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Abstract. 
As GPU-powered special effects become more sophisticated, it 

becomes harder to create and manage effect interaction using the 

fairly primitive shading languages.  This difficulty also 

introduces a workflow problem: artists design effects but only 

programmers can implement them, making it impossible for them 

to work asynchronously. 

To address these problems we present abstract shade trees 

and heuristic algorithms that operate over them.  The trees allow 

designers to easily create effects by connecting primitives such as 

cube mapping and modulation. These primitives publish 

semantically rich types that encapsulate notions like vector basis 

and normalization. The algorithms employ these published types 

to automatically infer atomic and compound connectors between 

the primitives, and generate code for the tree.  We also describe a 

visual editing environment for specifying the trees. 

Our data structure and algorithms spare designers from having 

to specify low-level programming details, enabling them to 

experiment without depending on programmers. The algorithms 

ensure that the generated code will be free of type-mismatches, a 

problem in previous shade trees. The abstract shade tree can also 

naturally express high-level features like shadows and reflections 

whose implementations overlap; that cross-cutting has made 

them difficult to modularize in more traditional ways. In 

experiments, the generated shaders are as efficient as hand-

written code. 

 

1. Introduction 
Modern GPUs manifest another turn of Ivan Sutherland’s “Wheel 

of Reincarnation,” where general-purpose and specialized 

hardware alternate as the best implementation technology. 

Unfortunately, 3D graphics and other media APIs have not kept 

pace with the move to general-purpose graphics processors. 

Current APIs for GPU programming avoid layering, moving the 

application logic very close to the hardware. The emphasis is on 

time-to-market, not on robustness, and exposing hardware 

peculiarities is seen as a competitive advantage. With the notable 

exception of Sh [McCool02], current shading languages for 

GPUs (e.g., GLSL) lack language mechanisms for encapsulation, 

modularity, and abstraction. This makes it very hard to create and 

maintain long GPU programs. Because GPUs are inherently 

digital signal processors with long pipelines, no stack, and 

unusual performance limitations on random access to memory, it 

is likely that they will remain difficult to program by hand. 

The lack of abstraction also makes it difficult for artists to 

create new graphics effects without learning how to program. It 

leads to a close coupling between programmers and artists: The 

artist tells the programmer what the effect should be, the 

programmer writes the shader, the artist changes the 

requirements, the programmer revises the code, etc. Once a 

special effect is created, it is practically impossible to re-use it 

within the framework of another shader without substantial 

additional coding. This stifles productivity and creativity. 

One way to address this problem is to look for other 

representations of shader programs. Cook [1984] introduced the 

notion of modular shading components with shade trees. He 

describes a system in which basic shading blocks (called atoms) 
are nodes linked by edges representing variables. Because 

shaders have one output (the pixel color) and many inputs, the 

root of the tree represents the output and the leaves are the input. 

Shade Tree                                                         Abstract Shade Tree 

                

Figure 1: A conventional Shade Tree (left) for a “Bumpy Glass” shader. The equivalent Abstract Shade Tree (right) is simpler; the 
compiler automatically handles vector basis conversion, normalization, and parameter linkage. Outline bubbles mark underlying 
features (clockwise from top): parallax mapping, refraction, and refraction. Note that the Fresnel term cross-cuts two features.  
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Shade trees weren’t originally intended for visual 

programming. In fact, Cook’s shaders were authored as code and 

converted to trees as a post-process for compilation. Abram and 

Whitted [1990] invert this paradigm with Building Block 

Shaders. Their visual programming tool represents shaders 

directly as directed acyclic graphs (DAGs), which are essentially 

Cook's trees extended with side effects and confluent paths. 

Although they are DAGs, we continue to refer to visual shader 

representations as trees in deference to the original work. 

Implementations of this idea have since been created for 

today's GPUs and hardware programming languages 

[Borau04][Unreal06]. Figure 1 (left) shows an example shader 

for “bumpy glass” that combines the rendering effects of parallax 

mapping, Fresnel reflection, and Fresnel refraction. The 

immediate advantage over source code is that shade trees 

encourage experimentation and are more approachable by non-

programmers [Abram90]. Programmers implement a library of 

carefully optimized atoms, which non-programmers combine to 

build shaders. A visual editor with preview capabilities offers the 

advantage that artists can experiment without understanding the 

inner workings of the atoms. 

Figure 1 also demonstrates some of the drawbacks of shade 

trees. Although this example uses a simple shader, the tree 

appears complicated and visually cluttered. The tree also contains 

atoms that an artist might not understand, like 

TangentToObjectSpace and ExtendToHomogeneousVector. Most 

importantly, there is the potential for type mismatches between 

input and output arguments of atoms. When they introduced the 

first visual shade tree editor, Abram and Whitted [1990] noted:  

 

“One problem with [the Building Block] graphical shading 

language is the potential for type mis-matching.”  

 

In fact, this problem extends beyond storage types to 

interface mismatches between atoms, e.g., assumptions like “the 

light vector has unit length” or “RGB values are pre-multiplied 

by the alpha channel.” It is almost impossible for the user to 

ensure that the types are correct when the programming tool 

conceals those types. 

In this paper we introduce abstract shade trees for pixel 

shaders. Of course, many of the same ideas can be applied to 

vertex shaders (and other programmable units, e.g., the geometry 

shaders in DirectX 10). 

