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Abstract

We present a real-time algorithm to estimate the 3D

pose of a previously unseen face from a single range im-

age. Based on a novel shape signature to identify noses in

range images, we generate candidates for their positions,

and then generate and evaluate many pose hypotheses in

parallel using modern graphics processing units (GPUs).

We developed a novel error function that compares the in-

put range image to precomputed pose images of an average

face model. The algorithm is robust to large pose variations

of ±90 ◦ yaw, ±45 ◦ pitch and ±30 ◦ roll rotation, facial ex-

pression, partial occlusion, and works for multiple faces in

the field of view. It correctly estimates 97.8% of the poses

within yaw and pitch error of 15 ◦ at 55.8 fps. To evalu-

ate the algorithm, we built a database of range images with

large pose variations and developed a method for automatic

ground truth annotation.

1. Introduction

The estimation of head pose (location and orientation)

is often required during runtime (e.g., human-robot interac-

tion or monitoring driver-attentiveness) or during a prepro-

cessing step (e.g., multi-view face recognition or facial ex-

pression analysis). Most applications require real-time pose

estimation which is robust to large pose variations.

Face pose estimation from 2D images is sensitive to il-

lumination, shadows, and lack of features (e.g., due to oc-

clusions). Lately, 3D acquisition systems reached a level of

reliability such that range images can be used to overcome

these problems. However, the few pose estimation methods

for range images are often limited to a small pose range,

need manual initialization, are not running in real-time, or

do not work for images with multiple faces. Furthermore,

they often use pose tracking over multiple frames. Tracking

algorithms may suffer from drift or jitter, need a training

phase, require manual interaction (e.g., for key-frame se-

lection), and need a restart after complete occlusions of the

field of view.

We present an algorithm for automatic and real-time face

pose estimation for previously unseen faces in single range

images. It is robust to large pose changes (from profile to

frontal view), facial variations (e.g., expressions), partial

occlusions (e.g., due to glasses or hair), and to frame drop-

outs (e.g., due to complete occlusions). It also can handle

multiple faces in the field of view. As far as we know, this

is the first real-time method with all these features.

Fig. 1 shows an overview of the algorithm. In an offline
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Figure 1. Overview of the algorithm

step, range images of an average face are rendered for many

poses, and the resulting reference pose range images are

saved on the graphics card (1). During runtime, range im-

ages of faces are continuously acquired using the real-time

active light system of Weise et al. [27] (2). For each input

range image, the following steps are performed in parallel

on the GPU. For each pixel we compute signatures that are
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Figure 2. Pose estimation results: The left part of each image shows the range image and the signature of the nose candidates (lower left

corner). The right part shows the field of view of the range acquisition system. The estimated face poses are shown in white. The algorithm

is robust to large pose variations, partial occlusions (2(a)-2(c)), and expressions (2(d)). It handles multiple faces in the field of view by

accepting several hypotheses (2(e)), and detects bad estimations based on the confidence value (2(f)).

distinct for regions with high curvature, such as the nose

tip (3). This yields a set of candidate nose positions and

orientations (4) that we use as head pose hypotheses. We

then compute the error between the reference pose range

images corresponding to the pose hypotheses and the input

range image using a novel error function (5). The match

with the lowest error yields the final pose estimation and a

confidence value (6). To evaluate the performance of our

algorithm we acquired a database of annotated face range

images with systematic, large pose variations (c.f . [9, 19]).

Some pose estimation results are shown in Fig. 2.

Our approach follows a general tendency towards mas-

sively parallel computations that replace piecemeal analysis

on the basis of sophisticated feature extraction. The method

compares many pose hypotheses in parallel using modern

GPUs (see Germann et al. [8] for a similar example in the

area of bin picking for robotics). This strategy makes the

system far more robust: Global rather than local optima

are detected, and complete frame drop-outs (e.g., when the

field-of-view gets completely occluded) are overcome with-

out a problem. The speed of these computations surpasses

real-time due to the massive parallelism of modern GPUs.

