
Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2006 ACM 1-59593-295-X/06/0003 $5.00
I3D 2006, Redwood City, California, 14–17 March 2006.

Abstract Shade Trees
Morgan McGuire George Stathis Hanspeter Pfister Shriram Krishnamurthi

Brown University Harvard Extension School MERL Brown University

Abstract.
As GPU-powered special effects become more sophisticated, it

becomes harder to create and manage effect interaction using the

fairly primitive shading languages. This difficulty also

introduces a workflow problem: artists design effects but only

programmers can implement them, making it impossible for them

to work asynchronously.

To address these problems we present abstract shade trees

and heuristic algorithms that operate over them. The trees allow

designers to easily create effects by connecting primitives such as

cube mapping and modulation. These primitives publish

semantically rich types that encapsulate notions like vector basis

and normalization. The algorithms employ these published types

to automatically infer atomic and compound connectors between

the primitives, and generate code for the tree. We also describe a

visual editing environment for specifying the trees.

Our data structure and algorithms spare designers from having

to specify low-level programming details, enabling them to

experiment without depending on programmers. The algorithms

ensure that the generated code will be free of type-mismatches, a

problem in previous shade trees. The abstract shade tree can also

naturally express high-level features like shadows and reflections

whose implementations overlap; that cross-cutting has made

them difficult to modularize in more traditional ways. In

experiments, the generated shaders are as efficient as hand-

written code.

1. Introduction
Modern GPUs manifest another turn of Ivan Sutherland’s “Wheel

of Reincarnation,” where general-purpose and specialized

hardware alternate as the best implementation technology.

Unfortunately, 3D graphics and other media APIs have not kept

pace with the move to general-purpose graphics processors.

Current APIs for GPU programming avoid layering, moving the

application logic very close to the hardware. The emphasis is on

time-to-market, not on robustness, and exposing hardware

peculiarities is seen as a competitive advantage. With the notable

exception of Sh [McCool02], current shading languages for

GPUs (e.g., GLSL) lack language mechanisms for encapsulation,

modularity, and abstraction. This makes it very hard to create and

maintain long GPU programs. Because GPUs are inherently

digital signal processors with long pipelines, no stack, and

unusual performance limitations on random access to memory, it

is likely that they will remain difficult to program by hand.

The lack of abstraction also makes it difficult for artists to

create new graphics effects without learning how to program. It

leads to a close coupling between programmers and artists: The

artist tells the programmer what the effect should be, the

programmer writes the shader, the artist changes the

requirements, the programmer revises the code, etc. Once a

special effect is created, it is practically impossible to re-use it

within the framework of another shader without substantial

additional coding. This stifles productivity and creativity.

One way to address this problem is to look for other

representations of shader programs. Cook [1984] introduced the

notion of modular shading components with shade trees. He

describes a system in which basic shading blocks (called atoms)
are nodes linked by edges representing variables. Because

shaders have one output (the pixel color) and many inputs, the

root of the tree represents the output and the leaves are the input.

Shade Tree Abstract Shade Tree

Figure 1: A conventional Shade Tree (left) for a “Bumpy Glass” shader. The equivalent Abstract Shade Tree (right) is simpler; the
compiler automatically handles vector basis conversion, normalization, and parameter linkage. Outline bubbles mark underlying
features (clockwise from top): parallax mapping, refraction, and refraction. Note that the Fresnel term cross-cuts two features.

 Parallax Height

Normal Map

Reflect

Fresnel

Refract

Cube Map

Modulate Modulate

1 – x

+

Cube Map

79

Shade trees weren’t originally intended for visual

programming. In fact, Cook’s shaders were authored as code and

converted to trees as a post-process for compilation. Abram and

Whitted [1990] invert this paradigm with Building Block

Shaders. Their visual programming tool represents shaders

directly as directed acyclic graphs (DAGs), which are essentially

Cook's trees extended with side effects and confluent paths.

Although they are DAGs, we continue to refer to visual shader

representations as trees in deference to the original work.

Implementations of this idea have since been created for

today's GPUs and hardware programming languages

[Borau04][Unreal06]. Figure 1 (left) shows an example shader

for “bumpy glass” that combines the rendering effects of parallax

mapping, Fresnel reflection, and Fresnel refraction. The

immediate advantage over source code is that shade trees

encourage experimentation and are more approachable by non-

programmers [Abram90]. Programmers implement a library of

carefully optimized atoms, which non-programmers combine to

build shaders. A visual editor with preview capabilities offers the

advantage that artists can experiment without understanding the

inner workings of the atoms.

Figure 1 also demonstrates some of the drawbacks of shade

trees. Although this example uses a simple shader, the tree

appears complicated and visually cluttered. The tree also contains

atoms that an artist might not understand, like

TangentToObjectSpace and ExtendToHomogeneousVector. Most

importantly, there is the potential for type mismatches between

input and output arguments of atoms. When they introduced the

first visual shade tree editor, Abram and Whitted [1990] noted:

“One problem with [the Building Block] graphical shading

language is the potential for type mis-matching.”

In fact, this problem extends beyond storage types to

interface mismatches between atoms, e.g., assumptions like “the

light vector has unit length” or “RGB values are pre-multiplied

by the alpha channel.” It is almost impossible for the user to

ensure that the types are correct when the programming tool

conceals those types.

In this paper we introduce abstract shade trees for pixel

shaders. Of course, many of the same ideas can be applied to

vertex shaders (and other programmable units, e.g., the geometry

shaders in DirectX 10).