Figure 1(right) shows the abstract shade tree for our previous 

example. This tree is visually uncluttered and only contains 

atoms that are meaningful to the user. To avoid type and interface 

mismatches we implement parameter matching with automatic 

type coercions. This allows us to abstract all parameters between 

two atoms into a single data connection. The bubbles surrounding 

sub-graphs indicate the boundaries of the features that were 

combined to create the graph. 

We build a system for abstract shade trees that consists of a 

visual programming tool and a weaver program that translates 

the abstract shade tree into OpenGL Shading Language (GLSL) 

code. The weaver determines how to connect parameters between 

atoms. It automatically introduces new atoms into the graph in 

cases where there is no output that exactly matches each input.  

Automatic parameter matching by the weaver is our primary 

contribution. Because of it, abstract shade trees not only simplify 

shader authoring but also allow a programmer to change an atom 

interface without affecting the artist using that atom. This in turn 

allows complete separation between the roles of programmers and 

artists, thus enabling asynchronous workflow. Automatic 

matching also guarantees that the output is legal and correctly 

typed code, which solves the type mismatch problem noted by 

Abram and Whitted. 

We also introduce the notion of feature-based programming 

to GPU shader development. Artists can easily extend and 

combine previously completed effects (features) whose 

boundaries are displayed in the editor.  

2. Related Work 

2.1. Shade Trees 
Cook’s [1984] Shade Trees first introduced the notions of 

shading languages, uniform shading parameters, and modular 

shading components. Abram and Whitted’s [1990] Building 

Block Shaders (BBS) was the first visual programming tool for 

shaders. Others have since created implementations similar to 

BBS for today’s GPUs and hardware programming languages 

[Borau04][Unreal06]. These all map one-to-one traditional 

programming elements like variables and functions to visual 

elements. Thus, while making programming more approachable, 

they still retain the complexity of source code. We extend the 

previous work by abstracting programming elements, solving the 

type mismatch problem, and introducing feature abstractions. 

2.2. Shader Compilers 
Efficient compilation of shading language code to GPU 

assembler is an active area of research and beyond the scope of 

this paper. We instead focus on producing reasonable high-level 

code from still higher-level abstractions. Nonetheless, we briefly 

review compiler work as it is the natural compilation target for 

our weaver. 

McCool et. al’s Shader Algebra [2004] extends their Sh 

language [2002] with connect and combine operations on 

primitives. These allow shaders to be optimized by a compiler 

and manipulated by a programmer without knowledge of the 

primitives. The connect operator requires the number, type, and 

storage classifier (and implicitly, the semantics) of arguments to 

agree. Therefore the output of the weaver provides ideal input for 

McCool et al.’s optimizing compilers. 

Many hand-written shaders are short in part because it is 

impractical to write large shaders by hand in today’s shading 

languages. By simplifying the process of creating complex 

shaders, abstract shade trees naturally raise the problem of 

creating shaders too large for resource-limited GPUs. The 

solution is to follow our tree compilation with a partitioning 

compiler. Chan et. al’s [2002] compiler naturally fits within our 

framework—their system partitions trees into subtrees that 

execute in a single rendering pass.   

The Brook language [Buck04] extends the C language so that 

it can be efficiently compiled for streaming processors like GPUs 

for non-graphics tasks. This is not directly related to our work; 

however, we note that the purely functional style of programming 

that is enforced by our system has been long noted to be ideal for 

compilation on parallel processors. 

Like our work, Pellacini’s [2005] recent shader simplification 

system manipulates the structure of shaders in semi-blind 

manner. Neither compiler is fully aware of the intent of the 

manipulated code and could introduce a transformation that 

destroys the underlying rendering effect. Yet in both cases one 

can perform useful work despite the potential pitfall. Our 

transformations go beyond single expressions and must 

synthesize the glue code between them.  To reduce errors in this 

synthesis, we extend the type system with stronger semantics and 

require that the weaver preserve this semantic type safety. 
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2.3. Feature-Based Programming 
In the software engineering literature, the term feature refers to a 

user-identifiable attribute of a system, which a client might be 

willing to pay for [Turner99]. It is therefore natural to consider a 

rendering effect like shadows to be a feature. Thinking of 

programs as collections of features is not new: the idea is 

inherent in Parnas' [1972] seminal paper on modularity, and in 

Dijkstra's [1976] book on programming, where the latter 

discusses the “separation of concerns.” 

More recently, there has been significant activity on building 

programming languages—particularly module systems—that 

enable programmers to explicitly represent a system's features 

[Batory92, Kiczales97, Batory04]. In these languages, each 

module describes some feature, and module composition 

corresponds to building a system that consists of these features. 

(We adopt the term ‘weaver’ from one of these languages, known 

as aspect-oriented programming [Kiczales97].) Because client 

requirements tend to be in terms of features, these systems can 

more easily be reconfigured to accommodate evolving 

requirements. Indeed, it is now routine to talk about a product 
line of programs that can be built from a collection of features, by 

analogy to manufacturing. Software product lines have long been 

popular in the telecommunications industry, and are now 

increasingly popular in application software [Clements02]. Our 

tool offers a pre-created library of effects as well as the ability to 

create new ones from atoms, so a library of effects defines a 

product line of shaders. 