2. Related Work

Face Tracking: Face tracking in video involves pose es-

timation, but its accuracy is mostly not explicitly measured.

An impressive system is presented by Vacchetti et al. [26],

which integrates key-frames with recursive tracking. How-

ever, tracking suffers from intrinsic disadvantages such as

drift, jitter, and the need for manual initialization or offline

key-frame selection. It is also limited to one face in the

field of view. In contrast, our approach deals with multiple

faces and works independently on each frame, which makes

it robust to occlusions and frame drop-outs.

Pose Estimation from 2D Images: Image-based pose es-

timation approaches analyze the entire image but require ex-

act localization of faces [5], or require pose-dependent fea-

tures. Often, separate detectors for a limited number of pose

classes are built and applied in turn [12, 21, 24]. Such meth-

ods usually require a very large number of labeled train-

ing examples. For their state-of-the-art system, Osadchy et

al. [18] used 52,850 face images to train a Convolutional

Neural Network which correctly classifies 80% of the yaw

rotations within 15 ◦ error at 5 fps. Image-based methods

can be enhanced by aligning a generic or person-specific

3D model to the input image (see [4] for a survey), e.g., by

aligning a 3D deformable model to 2D images [3, 10].

Some systems use stereo or multi-view images, but

do not explicitly use depth information for pose estima-

tion. They either match 2D feature patches (e.g., [16, 23])

or feature points (e.g., [29]) to a user-specific or generic

head model. Morency et al. [17] build 3D view-based

eigenspaces and use a Kalman filter to calculate the pose

change between frames. Since most of these methods are

part of a larger system (e.g., face recognition), pose accu-

racy is usually not explicitly evaluated. Some systems need

manual initialization, have limited pose range, or do not

generalize to arbitrary faces. In general, purely image-based

approaches are sensitive to illumination, shadows, lack of

features, and occlusions.

Pose Estimation from Range Images: Recently, the use

of range images (i.e., images with per-pixel depth) has be-

come attractive due to the decreasing cost and improved

quality of range scanners. Since 3D alignment methods like

ICP [2] need a good initialization, 3D features – e.g., the

nose – are often used for coarse pose estimation. Lu and

Jain [15] create hypotheses for the nose position in range

images by computing features based on directional max-

ima. For verification, they compute the nose profile using

PCA and a curvature-based shape index. Neither accuracy

nor performance are reported. Likewise, Colbry et al. [7]

generate six nose hypotheses based on global extremal 3D

points and the shape index, and compare them using person-



specific 3D models in 15 s. Chang et al. [6] match multiple

overlapping regions around the nose using curvature infor-

mation to find eye cavities, nose saddle and nose tip. Xu et

al. [28] look for extremal points and cap-like shapes. Actual

nose tips are found using a Support Vector Machine. Most

of these methods are not robust to large pose variations, and

do not lend themselves to real-time processing.

There have been a few real-time systems for pose esti-

mation from range images. Seemann et al. [25] present an

automatic system which runs at 10 fps and operates on each

frame separately (similar to our system). After face detec-

tion by a skin color detector, the pose is estimated using

one fully connected three-layer neural network for each ro-

tation. For the initialization of skin color histograms they

use a face detector [12] that requires the faces to be frontal.

Our system does not make any assumptions about the initial

face pose.

Germann et al. [8] developed a GPU pose estimation

method for bin picking of rigid objects. We adopt their over-

all strategy of comparing pre-computed reference range im-

ages with an error function to the input range image. How-

ever, we focus on the more difficult case of deformable

faces. In contrast to their method, we use a novel 3D

shape signature for rough pose initialization, a novel error

function for fine pose alignment, no distance maps, and no

downhill simplex optimization. We also developed a fully

functioning system, including real-time range image acqui-

sition, and evaluate its performance on thousands of range

images with ground truth annotations.

3. Pose Estimation Algorithm

We discuss our algorithm in detail according to the num-

bering in Fig. 1. The choice of algorithm parameters is dis-

cussed in Sec. 4.3.