Figure 1(right) shows the abstract shade tree for our previous

example. This tree is visually uncluttered and only contains

atoms that are meaningful to the user. To avoid type and interface

mismatches we implement parameter matching with automatic

type coercions. This allows us to abstract all parameters between

two atoms into a single data connection. The bubbles surrounding

sub-graphs indicate the boundaries of the features that were

combined to create the graph.

We build a system for abstract shade trees that consists of a

visual programming tool and a weaver program that translates

the abstract shade tree into OpenGL Shading Language (GLSL)

code. The weaver determines how to connect parameters between

atoms. It automatically introduces new atoms into the graph in

cases where there is no output that exactly matches each input.

Automatic parameter matching by the weaver is our primary

contribution. Because of it, abstract shade trees not only simplify

shader authoring but also allow a programmer to change an atom

interface without affecting the artist using that atom. This in turn

allows complete separation between the roles of programmers and

artists, thus enabling asynchronous workflow. Automatic

matching also guarantees that the output is legal and correctly

typed code, which solves the type mismatch problem noted by

Abram and Whitted.

We also introduce the notion of feature-based programming

to GPU shader development. Artists can easily extend and

combine previously completed effects (features) whose

boundaries are displayed in the editor.

2. Related Work

2.1. Shade Trees
Cook’s [1984] Shade Trees first introduced the notions of

shading languages, uniform shading parameters, and modular

shading components. Abram and Whitted’s [1990] Building

Block Shaders (BBS) was the first visual programming tool for

shaders. Others have since created implementations similar to

BBS for today’s GPUs and hardware programming languages

[Borau04][Unreal06]. These all map one-to-one traditional

programming elements like variables and functions to visual

elements. Thus, while making programming more approachable,

they still retain the complexity of source code. We extend the

previous work by abstracting programming elements, solving the

type mismatch problem, and introducing feature abstractions.

2.2. Shader Compilers
Efficient compilation of shading language code to GPU

assembler is an active area of research and beyond the scope of

this paper. We instead focus on producing reasonable high-level

code from still higher-level abstractions. Nonetheless, we briefly

review compiler work as it is the natural compilation target for

our weaver.

McCool et. al’s Shader Algebra [2004] extends their Sh

language [2002] with connect and combine operations on

primitives. These allow shaders to be optimized by a compiler

and manipulated by a programmer without knowledge of the

primitives. The connect operator requires the number, type, and

storage classifier (and implicitly, the semantics) of arguments to

agree. Therefore the output of the weaver provides ideal input for

McCool et al.’s optimizing compilers.

Many hand-written shaders are short in part because it is

impractical to write large shaders by hand in today’s shading

languages. By simplifying the process of creating complex

shaders, abstract shade trees naturally raise the problem of

creating shaders too large for resource-limited GPUs. The

solution is to follow our tree compilation with a partitioning

compiler. Chan et. al’s [2002] compiler naturally fits within our

framework—their system partitions trees into subtrees that

execute in a single rendering pass.

The Brook language [Buck04] extends the C language so that

it can be efficiently compiled for streaming processors like GPUs

for non-graphics tasks. This is not directly related to our work;

however, we note that the purely functional style of programming

that is enforced by our system has been long noted to be ideal for

compilation on parallel processors.

Like our work, Pellacini’s [2005] recent shader simplification

system manipulates the structure of shaders in semi-blind

manner. Neither compiler is fully aware of the intent of the

manipulated code and could introduce a transformation that

destroys the underlying rendering effect. Yet in both cases one

can perform useful work despite the potential pitfall. Our

transformations go beyond single expressions and must

synthesize the glue code between them. To reduce errors in this

synthesis, we extend the type system with stronger semantics and

require that the weaver preserve this semantic type safety.

80

2.3. Feature-Based Programming
In the software engineering literature, the term feature refers to a

user-identifiable attribute of a system, which a client might be

willing to pay for [Turner99]. It is therefore natural to consider a

rendering effect like shadows to be a feature. Thinking of

programs as collections of features is not new: the idea is

inherent in Parnas' [1972] seminal paper on modularity, and in

Dijkstra's [1976] book on programming, where the latter

discusses the “separation of concerns.”

More recently, there has been significant activity on building

programming languages—particularly module systems—that

enable programmers to explicitly represent a system's features

[Batory92, Kiczales97, Batory04]. In these languages, each

module describes some feature, and module composition

corresponds to building a system that consists of these features.

(We adopt the term ‘weaver’ from one of these languages, known

as aspect-oriented programming [Kiczales97].) Because client

requirements tend to be in terms of features, these systems can

more easily be reconfigured to accommodate evolving

requirements. Indeed, it is now routine to talk about a product
line of programs that can be built from a collection of features, by

analogy to manufacturing. Software product lines have long been

popular in the telecommunications industry, and are now

increasingly popular in application software [Clements02]. Our

tool offers a pre-created library of effects as well as the ability to

create new ones from atoms, so a library of effects defines a

product line of shaders.

3. System and Workflow Overview
Our system comprises a GUI tree-editor on the front-end (Figure

2) and a back-end that compiles trees to GLSL shaders. It leverages

existing tools (e.g., ATI RenderMonkey) to provide real-time

execution and preview of the shaders. We assume a library of

hand-optimized primitives and pre-created effects is available.