3. System and Workflow Overview 
Our system comprises a GUI tree-editor on the front-end (Figure 

2) and a back-end that compiles trees to GLSL shaders. It leverages 

existing tools (e.g., ATI RenderMonkey) to provide real-time 

execution and preview of the shaders. We assume a library of 

hand-optimized primitives and pre-created effects is available.  

To create a shader, an artist uses a drag-and-drop interface to 

place multiple existing effects in a common workspace. These effects 

appear as sub-graphs of named atoms connected by arrows. Each 

effect is surrounded by a colored boundary. The artist then 

interconnects the effects by adding additional arrows to form a single 

abstract shade tree. It is also possible for the artist to insert and 

remove individual atoms.  

The tree is abstract because arrows represent a data 

dependency, not individual parameter mappings between atoms. 

As shown in Figure 1(right), when instances of a node common 

to two features are combined into a single node, the rendered 

feature boundaries correctly overlap. 

Pressing the “preview” button executes the weaver, which 

follows the algorithm described in Section 5. This algorithm 

works backwards through the tree from the shader output (a pixel 

color) to the inputs, producing GLSL code. Its primary task is 

replacing each abstract arrow with pairs of input and output 

parameters for the atoms it connects. In many cases, those 

parameters do not naturally correspond and the weaver must 

inject substantial code to correct the problem. The output code 

resembles that produced when implementing a shader by hand, 

which shows that we have removed the tedium of shader 

production while preserving the creative aspects. 

Our system’s workflow consists of two asynchronous editing 

cycles. A programmer continually optimizes the atoms and 

introduces new atoms and sample effects into the system. 

Meanwhile, the artist edits abstract shade trees. Because the 

connections in the tree are abstract, the programmer may 

frequently change not only the implementation of atoms but also 

the API, i.e., the number and type of arguments, without 

requiring the artist to update the abstract shade tree. 

4. Atom Definitions 
Atoms are defined by a declaration, a set of struct/global function 

definitions, and a body. They are hand-coded and optimized in an 

extension to GLSL that includes atom declarations and semantic 

types. Atom declarations describe the number, name, and type of 

inputs and outputs of a block of code. They differ from traditional 

shading function declarations in two ways. First, there may be 

multiple output arguments. Second, no lexical scope is applied to 

the definition. Instead, free variables must be explicitly declared 

as global parameters. These globals also serve as hints to the 

weaver during parameter matching. The declaration syntax is a 

structured comment so atoms are backwards compatible with 

GLSL. 

It is common practice in the games industry to squeeze every 

possible cycle from graphics routines. Programmers commonly 

examine the assembly produced by both shading and C++ 

compilers. To support this scrutiny, the weaver preserves 

whitespace, variable names, and documentation comments from 

atom bodies. This helps the programmer trace the effect of a code 

change on the abstract shade tree, the weaver’s GLSL output, and 

the GLSL compiler’s assembly output. 

Many atoms, like the one in Listing 1, are simply GLSL 

standard library routines wrapped by a declaration. Often those 

standard library routines are intrinsics that map directly to a 

hardware feature.  

 

//! START CubeMapping 
//! @uniform environmentMap:TEX3D 
//! @param cubeTexCoord:VEC3__W_VEC__ 
//! @param cubeMap:TEX3D = environmentMap 
//! @return outColor:VEC3_____RGB_ 
outColor = textureCube(cubeMap, cubeTexCoord); 
//! END CubeMapping 

 

Listing 1: Sample atom code for cube mapping. 
 

In the atom syntax
1
, param declares an input parameter and 

return declares an output parameter. Atom declarations may also 

include two kinds of immutable global parameters. A uniform 

parameter is passed from the application to the entire shader. It is 

uniform over a series of rendering calls. A varying parameter is 

passed from the vertex shader to the fragment shader. It is 

interpolated between vertices by the hardware. Global parameters 

have two roles. In addition to declaring inputs passed outside the 

call chain, they may also appear as default values to satisfy a 

specific input parameter if the weaver is unable to find an 

appropriate output parameter from a connected node. For 

                                                                 
1
 The actual atom syntax in our implementation is more verbose, containing 

documentation and other non-semantic fields in the comments. 

 

Figure 2: Creating an Abstract Shade Tree in our GUI. 
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example, in Listing 1, the environmentMap is not explicitly used 

by the atom body. However, it is declared as a global and listed 

as the default for match for the cubeMap input parameter. It will 

be used only if no other node producing a TEX3D is connected to 

the node with the CubeMapping atom.  

We require all global names to be unique across the set of 

atoms. That is, if two atoms declare the environmentMap global 

parameter, it must have precisely identical semantic types in 

each. In this example, in every case where an environment map is 

provided as a parameter, it too must be named environmentMap. 
This is not an unreasonable requirement—after all, these are 

global variables. Since the shader APIs already dictate that 

globals must be synchronized with hand-written vertex shader 

and application code, it is not especially burdensome to require 

programmers to also synchronize globals between atoms. GLSL 

supports limited records called structs and global functions, 

which can be declared in the same manner as globals and have 

the same uniqueness constraint. 

Semantic Types 
We introduce semantic types, which are so specific that two 

variables with precisely the same type are likely semantically 

interchangeable. Some examples appear to the right of the colons 

in the annotations of Listing 1. 