1. Reference pose range images We generate an average

3D face model from the mean of an eigenvalue decomposi-

tion of laser scans of 97 male and 41 female adults (similar

to Lee et al. [14]). The subjects are not contained in our

test dataset for the pose estimation. The average model is

rendered for many poses, and the resulting reference pose

range images are directly stored on the graphics card.

2. Range image acquisition We use the real-time stereo-

enhanced structured-light method developed by Weise et

al. [27], running at 28 fps. The range images are pro-

cessed for noise and outlier removal using discontinuity-

aware Gaussian smoothing and morphological operators.

The setup is shown in Fig. 3(a), and a resulting face recon-

struction result is shown in Fig. 3(b).

3. 3D shape signature computation Finding the nose

tip and its orientation as local positional extremities is a

good strategy to roughly estimate head pose (c.f ., Lu and

Jain [15]). To that end, we use a novel 3D shape signature

(a) (b)

Figure 3. a) Scanning setup. b) Range image after noise and outlier

removal.

(a) (b)

Figure 4. a) The single signature Sx is the set of orientations o

for which the pixel’s position x is a maximum along o compared

to pixels in the neighborhood N(x). b) Single signatures Sj of

points j in N ′(x) are merged into the aggregated signature S′

x.

(which is computed for each pixel) instead of computing

the surface curvature like previous methods (e.g., Chang et

al. [6]), because curvature computation is sensitive to noise

which mostly is present in range images. Secondly, nose

detection in profile views based on curvature is not reli-

able because the curvature of the visible part of the nose

significantly changes for different poses. Furthermore, our

signature is more efficient to compute on the GPU than an

approximated curvature.

We define the orientation parameters as yaw (φ), pitch

(θ) and roll (ψ) around object-centered rotation axes (see

Fig. 7(b) for an illustration of the rotation angles and axes).

The reference frame is aligned with the camera. The single

signature Sx for pixel x is obtained as:

Sx = {o = (φ, θ) | ∀i ∈ N(x) : d(i,o) ≤ 0}, (1)

where d(x,o) is the distance to the plane through x with

normal orientation o = (φ, θ). Because we operate on

range data (2.5D), we only compute S(x) for the orienta-

tions on the half sphere towards the camera.

As shown in Fig. 4(a), Sx corresponds to a boolean ma-

trix, where each cell corresponds to an orientation o. A cell

is marked (red in the figure) if the pixel’s 3D position is

a maximum along this orientation compared to pixels in a

neighborhood N(x). Such a pixel is called a local direc-

tional maximum.



(a) (b)

Figure 5. a) Some aggregated signatures for different face regions.

They are similar, e.g., for nose and chin, or for cheek and forehead.

b) Nose candidates generated from the signatures (white crosses).

The resulting single signatures are sparse (i.e., contain

only few orientations) because one pixel is a local direc-

tional maximum only for a few orientations. Therefore, sin-

gle signatures are not distinctive enough to distinguish dif-

ferent facial regions. In order to arrive at signatures that are

more characteristic for local shape, single signatures Sj of

points j in a neighborhood N ′(x) are merged to an aggre-

gated signature S′
x by a boolean OR operation:

S′
x = ∪

j∈N ′(x)
Sj (2)

Thus, a cell of the aggregated signature is marked if any

point j ∈ N ′(x) is a local directional maximum for the

neighborhood N(j) (see Fig. 4(b)). The influence and

choice of N and N ′ are discussed in Sec. 4.3.

As can be seen in Fig. 5(a), the resulting signatures re-

flect the characteristic curvature of facial areas. The aggre-

gated signatures are distinct for large, convex extremities,

such as the nose tip and the chin. Their marked cells typi-

cally have a compact shape and cover many adjacent cells

compared to those of facial regions which are flat, such as

the cheek or forehead. Furthermore, the aggregated signa-

tures look similar if the head is rotated.