To create a shader, an artist uses a drag-and-drop interface to

place multiple existing effects in a common workspace. These effects

appear as sub-graphs of named atoms connected by arrows. Each

effect is surrounded by a colored boundary. The artist then

interconnects the effects by adding additional arrows to form a single

abstract shade tree. It is also possible for the artist to insert and

remove individual atoms.

The tree is abstract because arrows represent a data

dependency, not individual parameter mappings between atoms.

As shown in Figure 1(right), when instances of a node common

to two features are combined into a single node, the rendered

feature boundaries correctly overlap.

Pressing the “preview” button executes the weaver, which

follows the algorithm described in Section 5. This algorithm

works backwards through the tree from the shader output (a pixel

color) to the inputs, producing GLSL code. Its primary task is

replacing each abstract arrow with pairs of input and output

parameters for the atoms it connects. In many cases, those

parameters do not naturally correspond and the weaver must

inject substantial code to correct the problem. The output code

resembles that produced when implementing a shader by hand,

which shows that we have removed the tedium of shader

production while preserving the creative aspects.

Our system’s workflow consists of two asynchronous editing

cycles. A programmer continually optimizes the atoms and

introduces new atoms and sample effects into the system.

Meanwhile, the artist edits abstract shade trees. Because the

connections in the tree are abstract, the programmer may

frequently change not only the implementation of atoms but also

the API, i.e., the number and type of arguments, without

requiring the artist to update the abstract shade tree.

4. Atom Definitions
Atoms are defined by a declaration, a set of struct/global function

definitions, and a body. They are hand-coded and optimized in an

extension to GLSL that includes atom declarations and semantic

types. Atom declarations describe the number, name, and type of

inputs and outputs of a block of code. They differ from traditional

shading function declarations in two ways. First, there may be

multiple output arguments. Second, no lexical scope is applied to

the definition. Instead, free variables must be explicitly declared

as global parameters. These globals also serve as hints to the

weaver during parameter matching. The declaration syntax is a

structured comment so atoms are backwards compatible with

GLSL.

It is common practice in the games industry to squeeze every

possible cycle from graphics routines. Programmers commonly

examine the assembly produced by both shading and C++

compilers. To support this scrutiny, the weaver preserves

whitespace, variable names, and documentation comments from

atom bodies. This helps the programmer trace the effect of a code

change on the abstract shade tree, the weaver’s GLSL output, and

the GLSL compiler’s assembly output.

Many atoms, like the one in Listing 1, are simply GLSL

standard library routines wrapped by a declaration. Often those

standard library routines are intrinsics that map directly to a

hardware feature.

//! START CubeMapping
//! @uniform environmentMap:TEX3D
//! @param cubeTexCoord:VEC3__W_VEC__
//! @param cubeMap:TEX3D = environmentMap
//! @return outColor:VEC3_____RGB_
outColor = textureCube(cubeMap, cubeTexCoord);
//! END CubeMapping

Listing 1: Sample atom code for cube mapping.

In the atom syntax
1
, param declares an input parameter and

return declares an output parameter. Atom declarations may also

include two kinds of immutable global parameters. A uniform

parameter is passed from the application to the entire shader. It is

uniform over a series of rendering calls. A varying parameter is

passed from the vertex shader to the fragment shader. It is

interpolated between vertices by the hardware. Global parameters

have two roles. In addition to declaring inputs passed outside the

call chain, they may also appear as default values to satisfy a

specific input parameter if the weaver is unable to find an

appropriate output parameter from a connected node. For

1
 The actual atom syntax in our implementation is more verbose, containing

documentation and other non-semantic fields in the comments.

Figure 2: Creating an Abstract Shade Tree in our GUI.

81

example, in Listing 1, the environmentMap is not explicitly used

by the atom body. However, it is declared as a global and listed

as the default for match for the cubeMap input parameter. It will

be used only if no other node producing a TEX3D is connected to

the node with the CubeMapping atom.

We require all global names to be unique across the set of

atoms. That is, if two atoms declare the environmentMap global

parameter, it must have precisely identical semantic types in

each. In this example, in every case where an environment map is

provided as a parameter, it too must be named environmentMap.
This is not an unreasonable requirement—after all, these are

global variables. Since the shader APIs already dictate that

globals must be synchronized with hand-written vertex shader

and application code, it is not especially burdensome to require

programmers to also synchronize globals between atoms. GLSL

supports limited records called structs and global functions,

which can be declared in the same manner as globals and have

the same uniqueness constraint.

Semantic Types
We introduce semantic types, which are so specific that two

variables with precisely the same type are likely semantically

interchangeable. Some examples appear to the right of the colons

in the annotations of Listing 1.

Regular GLSL types are merely C-style storage specifiers with

little value as abstractions. For example, a color, a 3D location, and

a row of a 3×3 matrix have the same type, which is also indist-

inguishable from an array of three floating-point numbers. Another

extreme possibility is where types are so specific that each value

has its own type: e.g, the integers ‘7’ and ‘8’ have separate types.

This latter extreme, of each value being its own singleton type, is

impractical. However, we find it advantageous to extend GLSL

towards this extreme in order to encapsulate graphics concepts

directly into the type system. Just as many languages assign

different types to natural (unsigned) numbers and integers, we type

vectors differently based on several mathematically meaningful

properties. For example, in the case of vector length, we

recognize two important values: unit and arbitrary. This allows

the system to distinguish normalized vectors within the type

system.