Regular GLSL types are merely C-style storage specifiers with 

little value as abstractions. For example, a color, a 3D location, and 

a row of a 3×3 matrix have the same type, which is also indist-

inguishable from an array of three floating-point numbers. Another 

extreme possibility is where types are so specific that each value 

has its own type: e.g, the integers ‘7’ and ‘8’ have separate types. 

This latter extreme, of each value being its own singleton type, is 

impractical. However, we find it advantageous to extend GLSL 

towards this extreme in order to encapsulate graphics concepts 

directly into the type system. Just as many languages assign 

different types to natural (unsigned) numbers and integers, we type 

vectors differently based on several mathematically meaningful 

properties. For example, in the case of vector length, we 

recognize two important values: unit and arbitrary. This allows 

the system to distinguish normalized vectors within the type 

system. 

We use a convention where the name of a vector is the 

concatenation of a series of short codes for each semantic 

property. The properties and codes for vectors are: 
 

Dimension: {2, 3, 4, _ } 
 

Length:  {U: Unit, _ } 
 

Basis:   {T: tangent, O: object, W: world, S: screen space, _ }  
 

Interpretation:  
{RGB: color, TEX: texture coordinate,  

NOR: surface normal (covector), VEC: direction,  

PNT: point, _ } 
 

Precision:  {F: float32, I: int32, B: Boolean, _ } 
 

The underbar is a wildcard for supporting polymorphic types, 

for example, vec4__ is a four-component vector in any basis. 

These can also be viewed as type unions: e.g., “vec4__ = vec4_O 
∪ vec4_W ∪ vec4_T ∪ vec4_S.” We created the whole list of 

properties based on distinctions we found meaningful and expect 

that more properties will be added in the future to help further 

distinguish semantics. 

The type and naming scheme extends naturally to matrices, 

scalars, and textures. Semantic types can be made legal GLSL 

code by inserting a series of macros mapping them to storage 

classes, e.g., #define VEC3_U_W_NOR_F  vec3. 

A compiler typically uses a type system to validate programs. 

The weaver instead applies the type system as a set of rules for 

steering code generation creation—that is, generation is governed 

by the constraint that the output must be correctly typed. We 

define and use traditional typing rules on our semantic types, e.g., 

  

if v has type VEC3___T____  

then (ObjectToTangentSpace * v)  

      has type VEC3___O____ 

 

except that we apply these rules backward when seeking to 

coerce expression types. Thus the above rule would not be 

applied to type-check the product expression but instead to find a 

coercion of v from VEC3___T____ to VEC3___O____.  Section 5.4 

describes how this coercion search occurs. 

The extremely narrow application domain of shading 

languages is what makes this type system reasonable; these 

special-case typing rules and highly specified types probably 

cannot be generalized to other domains or general purpose 

languages. 

5. Weaving Algorithm 
We chose to implement the weaver as a pre-processor, 

without a full parser. This allows the weaver to preserve 

whitespace and comments within the atom bodies and allows 

atom bodies with partial statements, e.g.,“ if (dot(N,V) > 0) { ”. 

Because the weaver doesn’t parse the atom code, it can operate 

on a variety of shading language syntaxes (GLSL, HLSL, Cg), 

provided all atoms are implemented in the same language. This 

design decision also leads to a straightforward implementation in 

Java, which provides regular expressions and many other string 

manipulation routines.  

We now detail the four steps of the weaving algorithm. 

5.1. α-Rename Variables 
Because the atoms are implemented individually, it is likely that 

some variable names are shared between them. In some cases this 

is because an output of one atom becomes the input of another 

and it really is the same variable. In other cases the same name is 

used for distinct variables that cannot be combined. 

The weaver first creates a unique code body for each node. 

From this point forward there are no atoms bodies, only node 

bodies. Where two nodes use the same atom, two copies of that 

atom body are created. The weaver then assigns each node in the 

tree a unique ID. It iterates over all input and output parameter 

declarations (but not global declarations) of all nodes, seeking 

variable name conflicts where the same name is used in two 

different node bodies. Once all conflicts have been detected, the 

weaver renames all variables within node bodies that conflict by 

appending the unique node ID to the original name, e.g. 

surfaceNormal → surfaceNormal_0001. We include the original 

variable name to preserve readability of the output. This process 

is a common semantics preserving transformation called α-

renaming. 

 Employing α-renaming is overly conservative because it 

destroys parameter linkage between nodes. However, this is not a 

problem because subsequent weaver steps ensure correct linkage, 

independent of parameter names. 

Renaming only affects parameters that appear in the atom 

declaration. We avoid atom-local variable name conflicts by the 

convention of wrapping atom bodies with a local scope “{…}”. 

Underbar is Wildcard 
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5.2. Topologically Sort Nodes 
The weaver creates a new terminal node accepting a single input 

for the pixel color and a directed edge into this node from any 

node with no output (there is typically only one such node). 

In the abstract tree DAG, edges represent the data 

dependencies between atoms. Without destroying the tree 

structure, the weaver assigns a topological ordering to the graph 

nodes based on these dependencies. The new node appears last in 

the topological ordering. 

5.3. Match Inputs to Outputs 
We now come to the core of the algorithm. The weaver begins 

with the terminal node at the bottom and works up the shade tree 

in reverse topological order to the inputs at the top. 