4. Generating nose candidates and pose hypotheses We

select points as nose candidates based on two criteria: first,

at least T of the cells of an aggregated signature have to be

marked (see Sec. 4.3 for the choice of T ). Second, the cell in

the center of all marked cells, called the mean orientation,

has to be part of the pixel’s single signature. This ensures

that the pixel is a “typical” point for the area represented

by the aggregated signature. Fig. 5(b) shows the resulting

nose candidate pixels based on the aggregated signatures of

Fig. 5(a). The 3D positions and mean orientations of nose

candidate pixels form a set of head pose hypotheses.

5. Alignment error computation In order to compute the

fine head pose estimation, an error function evaluates the

alignment of reference pose range imagesMo and the input

(a) (b)

Figure 6. a) The average 3D face model. b) An alignment of one

reference pose range image and the input image. The red and blue

areas correspond to the pixel sets V and V−1 in Eq. 6 and 7.

range image Ix. In the first rough alignment pass, all ref-

erence pose range images that correspond to the head pose

hypotheses from the shape signatures are being evaluated.

The best matching reference pose range images (i.e., with

the smallest error) are being passed on to the second pass.

The orientations of the reference pose range images have

been sampled more densely than the orientations of the

shape signatures (see Sec. 4.3). Therefore, in the second

fine alignment pass, the best matching reference pose range

images are augmented with additional adjacent reference

pose range images. This new set of head pose hypotheses

is then compared to the input image using the error func-

tion, and the best match is output as the final pose estimate.

Fig. 6(a) shows the average 3D face model used for the ref-

erence pose range images, and Fig. 6(b) shows an example

of the alignment errors.

The nose and chin positions have been annotated by hand

in the reference range images Mo. First, the input image

is translated such that each nose candidate position x is

matched to the annotated nose position in Mo. The size of

Mo is scaled according to the z-value at the nose candidate

position x. We then compute a per-pixel error function:

e(Mo, Ix) = ed(Mo, Ix) + λ · ec(Mo, Ix) + C, (3)

where ed is a depth difference error term, ec is a coverage

error term, and λ controls their influence. The constant C

is added if no signatures are found in the chin area that has

been marked in Mo. This penalizes cases where a nose

candidate position x is actually at the chin, which is then

mistakenly being placed at the nose of the reference image.

Depth Difference Error Term: The error term ed com-

putes the normalized sum of squared depth differences be-

tween reference and input range image for all foreground

pixels (i.e., pixels where a depth was captured). The func-

tions Mo(u) and Ix(u) return the depth at pixel position

u and −∞ for background pixels for the reference image

and the input range image, respectively. The sets VMo and

VIx consist of the foreground pixels returned by Mo(u)
and Ix(u):

VMo = {u |Mo(u) 6= −∞} (4)



VIx = {u | Ix(u) 6= −∞} (5)

The set V = VMo ∩VIx contains all pixels which are fore-

ground in the input image as well as the reference image

(the red area in Fig. 6(b)). The depth difference error term

is defined by:

ed(Mo, Ix) =

∑

u∈V (Mo(u) − Ix(u))2

| V |
(6)

Coverage Error Term: The depth difference error term

only computes an error over foreground pixels, without tak-

ing into account the number of pixels. Hence, it does not

penalize small overlaps between input and model (e.g., the

model could be perfectly aligned to the input but the over-

lap consists only of one pixel). Hence, this error term is

necessary to boost the prominence of alignments where all

foreground pixels of the reference model fit to foreground

pixels of the input image.

The set V−1 = VMo \VIx contains all foreground pixels

of the reference image that have no correspondence in the

input image (the blue area in Fig. 6(b)). The coverage error

term is the squared ratio of pixels defined by V−1:

ec(Mo, Ix) =

(

| V−1 |

| VMo|

)2

(7)

6. Final pose estimation The comparison of the input

range image against many reference pose range images is

being performed in parallel on the GPU. The pose of the

reference pose range image with the smallest error value

is output as the final pose estimate. Additionally, its error

value can be used as a confidence value (see Sec. 5).