We use a convention where the name of a vector is the

concatenation of a series of short codes for each semantic

property. The properties and codes for vectors are:

Dimension: {2, 3, 4, _ }

Length: {U: Unit, _ }

Basis: {T: tangent, O: object, W: world, S: screen space, _ }

Interpretation:
{RGB: color, TEX: texture coordinate,

NOR: surface normal (covector), VEC: direction,

PNT: point, _ }

Precision: {F: float32, I: int32, B: Boolean, _ }

The underbar is a wildcard for supporting polymorphic types,

for example, vec4__ is a four-component vector in any basis.

These can also be viewed as type unions: e.g., “vec4__ = vec4_O
∪ vec4_W ∪ vec4_T ∪ vec4_S.” We created the whole list of

properties based on distinctions we found meaningful and expect

that more properties will be added in the future to help further

distinguish semantics.

The type and naming scheme extends naturally to matrices,

scalars, and textures. Semantic types can be made legal GLSL

code by inserting a series of macros mapping them to storage

classes, e.g., #define VEC3_U_W_NOR_F vec3.

A compiler typically uses a type system to validate programs.

The weaver instead applies the type system as a set of rules for

steering code generation creation—that is, generation is governed

by the constraint that the output must be correctly typed. We

define and use traditional typing rules on our semantic types, e.g.,

if v has type VEC3___T____

then (ObjectToTangentSpace * v)

 has type VEC3___O____

except that we apply these rules backward when seeking to

coerce expression types. Thus the above rule would not be

applied to type-check the product expression but instead to find a

coercion of v from VEC3___T____ to VEC3___O____. Section 5.4

describes how this coercion search occurs.

The extremely narrow application domain of shading

languages is what makes this type system reasonable; these

special-case typing rules and highly specified types probably

cannot be generalized to other domains or general purpose

languages.

5. Weaving Algorithm
We chose to implement the weaver as a pre-processor,

without a full parser. This allows the weaver to preserve

whitespace and comments within the atom bodies and allows

atom bodies with partial statements, e.g.,“ if (dot(N,V) > 0) { ”.

Because the weaver doesn’t parse the atom code, it can operate

on a variety of shading language syntaxes (GLSL, HLSL, Cg),

provided all atoms are implemented in the same language. This

design decision also leads to a straightforward implementation in

Java, which provides regular expressions and many other string

manipulation routines.

We now detail the four steps of the weaving algorithm.

5.1. α-Rename Variables
Because the atoms are implemented individually, it is likely that

some variable names are shared between them. In some cases this

is because an output of one atom becomes the input of another

and it really is the same variable. In other cases the same name is

used for distinct variables that cannot be combined.

The weaver first creates a unique code body for each node.

From this point forward there are no atoms bodies, only node

bodies. Where two nodes use the same atom, two copies of that

atom body are created. The weaver then assigns each node in the

tree a unique ID. It iterates over all input and output parameter

declarations (but not global declarations) of all nodes, seeking

variable name conflicts where the same name is used in two

different node bodies. Once all conflicts have been detected, the

weaver renames all variables within node bodies that conflict by

appending the unique node ID to the original name, e.g.

surfaceNormal → surfaceNormal_0001. We include the original

variable name to preserve readability of the output. This process

is a common semantics preserving transformation called α-

renaming.

 Employing α-renaming is overly conservative because it

destroys parameter linkage between nodes. However, this is not a

problem because subsequent weaver steps ensure correct linkage,

independent of parameter names.

Renaming only affects parameters that appear in the atom

declaration. We avoid atom-local variable name conflicts by the

convention of wrapping atom bodies with a local scope “{…}”.

Underbar is Wildcard

82

5.2. Topologically Sort Nodes
The weaver creates a new terminal node accepting a single input

for the pixel color and a directed edge into this node from any

node with no output (there is typically only one such node).

In the abstract tree DAG, edges represent the data

dependencies between atoms. Without destroying the tree

structure, the weaver assigns a topological ordering to the graph

nodes based on these dependencies. The new node appears last in

the topological ordering.

5.3. Match Inputs to Outputs
We now come to the core of the algorithm. The weaver begins

with the terminal node at the bottom and works up the shade tree

in reverse topological order to the inputs at the top.

For each node, the weaver matches each input parameter to

an output parameter from a parent node. Two parameters match

only if both have precisely the same semantic type. Our semantic

types are specific enough that there is rarely a perfect match. The

weaver therefore seeks an output and a coercion that will

transform the output type to the input type. The coercion search

proceeds as follows. Consider the implicit coercion tree in

Figure 3 where the root is the type of the input parameter for

which a corresponding output is being sought (note that this is

unrelated to the shade tree). The leaves are the types of the

available outputs from nodes higher up the abstract shade tree.

The edges are coercions (i.e., typing rules run backwards) and the

internal nodes are the types of intermediate expressions produced

during a series of coercion operations. The tree is infinite because

of cycles: one may reach world space from tangent space by the

two-step coercion tangent → object → world, but also by any

coercion of the form tangent→object→tangent→object→ …→ world.

Of course, we never want to apply such a complicated

coercion path when a better alternative exists. Our notion of

‘better’ includes both the length of a coercion path and the time

cost of traversing each edge. The cost of each coercion edge is

based on the anticipated cycle count for executing that operation

at run-time. For example, transforming a pre-normalized world-

space light vector to object space by a matrix multiplication may

be faster than normalizing an existing but non-unit object-space

light vector. The children of a coercion tree node are arranged

from left to right according to the increasing cost of each rule.

The tree is explored on the fly and never fully constructed.