For each node, the weaver matches each input parameter to 

an output parameter from a parent node. Two parameters match 

only if both have precisely the same semantic type. Our semantic 

types are specific enough that there is rarely a perfect match. The 

weaver therefore seeks an output and a coercion that will 

transform the output type to the input type.  The coercion search 

proceeds as follows. Consider the implicit coercion tree in 

Figure 3 where the root is the type of the input parameter for 

which a corresponding output is being sought (note that this is 

unrelated to the shade tree). The leaves are the types of the 

available outputs from nodes higher up the abstract shade tree. 

The edges are coercions (i.e., typing rules run backwards) and the 

internal nodes are the types of intermediate expressions produced 

during a series of coercion operations. The tree is infinite because 

of cycles: one may reach world space from tangent space by the 

two-step coercion tangent → object → world, but also by any 

coercion of the form tangent→object→tangent→object→ …→ world. 

Of course, we never want to apply such a complicated 

coercion path when a better alternative exists. Our notion of 

‘better’ includes both the length of a coercion path and the time 

cost of traversing each edge. The cost of each coercion edge is 

based on the anticipated cycle count for executing that operation 

at run-time. For example, transforming a pre-normalized world-

space light vector to object space by a matrix multiplication may 

be faster than normalizing an existing but non-unit object-space 

light vector. The children of a coercion tree node are arranged 

from left to right according to the increasing cost of each rule. 

The tree is explored on the fly and never fully constructed.  

The search for a viable coercion begins at the root of the 

coercion tree and proceeds downwards breadth-first, left-to-right. 

It terminates when the first type node is encountered that matches 

one of the available output types, or when depth seven is reached. 

Any value around seven is a reasonable cutoff; the key idea is to 

allow enough coercions for the anticipated worst case, which is 

from an arbitrary tangent-space 3-vector to a normalized, 

swizzled, screen-space 4-vector. Because we have ordered the 

rules based on cost, the first condition indicates that we have 

found the best coercion to some output. Regardless of total 

performance cost, we consider a short coercion path better than a 

long one because it is likely semantically closer and therefore 

probably what the user intended.  

The second termination condition indicates that there is likely 

no meaningful coercion available from an output parameter, 

possibly because  we  have  reached a  root of the  abstract shade 

tree. In this case, the weaver then searches the original atom 

declaration for a default global to link that parameter against. If 

that search fails to find a match, the weaver introduces a new 

global uniform parameter of the matching type. The matching 

process is guaranteed to succeed. 

When a match has been made for an input, any needed 

coercions are inserted back into the shade tree. Edges of the 

coercion tree become new nodes in the (now slightly less 

abstract) shade tree. The weaver then proceeds to the next input 

variable. Because the shade tree has been modified, any intermediate 

coercion product becomes available to match future inputs, as does 

any newly introduced uniform. This is necessary to avoid creating 

redundant coercions and globals. When all inputs of one node have 

been matched, the weaver proceeds to the next-higher node in the 

topological ordering. 

5.4   Concatenate Node Bodies 
To form the shader code, the weaver concatenates all global 

parameter declarations, struct declarations, and the node bodies in 

topological order wrapped by “void main(void) {…}”. 

Since we preserved variable names, the uniform parameters 

will have meaningful names. This makes it possible to map them 

to GUI elements in IDEs such as RenderMonkey or FX 

Composer for interactive adjustment. 

Finally, the weaver inserts a series of #define macros that 

map all semantic types used in the shader to legal GLSL storage 

classes. The output shader can be run from any OpenGL program 

or shader preview tool. 

6. GUI Implementation 
Our GUI tree editor, shown in Figure 2 with a 3D scene in the 

RenderMonkey, is implemented as a plug-in to the Eclipse IDE. 

This allows programmers to easily move between atom editing in 

a traditional code editor and experimentation with those atoms in 

the abstract shade tree editor. Eclipse provides automatic layout 

and rendering of graphs, simplifying the implementation.  

We render the feature outlines to off-screen bitmaps and then 

composite them over the tree. Each feature outline is rendered 

with a variation on [Raskar99] as follows: Clear the off-screen 

bitmap to transparent. For each node in the feature (note that a 

node may belong to multiple features, like Fresnel in Figure 1), 

render a colored, solid, rounded rectangle f pixels larger than the 

node itself, where f is a unique small integer for each feature. The 

varying radii keep adjacent features outlines from overlapping. 

Likewise, render a thickened line segment for each arrow 

between two nodes in the feature. Finally, clear the interior by 

rendering the same shape with an f – 2 radius and a transparent 

fill color, and composite the resulting outline over the graph. 

 

 

VEC3___O_NOR

NormalWorldToEyeSpace 

VEC3___W_NOR

NormalTangentToObjectSpace 

VEC3___T_NOR

VEC3___O_NOR 

VEC3___E_NOR

VEC3___T_NOR

VEC3___O_NOR 

NormalObjectToTangentSpaceNormalObjectToWorldSpace 

NormalWorldToObjectSpace 
NormalTangentToObjectSpace

 

 
 

Figure 3: Sample coercion tree mapping the possible paths 
through the type rules for coercing a tangent space normal to an 
eye-space normal. Many possible paths are not explored because 
the all-left branch leads to a successful coercion. 
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7. Results 
Figures 4-7 show abstract shade trees created with our system. 

Each figure displays the actual tree as it appears in the authoring 

system (left) and the GLSL shader produced by the weaver for 

that tree (right), superimposed over an image of an object 

rendered with that shader. The GLSL output in the result figures 

is color-coded. Light lines of code correspond to atoms that have 

been inlined. Dim lines correspond to parameter linkage, 

coercions, and type macros inferred by the weaver. 

