniques
(1997), ACM Press/Addison-Wesley Publishing Co., pp. 209–216.

[GJ02] Giesen J., John M.: Surface reconstruction based on a dynamical system. Computer
Graphics Forum 21 (2002).

[HDD∗94] Hoppe H., DeRose T., Duchamp T., Halstead M., Jin H., McDonald J.,

Schweitzer J., Stuetzle W.: Piecewise smooth surface reconstruction. Computer
Graphics 28, Annual Conference Series (1994), 295–302.

[Hec97] Heckbert P. S.: Fast Surface Particle Repulsion. Tech. rep., CMU Computer Science,
1997.

[Hop96] Hoppe H.: Progressive meshes. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques (1996), ACM Press, pp. 99–108.

[Jol86] Jolliffe I.: Principal Component Analysis. Springer Verlag, 1986.

[KCVS98] Kobbelt L., Campagna S., Vorsatz J., Seidel H.-P.: Interactive multi-resolution
modeling on arbitrary meshes. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques (1998), ACM Press, pp. 105–114.

[KM97] Krishnan S., Manocha D.: An efficient surface intersection algorithm based on lower-
dimensional formulation. ACM Trans. Graph. 16, 1 (1997), 74–106.

[Lev98] Levin D.: The approximation power of moving least-squares. Math. Comput. 67, 224
(1998), 1517–1531.

[Lev01] Levy B.: Constrained texture mapping for polygonal meshes. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques (2001), ACM Press,
pp. 417–424.

[Lev03] Levin D.: Mesh-independent surface interpolation. Geometric Modeling for Scientific
Visualization (2003).

[Lin01] Linsen L.: Point Cloud Representation. Tech. rep., Faculty of Computer Science, Uni-
versity of Karlsruhe, 2001.

[LPC∗00] Levoy M., Pulli K., Curless B., Rusinkiewicz S., Koller D., Pereira L., Ginz-

ton M., Anderson S., Davis J., Ginsberg J., Shade J., Fulk D.: The digital
michelangelo project: 3d scanning of large statues. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques (2000), ACM Press/Addison-
Wesley Publishing Co., pp. 131–144.

[LS86] Lancaster P., Salkauskas K.: Curve and Surface Fitting: An Introduction. Academic
Press, 1986.

[PG01] Pauly M., Gross M.: Spectral processing of point-sampled geometry. In Proceedings of
the 28th annual conference on Computer graphics and interactive techniques (2001), ACM
Press, pp. 379–386.

[PGK02] Pauly M., Gross M., Kobbelt L. P.: Efficient simplification of point-sampled surfaces.
In Proceedings of the conference on Visualization ’02 (2002), pp. 163–170.

BIBLIOGRAPHY 57

[PKG02] Pauly M., Kobbelt L., Gross M.: Multiresolution Modeling of Point-Sampled Geom-
etry. Tech. rep., ETH Zurich, Department of Computer Science, 2002.

[PKG03] Pauly M., Keiser R., Gross M.: Multi-scale feature extraction on point-sampled
surfaces. Computer Graphics Forum 22 (2003), 281–289.

[PKKG03] Pauly M., Keiser R., Kobbelt L. P., Gross M.: Shape modeling with point-sampled
geometry. ACM Transactions on Graphics (TOG) 22, 3 (2003), 641–650.

[RB93] Rossignac J., Borrel P.: Multi-resolution 3d approximations for rendering complex
scenes. In Modeling in Computer Graphics (1993), pp. 455–465.

[Sam90] Samet H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[Sed98] Sedgewick R.: Algorithms in C++ (3rd edition). Addison Wesley, 1998.

[SG01] Shaffer E., Garland M.: Efficient adaptive simplification of massive meshes. In Pro-
ceedings of the conference on Visualization ’01 (2001), IEEE Computer Society, pp. 127–
134.

[SP86] Sederberg T. W., Parry S. R.: Free-form deformation of solid geometric models. In
Proceedings of the 13th annual conference on Computer graphics and interactive techniques
(1986), ACM Press, pp. 151–160.

[Spr91] Sproull R. L.: Refinements of nearest-neighbour searching in k-dimensional trees. Al-
gorithmica 6 (1991), 579–589.

[ST92] Szeliski R., Tonnesen D.: Surface modeling with oriented particle systems. In Pro-
ceedings of the 19th annual conference on Computer graphics and interactive techniques
(1992), ACM Press, pp. 185–194.

[Tur92] Turk G.: Re-tiling polygonal surfaces. In Proceedings of the 19th annual conference on
Computer graphics and interactive techniques (1992), ACM Press, pp. 55–64.

[Tur01] Turk G.: Texture synthesis on surfaces. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques (2001), ACM Press, pp. 347–354.

[WH94] Witkin A. P., Heckbert P. S.: Using particles to sample and control implicit sur-
faces. In Proceedings of the 21st annual conference on Computer graphics and interactive
techniques (1994), ACM Press, pp. 269–277.

[ZPKG02] Zwicker M., Pauly M., Knoll O., Gross M.: Pointshop 3d: an interactive system
for point-based surface editing. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (2002), ACM Press, pp. 322–329.

[ZPvG01] Zwicker M., Pfister H., van Baar J., Gross M.: Surface splatting. In Proceedings
of the 28th annual conference on Computer graphics and interactive techniques (2001),
ACM Press, pp. 371–378.

[ZRB∗04] Zwicker M., Rsnen J., Botsch M., Dachsbacher C., Pauly M.: Perspective
accurate splatting. In Proceedings of Graphics Interface (2004).

	Point-Based Computer Graphics
	Contents
	Section 1: Introduction
	Section 2: Course Schedule
	Section 3: Talk Slides
	Introduction
	Acquisition of Point-Sampled Geometry and Appearance
	Point-Based Surface Representation
	Point-Based Rendering
	Efficient Data Structures
	Spectral Processing of Point-Sampled Geometry
	Surface Simplification
	Pointshop3D
	Shape Modeling
	Section 4: Supplemental Material
	Surface Representation with Point Samples
	Shape Modeling withPoints