The search for a viable coercion begins at the root of the

coercion tree and proceeds downwards breadth-first, left-to-right.

It terminates when the first type node is encountered that matches

one of the available output types, or when depth seven is reached.

Any value around seven is a reasonable cutoff; the key idea is to

allow enough coercions for the anticipated worst case, which is

from an arbitrary tangent-space 3-vector to a normalized,

swizzled, screen-space 4-vector. Because we have ordered the

rules based on cost, the first condition indicates that we have

found the best coercion to some output. Regardless of total

performance cost, we consider a short coercion path better than a

long one because it is likely semantically closer and therefore

probably what the user intended.

The second termination condition indicates that there is likely

no meaningful coercion available from an output parameter,

possibly because we have reached a root of the abstract shade

tree. In this case, the weaver then searches the original atom

declaration for a default global to link that parameter against. If

that search fails to find a match, the weaver introduces a new

global uniform parameter of the matching type. The matching

process is guaranteed to succeed.

When a match has been made for an input, any needed

coercions are inserted back into the shade tree. Edges of the

coercion tree become new nodes in the (now slightly less

abstract) shade tree. The weaver then proceeds to the next input

variable. Because the shade tree has been modified, any intermediate

coercion product becomes available to match future inputs, as does

any newly introduced uniform. This is necessary to avoid creating

redundant coercions and globals. When all inputs of one node have

been matched, the weaver proceeds to the next-higher node in the

topological ordering.

5.4 Concatenate Node Bodies
To form the shader code, the weaver concatenates all global

parameter declarations, struct declarations, and the node bodies in

topological order wrapped by “void main(void) {…}”.

Since we preserved variable names, the uniform parameters

will have meaningful names. This makes it possible to map them

to GUI elements in IDEs such as RenderMonkey or FX

Composer for interactive adjustment.

Finally, the weaver inserts a series of #define macros that

map all semantic types used in the shader to legal GLSL storage

classes. The output shader can be run from any OpenGL program

or shader preview tool.

6. GUI Implementation
Our GUI tree editor, shown in Figure 2 with a 3D scene in the

RenderMonkey, is implemented as a plug-in to the Eclipse IDE.

This allows programmers to easily move between atom editing in

a traditional code editor and experimentation with those atoms in

the abstract shade tree editor. Eclipse provides automatic layout

and rendering of graphs, simplifying the implementation.

We render the feature outlines to off-screen bitmaps and then

composite them over the tree. Each feature outline is rendered

with a variation on [Raskar99] as follows: Clear the off-screen

bitmap to transparent. For each node in the feature (note that a

node may belong to multiple features, like Fresnel in Figure 1),

render a colored, solid, rounded rectangle f pixels larger than the

node itself, where f is a unique small integer for each feature. The

varying radii keep adjacent features outlines from overlapping.

Likewise, render a thickened line segment for each arrow

between two nodes in the feature. Finally, clear the interior by

rendering the same shape with an f – 2 radius and a transparent

fill color, and composite the resulting outline over the graph.

VEC3___O_NOR

NormalWorldToEyeSpace

VEC3___W_NOR

NormalTangentToObjectSpace

VEC3___T_NOR

VEC3___O_NOR

VEC3___E_NOR

VEC3___T_NOR

VEC3___O_NOR

NormalObjectToTangentSpaceNormalObjectToWorldSpace

NormalWorldToObjectSpace
NormalTangentToObjectSpace

Figure 3: Sample coercion tree mapping the possible paths
through the type rules for coercing a tangent space normal to an
eye-space normal. Many possible paths are not explored because
the all-left branch leads to a successful coercion.

83

7. Results
Figures 4-7 show abstract shade trees created with our system.

Each figure displays the actual tree as it appears in the authoring

system (left) and the GLSL shader produced by the weaver for

that tree (right), superimposed over an image of an object

rendered with that shader. The GLSL output in the result figures

is color-coded. Light lines of code correspond to atoms that have

been inlined. Dim lines correspond to parameter linkage,

coercions, and type macros inferred by the weaver.

 Figure 4 is the bumpy glass shader we considered in Figure 1.

The full code is given in the Appendix to give a sense of the

weaver’s output. In allowing non-programmers to effectively

create shaders, we have not diminished the importance of

programmers on a team but instead focused their role. Note that

most of the output code in the Appendix is necessary but

uninteresting because it is boilerplate and linkage between atoms.

This is also true in the other examples. Because the weaver

assumes the duty of generating the necessary “glue” code,

programmers concentrate on creating and optimizing atom

bodies, which is the interesting part of their role that requires

graphics, programming, and mathematical expertise.

 The underlying features/effects described in the captions are

clearly visible in the tree diagrams. Even a non-programmer can

see the interaction between features and manipulate them easily.

In Figures 4 and 7 the features share central nodes where they

overlap. To create these, the user dropped the separate features

into the workspace, which created duplicate nodes. The user then

explicitly combined those common nodes.

7.1. Performance
The result figures demonstrate that shader creation is easy in our

system, that the weaver can produce correct GLSL code, and that

the abstract shade tree is both more compact and easier to

understand than a traditional tree or code. The generated shaders

are efficient. All examples run at hundreds of frames per second

on a laptop with a Radeon 9700 Mobile GPU. The weaver itself

is efficient; each example took less than one second to generate.