 Figure 4 is the bumpy glass shader we considered in Figure 1. 

The full code is given in the Appendix to give a sense of the 

weaver’s output. In allowing non-programmers to effectively 

create shaders, we have not diminished the importance of 

programmers on a team but instead focused their role. Note that 

most of the output code in the Appendix is necessary but 

uninteresting because it is boilerplate and linkage between atoms. 

This is also true in the other examples. Because the weaver 

assumes the duty of generating the necessary “glue” code, 

programmers concentrate on creating and optimizing atom 

bodies, which is the interesting part of their role that requires 

graphics, programming, and mathematical expertise.  

 The underlying features/effects described in the captions are 

clearly visible in the tree diagrams. Even a non-programmer can 

see the interaction between features and manipulate them easily. 

In Figures 4 and 7 the features share central nodes where they 

overlap. To create these, the user dropped the separate features 

into the workspace, which created duplicate nodes.  The user then 

explicitly combined those common nodes.  

7.1. Performance 
The result figures demonstrate that shader creation is easy in our 

system, that the weaver can produce correct GLSL code, and that 

the abstract shade tree is both more compact and easier to 

understand than a traditional tree or code. The generated shaders 

are efficient. All examples run at hundreds of frames per second 

on a laptop with a Radeon 9700 Mobile GPU. The weaver itself 

is efficient; each example took less than one second to generate. 

To compare the performance of the generated code to hand 

written code, we hand-wrote an optimized GLSL shader for the 

effects in the bumpy glass shader. The manual implementation 

contained only 58 lines of GLSL code compared to the weaver’s 

188 lines, which are shown in the appendix. However, the weaver 

generates a lot of comment and variable name linkage overhead. 

When both shaders are compiled to hardware assembly with 

NVIDIA’s Cg compiler, the weaver’s implementation contains 

51 instructions and the manual implementation contains 46 

instructions. Shading every pixel at 512×512, the weaver’s 

implementation achieves 240 fps and the manual implementation 

achieves 245 fps. At 1024×768, both render at 50 fps.  

7.2. Limitations 
Our system always produces a legal, type-safe program. 

However, there are three ways that program can still fail to meet 

expectations. The first is that it allows creation of shaders that 

exceed the instruction and register count limits of today’s 

hardware. See Chan et. al [2002] for a multi-pass solution. 

 Second, the weaver can produce less efficient code than a 

programmer in cases where a whole-program optimization is 

appropriate, e.g., moving all lighting from world space to object 

space to avoid repeated per-pixel transformations. To perform 

such an optimization, the compiler would have to both understand  
 

 

Figure 4: Bumpy glass. 
 

 

Figure 5: Parallax mapping, texture mapping, and Phong 
illumination on a teapot. 

 

 

Figure 6: Anisotropic specular reflection with isotropic diffuse 
reflection on the wings of a butterfly. 

 

 

Figure 7: Projective light, shadow map, and Phong illumination. 
Note the interlacing of features. 
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spatial transformations at not just a semantic but an operational 

level, and have control over not only the shading algorithm but 

also the host C++ program into which it is integrated. This is 

interesting future work but significantly beyond the scope of our 

semantic type approach. 

 The third case, semantic errors, is the most interesting. We 

invited laypeople (non-programmers, non-artists) to experiment 

with effect creation. After we explained the UI and primitives 

they were generally able to produce shaders, which we consider a 

great success compared to current tools. However, they had 

difficulty choosing between similar primitives with different 

types, which often led to inefficient semantic type coercions for 

the desired effects. When the tool failed to produce the effect that 

the user expected, it was usually because two nodes received 

input from the same output when they should have been distinct 

(e.g., imagine both Modulate nodes linked to input x in Figure 1).  

This occurs when the user fails to add sufficient dependency 

arrows and when the dependency is implicit in a global variable. 

Like the excessive transformations, missing dependencies are a 

user error that would likely not occur with real artists; a follow-

up user study will measure the experiences of trained artists.  

Incorrect linkage of two primitives to the same global 

variable only occurs when the common semantic type of the 

primitives is too general. Here, fault lies with the programmer 

who created the primitives and not the artist or the weaver. The 

programmer must, however, tread a delicate line: types that are 

too specific will never match exactly and require more coercions, 

but types that are too general produce incorrect semantics. On 

one hand, it is a drawback of our system that programmers must 

expend much effort tailoring the interface types. On the other 

hand, we argue that interface semantics are exactly where 

programmers should think hard! We automate the linkage, 

boilerplate, and coercion precisely so that programmers can focus 

on design, which requires human intelligence. 

8. Other Future Work 
Our cost ranking of coercions is based on instruction count and 

intuition. A natural step is to use an actual cycle count. The 

challenge here is that the true time cost of a GPU operation 

depends on the instructions surrounding it, cache state, and the 

instruction scheduler. 

On the programming language side, we envision an extension 

to parameterized types like C++ templates, which would enable 

more specific function types than our polymorphism. For 

example, we assign the addition operator the type VEC___ × VEC___ 

→ VEC___, yet VEC_<T> × VEC_<T> → VEC_<T> is more specific. 

A formal semantics, type system, and proofs for our system 

will serve as a good case study for the literature on domain-

specific languages and feature-based programming. 