4. Implementation

4.1. Optimization for the GPU

We implemented the pose estimation algorithm com-

pletely on the GPU (NVIDIA GeForce 8800 GTX), mak-

ing use of the Compute Unified Device Architecture of

NVIDIA [1] to exploit the GPU as a generic data-parallel

computing device. The GPU comprises 16 multi-CPUs

(mCPUs), where each of them can execute one or more

blocks of up to 512 threads each. Threads in the same

block can communicate efficiently using the shared mem-

ory, whereas threads on different mCPUs can only commu-

nicate over the global GPU memory, which is a few magni-

tudes slower.

To compute the single signatures, the input range image

is divided into adjacent patches of size N(x) (see Eq. 1).

A patch is loaded into shared memory only once and the

threads jointly access the shared memory. To compute

the signatures at locations of a directional maximum, each

thread checks a neighborhood of size N(x) for its direc-

tional maximum (see Eq. 2). Since we chose N = N ′ (see

(a)

ș
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ȥ

(b) (c)

Figure 7. a) Two scans, registered using sequential ICP. b) Illus-

tration of rotation angles and axes for pose estimation (white), and

relative frame pose annotation (transformation of ψ-axis to green

arrow). Previously registered frames are colored grey, the current

scan green. c) Camera trajectory for one acquisition sequence.

Dotted red lines depict additional multi-view registration pairs.

Sec. 4.3), a thread aggregates its signatures by processing

the list of single signatures of neighboring patches.

For the pixel-wise computation of the error function

(Eq. 3), every block evaluates one pose hypothesis using

100 threads that compare different parts of the reference

range images. Because loading one contiguous block is sev-

eral magnitudes faster than random access, blocks contain-

ing as many contiguous pixels of the range image as there

are threads are loaded together. Each thread then simulta-

neously processes its pixel within the block, i.e., in an inter-

leaved fashion. Intermediate errors are stored in the shared

memory and eventually collected by the last thread.

4.2. Data Set and Ground Truth Annotation

We created a test data set consisting of 10,545 range

images from 26 people (male and female).1 Each person

freely turned her head (see Fig. 7(c) for a typical cam-

era trajectory) while the scanner captured range images at

28 fps. The resulting range images have a resolution of

640× 480, and a face typically consists of about 150× 200
depth values. Usually, range data is annotated with ground

truth by one the following methods (e.g., see the survey by

Gross [9]): capturing images from several viewpoints at the

same time with cameras at known positions (e.g., measured

by a theodolite), using one camera and asking the subject

to look to hand-marked points in the room, computing the

angle by manually clicking to unique locations or markers

on the face, or using magnetic sensors (flock of birds).

Instead, we capture ground truth data by determining

the relative pose difference between a frontal anchor pose

and the captured range images in the sequence. We mea-

sure the pose difference between subsequent frames using

ICP [2, 22, 11] and concatenate the consecutive transforma-

tions. Fig. 7(a) shows an example ICP registration of two

consecutive scans, and Fig. 7(b) shows one frame in relation

to the previous scans. Since sequential registration leads to

an accumulation of errors [22], we use a combination of

1www.vision.ee.ethz.ch/˜bremicha/cvpr2008/



the methods of Krishnan et al. [13] and Pulli [20] to sub-

stantially reduce the error over all scans. To achieve this,

additional pair-wise registration constraints between non-

consecutive scans are added to the ICP procedure (see the

dotted red lines connecting different parts of the camera tra-

jectory in Fig. 7(c)).

With our method, a recorded range image stream of

about thirty seconds is automatically annotated in a few sec-

onds, very precisely and without manual interaction, assum-

ing the face in the first frame is frontal.

4.3. Algorithm Parameters

The parameters of the algorithm depend on the resolu-

tion of the range images and are independent of the specific

hardware setup. In this section, we discuss the choice of

these parameters.