To compare the performance of the generated code to hand

written code, we hand-wrote an optimized GLSL shader for the

effects in the bumpy glass shader. The manual implementation

contained only 58 lines of GLSL code compared to the weaver’s

188 lines, which are shown in the appendix. However, the weaver

generates a lot of comment and variable name linkage overhead.

When both shaders are compiled to hardware assembly with

NVIDIA’s Cg compiler, the weaver’s implementation contains

51 instructions and the manual implementation contains 46

instructions. Shading every pixel at 512×512, the weaver’s

implementation achieves 240 fps and the manual implementation

achieves 245 fps. At 1024×768, both render at 50 fps.

7.2. Limitations
Our system always produces a legal, type-safe program.

However, there are three ways that program can still fail to meet

expectations. The first is that it allows creation of shaders that

exceed the instruction and register count limits of today’s

hardware. See Chan et. al [2002] for a multi-pass solution.

 Second, the weaver can produce less efficient code than a

programmer in cases where a whole-program optimization is

appropriate, e.g., moving all lighting from world space to object

space to avoid repeated per-pixel transformations. To perform

such an optimization, the compiler would have to both understand

Figure 4: Bumpy glass.

Figure 5: Parallax mapping, texture mapping, and Phong
illumination on a teapot.

Figure 6: Anisotropic specular reflection with isotropic diffuse
reflection on the wings of a butterfly.

Figure 7: Projective light, shadow map, and Phong illumination.
Note the interlacing of features.

84

spatial transformations at not just a semantic but an operational

level, and have control over not only the shading algorithm but

also the host C++ program into which it is integrated. This is

interesting future work but significantly beyond the scope of our

semantic type approach.

 The third case, semantic errors, is the most interesting. We

invited laypeople (non-programmers, non-artists) to experiment

with effect creation. After we explained the UI and primitives

they were generally able to produce shaders, which we consider a

great success compared to current tools. However, they had

difficulty choosing between similar primitives with different

types, which often led to inefficient semantic type coercions for

the desired effects. When the tool failed to produce the effect that

the user expected, it was usually because two nodes received

input from the same output when they should have been distinct

(e.g., imagine both Modulate nodes linked to input x in Figure 1).

This occurs when the user fails to add sufficient dependency

arrows and when the dependency is implicit in a global variable.

Like the excessive transformations, missing dependencies are a

user error that would likely not occur with real artists; a follow-

up user study will measure the experiences of trained artists.

Incorrect linkage of two primitives to the same global

variable only occurs when the common semantic type of the

primitives is too general. Here, fault lies with the programmer

who created the primitives and not the artist or the weaver. The

programmer must, however, tread a delicate line: types that are

too specific will never match exactly and require more coercions,

but types that are too general produce incorrect semantics. On

one hand, it is a drawback of our system that programmers must

expend much effort tailoring the interface types. On the other

hand, we argue that interface semantics are exactly where

programmers should think hard! We automate the linkage,

boilerplate, and coercion precisely so that programmers can focus

on design, which requires human intelligence.

8. Other Future Work
Our cost ranking of coercions is based on instruction count and

intuition. A natural step is to use an actual cycle count. The

challenge here is that the true time cost of a GPU operation

depends on the instructions surrounding it, cache state, and the

instruction scheduler.

On the programming language side, we envision an extension

to parameterized types like C++ templates, which would enable

more specific function types than our polymorphism. For

example, we assign the addition operator the type VEC___ × VEC___

→ VEC___, yet VEC_<T> × VEC_<T> → VEC_<T> is more specific.

A formal semantics, type system, and proofs for our system

will serve as a good case study for the literature on domain-

specific languages and feature-based programming.

9. Conclusions
We addressed the problem originally noted by Abram and

Whitted by making type mismatches in shaders impossible. We

also enable shader creation by users who do not even have

knowledge of types, programming concepts like variables, or the

vector math used to implement algorithms inside the atoms.

We presented a new system for authoring complex GPU

programs through automatic combination of primitive shading

functions. In doing so, we extended GLSL with semantics types

specific to computer graphics in a backwards-compatible manner.

We anticipate that GLSL (like assembly language and C before

it) will increasingly be produced as the output of a higher order

tool. We will propose to the OpenGL architectural review board

that semantic types be considered for the language standard, for

use by both programmers and other tools like ours.

Our system uses many heuristics to infer parameter linkage.

Even with our strong semantic types, it is a natural concern that

the heuristics can produce a legal program with semantic errors.

Fortunately, in graphics a semantic error is easily diagnosed

because the image produced is incorrect. The interative editing

context of our Eclipse plug-in and RenderMonkey allows the

shader author to correct the shade tree until the desired result is

achieved. We speculate that our methodology is appropriate for

similar domains like image- and audio-filter design, but

inappropriate for general purpose programming that lacks easy

feedback and a small set of semantic types.

 Our system extends previous work, allowing non-

programmers to more easily create more complex shaders. It also

visualizes shaders with easy-to-understand block diagrams. The

advantage of abstract shade trees over hand-coded shaders or the

one-to-one visual editors will only increase as hardware becomes

ever more capable and the desired shaders increase

commensurately in complexity. It literally took only seconds to

create each of the abstract shade trees for our result figures;

implementing similar shaders by hand in GLSL took us hours of

coding and debugging for each shader. These shader examples

contain about four effects each. Now consider GPUs of the future

that are able to render ten or twenty interacting effects in real-

time. Under today’s workflow, an artist might ask a programmer

to hand code a different effect combination for every object in a

scene. That will not be feasible when each shader contains

thousands of lines of code. Our tool addresses the authoring

problem by making it possible for artists to create these shaders

themselves and by making the process easy and enjoyable.