9. Conclusions 
We addressed the problem originally noted by Abram and 

Whitted by making type mismatches in shaders impossible. We 

also enable shader creation by users who do not even have 

knowledge of types, programming concepts like variables, or the 

vector math used to implement algorithms inside the atoms.   

We presented a new system for authoring complex GPU 

programs through automatic combination of primitive shading 

functions. In doing so, we extended GLSL with semantics types 

specific to computer graphics in a backwards-compatible manner. 

We anticipate that GLSL (like assembly language and C before 

it) will increasingly be produced as the output of a higher order 

tool. We will propose to the OpenGL architectural review board 

that semantic types be considered for the language standard, for 

use by both programmers and other tools like ours.  

Our system uses many heuristics to infer parameter linkage.  

Even with our strong semantic types, it is a natural concern that 

the heuristics can produce a legal program with semantic errors.  

Fortunately, in graphics a semantic error is easily diagnosed 

because the image produced is incorrect. The interative editing 

context of our Eclipse plug-in and RenderMonkey allows the 

shader author to correct the shade tree until the desired result is 

achieved. We speculate that our methodology is appropriate for 

similar domains like image- and audio-filter design, but 

inappropriate for general purpose programming that lacks easy 

feedback and a small set of semantic types. 

 Our system extends previous work, allowing non-

programmers to more easily create more complex shaders. It also 

visualizes shaders with easy-to-understand block diagrams. The 

advantage of abstract shade trees over hand-coded shaders or the 

one-to-one visual editors will only increase as hardware becomes 

ever more capable and the desired shaders increase 

commensurately in complexity. It literally took only seconds to 

create each of the abstract shade trees for our result figures; 

implementing similar shaders by hand in GLSL took us hours of 

coding and debugging for each shader. These shader examples 

contain about four effects each. Now consider GPUs of the future 

that are able to render ten or twenty interacting effects in real-

time. Under today’s workflow, an artist might ask a programmer 

to hand code a different effect combination for every object in a 

scene. That will not be feasible when each shader contains 

thousands of lines of code. Our tool addresses the authoring 

problem by making it possible for artists to create these shaders 

themselves and by making the process easy and enjoyable. 

 

This work is supported in part by the National Science Foundation. 
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Appendix 
GLSL code produced by the weaver from the abstract shade tree in 

Figure 1. Boxed lines are hand written node bodies. Gray lines are 

comments carried through from atom declarations. The remaining 

lines are parameter linkage and coercions generated by the weaver. 
 

1   #define VEC3___T_NOR vec3 
2   #define VEC3___W_NOR vec3 
3   #define VEC4___W_NOR vec4 
4   #define VEC4_____NOR vec4 
5   #define VEC3_____NOR vec3 
6   #define VEC3_____TEX vec3 
7   #define VEC4_____RGB vec4 
8   #define VEC4________ vec4 
9   #define VEC2_____TEX vec2 
10   #define VEC3___T____ vec3 
11   #define TEX2D sampler2D 
12   #define MAT4 mat4 
13   #define VEC3___O____ vec3 
14   #define VEC3___O_NOR vec3 
15   #define VEC3___W____ vec3 
16   #define TEX4D samplerCube 
17   #define FLOAT float 
18   uniform FLOAT etaRatio; 
19   uniform FLOAT fresPower; 
20   uniform FLOAT fresScale; 
21   uniform FLOAT fresBias; 
22   uniform TEX4D evntCubeMap; 
23   varying VEC3___W____ vIncoming_w; 
24   varying VEC3___O_NOR nor; 
25   varying VEC3___O____ bin; 
26   varying VEC3___O____ tan; 
27   uniform MAT4 matNorO2W; 
28   uniform TEX2D normalMap; 
29   uniform FLOAT bumpScale; 
30   uniform FLOAT bumpBias; 
31   uniform TEX2D heightTex; 
32   varying VEC3___T____ vVew_t; 
33   varying VEC2_____TEX texCoo; 
34    
35   //! STARTROUTINE refract 
36   vec3 refract(vec3 I, vec3 N, float etaRatio) { 
37   float cosI=dot(-I,N); 
38   float cosT2=1.0-etaRatio*etaRatio*(1.0-cosI*cosI); 
39   vec3 T = etaRatio*I+((etaRatio* 
40     cosI-sqrt(abs(cosT2)))*N); 
41   return T*vec3(cosT2>0.0); 
42   } 
43   //! ENDROUTINE refract 
44    
45   void main(void) { 
46   VEC4________ a; 
47   VEC4________ b; 
48   VEC4________ sum; 
49   VEC4________ modOutput_1010696501; 
50   FLOAT x; 
51   FLOAT oneMinus; 
52   VEC4_____RGB colorFromEvt_314286916; 
53   VEC3_____TEX cooRefr_w; 
54   VEC4________ vTmp4; 
55   FLOAT factor; 
56   VEC4________ modOutput_1345567180; 
57   FLOAT fresnelRatio; 
58   VEC3_____TEX cubetexCoo; 
59   VEC4_____RGB colorFromEvt_444161459; 
60   VEC3_____NOR nor3Tmp; 
61   VEC3___O_NOR nor3_o; 
62   VEC4_____NOR nor4Tmp; 
63   VEC4___W_NOR nor4_w; 
64   VEC3___W_NOR vNormal_w; 
65   VEC3_____TEX cooRefl_w; 
66   VEC2_____TEX bumpCoords; 
67   VEC3___T_NOR vNor_t; 
68   VEC2_____TEX offsetCoo; 
69   VEC4________ modOutput; 
70   VEC4_____RGB colorFromEvt; 
71    

72   //! START ParallaxHeight 
73   //! @params texCoo,vVew_t,heightTex,bumpBias,bumpScale 
74   //! @return offsetCoo parallax cords 
75   FLOAT bump=((texture2D(heightTex,texCoo).a)+ bumpBias)*bumpScale; 
76   offsetCoo = bump * vec2(vVew_t.x, vVew_t.y) + texCoo; 
77   //! END ParallaxHeight 
78   bumpCoords = offsetCoo; 
79    
80   //! START NormalMap 
81   //! @params bumpCoords, normalMap 
82   //! @return vNor_t tangent space normal 
83   vNor_t = texture2D(normalMap,vec2(bumpCoords.x, 
84           bumpCoords.y)).xyz* 2.0-1.0; 
85   //! END NormalMap 
86    
87   nor3Tmp = vNor_t; 
88    
89   //! START NormalTangentToObjectSpace 
90   //! @params tan, bin, nor, nor3Tmp 
91   //! @return nor3_o 
92   mat3 matNorT2O = mat3(tan, bin, nor); 
93   nor3_o = matNorT2O*nor3Tmp; 
94   //! END NormalTangentToObjectSpace 
95   nor4Tmp = vec4(nor3_o,0.0); 
96    
97   //! START NormalObjectToWorldSpace 
98   //! @params matNorO2W, nor4Tmp 
99   //! @return nor4_w 
100   nor4_w = matNorO2W*nor4Tmp; 
101   //! END NormalObjectToWorldSpace 
102   vNormal_w = nor4_w.xyz; 
103    
104   //! START Reflect 
105   //! @params vIncoming_w, vNormal_w 
106   //! @return cooRefl_w World space reflected vector 
107   cooRefl_w=normalize(reflect(vIncoming_w,vNormal_w)); 
108   //! END Reflect 
109    
110   cubetexCoo = cooRefl_w; 
111    
112   //! START CubeMap 
113   //! @params cubetexCoo, evntCubeMap 
114   //! @return colorFromEvt color from environment map 
115   colorFromEvt = textureCube(evntCubeMap, cubetexCoo); 
116   //! END CubeMap 
117    
118   colorFromEvt_444161459=colorFromEvt; 
119   vTmp4 = colorFromEvt_444161459; 
120    
121   //! START Fresnel 
122   //! @params vIncoming_w,vNormal_w,fresBias, 
123   //! @params fresScale,fresPower 
124   //! @multi-aspect 
125   //! @return fresnelRatio Fresnel ratio 
126   fresnelRatio = max(0.0,min(1.0,fresBias+fresScale* 
127            pow(1.0+ dot(normalize(vIncoming_w),  
128            normalize(vNormal_w)), resPower))); 
129   //! END Fresnel 
130    
131   x = fresnelRatio; 
132   factor = fresnelRatio; 
133    
134   //! START Modulate 
135   //! @params vTmp4, factor 
136   //! @return modOutput 
137   modOutput = vTmp4*factor; 
138   //! END Modulate 
139   modOutput_1345567180=modOutput; 
140    
141   a = modOutput_1345567180; 
142    
143   //! START Refract 
144   //! @params vIncoming_w, vNormal_w, etaRatio 
145   //! @return cooRefr_w World space refracted vector 
146   //! @routine refract 
147   cooRefr_w = normalize(refract(vIncoming_w, vNormal_w, etaRatio)); 
148   //! END Refract 
149    
150   cubetexCoo = cooRefr_w; 
151    
152   //! START CubeMap 
153   //! @params cubetexCoo, evntCubeMap 
154   //! @return colorFromEvt color from environment map 
155   colorFromEvt = textureCube(evntCubeMap, cubetexCoo); 
156   //! END CubeMap 
157   colorFromEvt_314286916=colorFromEvt; 
158   vTmp4 = colorFromEvt_314286916; 
159    
160   //! START 1-x 
161   //! @params x 
162   //! @return oneMinus 
163   oneMinus = 1.0-x; 
164   //! END 1-x 
165   factor = oneMinus; 
166    
167   //! START Modulate 
168   //! @params vTmp4, factor 
169   //! @return modOutput 
170   modOutput = vTmp4*factor; 
171   //! END Modulate 
172   modOutput_1010696501=modOutput; 
173   b = modOutput_1010696501; 
174    
175   //! START + 
176   //! @params a,b 
177   //! @return sum 
178   sum = a+b; 
179   //! END + 
180    
181   gl_FragColor = sum; 
182   } 
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Figure 8. Shade trees and the equivalent code composited over the effects they produce. (Color reproductions of Figures 4-7). 

 

 

Figure 1 Revisited: A conventional Shade Tree (left) for a “Bumpy Glass” shader, mocked up in the Visio drawing program. 
The equivalent Abstract Shade Tree on the right is an actual screenshot from our shader authoring plugin to the Eclipse IDE. 

Two cars and their shadows rendered with variance shadow maps. The resulting shadows have smooth penumbras, and are
rendered without aliasing in real time.

224
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