This work is supported in part by the National Science Foundation.

10. References
ABRAM G. D., WHITTED T. Building block shaders. Computer

Graphics, 24:4, 1990, pp 283—288

BATORY D., Feature-Oriented Programming and the AHEAD

Tool Suite, ICSE, 2004

BORAU R., DOMIK G., GOETZ F. An XML-based visual shading

language for vertex and fragment shaders, 3D technologies for

the World Wide Web, in Proc. 3D Web Tech., 2004, pp 87—97

BATORY D. AND O'MALLEY D., The Design and Implementation of

Hierarchical Software Systems with Reusable Components,

TOSEM, 1992, 1:4, pp 355—398

BUCK I., FOLEY T., HORN D., SUGERMAN J., FATAHALIAN K.,

HOUSTON M., AND HANRAHAN P., Brook for GPUs: Stream

Computing on Graphics Hardware, ACM Trans. on Graph., 23:3,

2004, pp 777—784

CLEMENTS P. AND NORTHROP L., Software Product Lines: Practices

and Patterns, Addison-Wesley, 2002

COOK R. L. Shade Trees. In Proc. Computer Graphics and

Interactive Techniques, July 1984, pp 223—231

CHAN E., NG R., SEN, P., PROUDFOOT K., HANRAHAN, P. Efficient

Partitioning of Fragment Shaders for Multipass Rendering on Pro-

grammable Graphics Hardware, Graphics Hardware, 2002, pp 69—78

DIJKSTRA E. W., A Discipline of Programming, Prentice-Hall, 1976

KICZALES G., LAMPING J., MENDHEKAR A., MAEDA C., LOPES C.

V., LOINGTIER J., AND IRWIN J., Aspect-Oriented Programming,

ECOOP, June 1997

85

MCCOOL M. D., QIN Z., AND POPA T. S. Shader Metaprogramming.

Graphics Hardware, 2002. pp 57—68

MCCOOL M. D., DU TOIT S., POPA T., CHAN B., MOULE K., Shader

Algebra. ACM Trans. on Grap., 23:3, 2004, pp. 787—795

PARNAS D. L., On the Criteria To Be Used in Decomposing

Systems Into Modules, CACM, vol 15, no 12, Dec 1972, pp.

1053—1058

PELLACINI F., User-configurable automatic shader simplification,

ACM Trans. Graph., 24:3, 2005, pp 445—452

RASKAR R., COHEN M., Image Precision Silhouette Edges, I3D,

1999, pp 135—140

TURNER C. R., FUGGETTA A., LAVAZZA L., WOLF A. L., A

Conceptual Basis for Feature Engineering, Journal of Systems

and Software, vol 49, no 1, Dec 1999, pp 3—15

Visual Material Editor, Unreal Engine 3 Whitepaper, Epic

Corporation, 2006

http://www.unrealtechnology.com/html/technology/ue30.shtml

Appendix
GLSL code produced by the weaver from the abstract shade tree in

Figure 1. Boxed lines are hand written node bodies. Gray lines are

comments carried through from atom declarations. The remaining

lines are parameter linkage and coercions generated by the weaver.

1 #define VEC3___T_NOR vec3
2 #define VEC3___W_NOR vec3
3 #define VEC4___W_NOR vec4
4 #define VEC4_____NOR vec4
5 #define VEC3_____NOR vec3
6 #define VEC3_____TEX vec3
7 #define VEC4_____RGB vec4
8 #define VEC4________ vec4
9 #define VEC2_____TEX vec2
10 #define VEC3___T____ vec3
11 #define TEX2D sampler2D
12 #define MAT4 mat4
13 #define VEC3___O____ vec3
14 #define VEC3___O_NOR vec3
15 #define VEC3___W____ vec3
16 #define TEX4D samplerCube
17 #define FLOAT float
18 uniform FLOAT etaRatio;
19 uniform FLOAT fresPower;
20 uniform FLOAT fresScale;
21 uniform FLOAT fresBias;
22 uniform TEX4D evntCubeMap;
23 varying VEC3___W____ vIncoming_w;
24 varying VEC3___O_NOR nor;
25 varying VEC3___O____ bin;
26 varying VEC3___O____ tan;
27 uniform MAT4 matNorO2W;
28 uniform TEX2D normalMap;
29 uniform FLOAT bumpScale;
30 uniform FLOAT bumpBias;
31 uniform TEX2D heightTex;
32 varying VEC3___T____ vVew_t;
33 varying VEC2_____TEX texCoo;
34
35 //! STARTROUTINE refract
36 vec3 refract(vec3 I, vec3 N, float etaRatio) {
37 float cosI=dot(-I,N);
38 float cosT2=1.0-etaRatio*etaRatio*(1.0-cosI*cosI);
39 vec3 T = etaRatio*I+((etaRatio*
40 cosI-sqrt(abs(cosT2)))*N);
41 return T*vec3(cosT2>0.0);
42 }
43 //! ENDROUTINE refract
44
45 void main(void) {
46 VEC4________ a;
47 VEC4________ b;
48 VEC4________ sum;
49 VEC4________ modOutput_1010696501;
50 FLOAT x;
51 FLOAT oneMinus;
52 VEC4_____RGB colorFromEvt_314286916;
53 VEC3_____TEX cooRefr_w;
54 VEC4________ vTmp4;
55 FLOAT factor;
56 VEC4________ modOutput_1345567180;
57 FLOAT fresnelRatio;
58 VEC3_____TEX cubetexCoo;
59 VEC4_____RGB colorFromEvt_444161459;
60 VEC3_____NOR nor3Tmp;
61 VEC3___O_NOR nor3_o;
62 VEC4_____NOR nor4Tmp;
63 VEC4___W_NOR nor4_w;
64 VEC3___W_NOR vNormal_w;
65 VEC3_____TEX cooRefl_w;
66 VEC2_____TEX bumpCoords;
67 VEC3___T_NOR vNor_t;
68 VEC2_____TEX offsetCoo;
69 VEC4________ modOutput;
70 VEC4_____RGB colorFromEvt;
71

72 //! START ParallaxHeight
73 //! @params texCoo,vVew_t,heightTex,bumpBias,bumpScale
74 //! @return offsetCoo parallax cords
75 FLOAT bump=((texture2D(heightTex,texCoo).a)+ bumpBias)*bumpScale;
76 offsetCoo = bump * vec2(vVew_t.x, vVew_t.y) + texCoo;
77 //! END ParallaxHeight
78 bumpCoords = offsetCoo;
79
80 //! START NormalMap
81 //! @params bumpCoords, normalMap
82 //! @return vNor_t tangent space normal
83 vNor_t = texture2D(normalMap,vec2(bumpCoords.x,
84 bumpCoords.y)).xyz* 2.0-1.0;
85 //! END NormalMap
86
87 nor3Tmp = vNor_t;
88
89 //! START NormalTangentToObjectSpace
90 //! @params tan, bin, nor, nor3Tmp
91 //! @return nor3_o
92 mat3 matNorT2O = mat3(tan, bin, nor);
93 nor3_o = matNorT2O*nor3Tmp;
94 //! END NormalTangentToObjectSpace
95 nor4Tmp = vec4(nor3_o,0.0);
96
97 //! START NormalObjectToWorldSpace
98 //! @params matNorO2W, nor4Tmp
99 //! @return nor4_w
100 nor4_w = matNorO2W*nor4Tmp;
101 //! END NormalObjectToWorldSpace
102 vNormal_w = nor4_w.xyz;
103
104 //! START Reflect
105 //! @params vIncoming_w, vNormal_w
106 //! @return cooRefl_w World space reflected vector
107 cooRefl_w=normalize(reflect(vIncoming_w,vNormal_w));
108 //! END Reflect
109
110 cubetexCoo = cooRefl_w;
111
112 //! START CubeMap
113 //! @params cubetexCoo, evntCubeMap
114 //! @return colorFromEvt color from environment map
115 colorFromEvt = textureCube(evntCubeMap, cubetexCoo);
116 //! END CubeMap
117
118 colorFromEvt_444161459=colorFromEvt;
119 vTmp4 = colorFromEvt_444161459;
120
121 //! START Fresnel
122 //! @params vIncoming_w,vNormal_w,fresBias,
123 //! @params fresScale,fresPower
124 //! @multi-aspect
125 //! @return fresnelRatio Fresnel ratio
126 fresnelRatio = max(0.0,min(1.0,fresBias+fresScale*
127 pow(1.0+ dot(normalize(vIncoming_w),
128 normalize(vNormal_w)), resPower)));
129 //! END Fresnel
130
131 x = fresnelRatio;
132 factor = fresnelRatio;
133
134 //! START Modulate
135 //! @params vTmp4, factor
136 //! @return modOutput
137 modOutput = vTmp4*factor;
138 //! END Modulate
139 modOutput_1345567180=modOutput;
140
141 a = modOutput_1345567180;
142
143 //! START Refract
144 //! @params vIncoming_w, vNormal_w, etaRatio
145 //! @return cooRefr_w World space refracted vector
146 //! @routine refract
147 cooRefr_w = normalize(refract(vIncoming_w, vNormal_w, etaRatio));
148 //! END Refract
149
150 cubetexCoo = cooRefr_w;
151
152 //! START CubeMap
153 //! @params cubetexCoo, evntCubeMap
154 //! @return colorFromEvt color from environment map
155 colorFromEvt = textureCube(evntCubeMap, cubetexCoo);
156 //! END CubeMap
157 colorFromEvt_314286916=colorFromEvt;
158 vTmp4 = colorFromEvt_314286916;
159
160 //! START 1-x
161 //! @params x
162 //! @return oneMinus
163 oneMinus = 1.0-x;
164 //! END 1-x
165 factor = oneMinus;
166
167 //! START Modulate
168 //! @params vTmp4, factor
169 //! @return modOutput
170 modOutput = vTmp4*factor;
171 //! END Modulate
172 modOutput_1010696501=modOutput;
173 b = modOutput_1010696501;
174
175 //! START +
176 //! @params a,b
177 //! @return sum
178 sum = a+b;
179 //! END +
180
181 gl_FragColor = sum;
182 }

86

Figure 8. Shade trees and the equivalent code composited over the effects they produce. (Color reproductions of Figures 4-7).

Figure 1 Revisited: A conventional Shade Tree (left) for a “Bumpy Glass” shader, mocked up in the Visio drawing program.
The equivalent Abstract Shade Tree on the right is an actual screenshot from our shader authoring plugin to the Eclipse IDE.

Two cars and their shadows rendered with variance shadow maps. The resulting shadows have smooth penumbras, and are
rendered without aliasing in real time.

224

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