We rendered the 3D average face model for the pose ori-

entations φ ≤ ±90 ◦, θ ≤ ±45 ◦, and ψ ≤ ±30 ◦ with step

sizes of 6 ◦ for φ and θ, and 15 ◦ for ψ. This defines the set

of reference pose range images. Note that it also defines the

minimum error for the final pose estimate.

Each signature is computed for 56 orientations resulting

from a regular angular sampling of the hemisphere. After

evaluation of the error function during the rough alignment

pass, we select the 5 best rough pose hypotheses together

with their 5×5 neighbouring orientations from the reference

range image set. This set of up to 125 poses is evaluated in

the fine alignment pass, and the best match is output as the

final pose estimate. We experimentally chose those orienta-

tion sampling densities to achieve a good balance between

accuracy, memory footprint, and speed of our method.

The neighborhood areas N ×N and N ′ ×N ′ (see Eq. 1

and 2) control the size of the neighborhood for which a point

has to be a directional maximum, and the neighborhood in

which single signatures are aggregated, respectively. For

both N and N ′ we experimentally chose a size of 31. Fig. 8

shows the nose candidates generated from the resulting sig-

natures whenN orN ′ is varied between 11, 31 or 51 pixels,

while keeping the other one fixed to 31 pixels. IfN is small,

a pixel is more probable to be a directional maximum for

many orientations (see Fig. 8(a)). Therefore, the signatures

of different pixels look more similar, which results in more

nose candidates, many of which are wrong. In contrast, the

nose candidates that result from a very large N are pixels

that are global directional maxima, i.e., which are the max-

imum for an orientation compared to all other points. This

is very sensitive to outliers or occlusions.

Fig. 8(b) demonstrates the influence of N ′. If N ′ is

larger, single signatures in a larger area are included. There-

fore, if N ′ is too large, all aggregated signatures contain

many orientations and look similar for pixels from different

facial regions. However, if N ′ is too small, the signatures

are not distinctive because they represent not the character-

(a)

(b)

Figure 8. The resulting nose candidates (white crosses) for a) N

and b) N ′ equal to 11, 31, and 51 pixels (black squares).

istics of a facial area but only of a few pixels.

To determine λ, which controls the influence of the error

terms in Eq. 3, we analyzed the number of correct orienta-

tion estimates for yaw and pitch with an error smaller than

10 ◦, 12 ◦, 15 ◦, and 20 ◦. We call the percentage of orien-

tations satisfying this criterion the pose estimation success

rate. For all our experiments, we consider the estimated

nose position correct if its Euclidean Distance to the true

position is less than 20 mm. For these tests we used five sub-

jects who are not part of the ground truth data set. The high-

est pose estimation success rate is achieved for λ = 10, 000,

independent of the error criterion (see Fig. 9(a)). The con-

stant C in Eq. 3 is experimentally determined and turned out

to be robust for all test scenes.

Fig. 9(b) shows the pose estimation success rate and fps

for different resolutions of the reference range images. For

each resolution, we varied the signature threshold T for

nose candidate selection (see Sec. 3). T controls which and

how many nose candidates are evaluated by the error func-

tion. Even though we only show values for T for one exam-

ple resolution in the figure, they all follow the same trend,

and T = 6 achieves maximum success rate independent

of the resolution. Surprisingly, the pose estimation success

rate is still good for very low reference range image reso-

lutions. Based on these experiments, we chose a resolution

of 32 × 32 pixels for the reference images and a signature

threshold T = 6.

5. Results and Discussion

In the ROC plot in Fig. 9(c), the performance of the algo-

rithm is evaluated for different error criteria (see Sec. 4.3).

For a pose error of within 15 ◦, our algorithm classifies

97.8% of all test data correctly, 98.4% for 20 ◦, and 80.8%
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Figure 9. a) Pose estimation success rate for different values of λ in Eq. 3. We chose λ = 10, 000. b) Pose estimation success rate for

different reference range image resolutions. For each resolution we vary T (see Sec. 3), as shown for one example. Even for very low

resolutions the success rate is still high. c) The ROC curves demonstrate the pose estimation performances for different error criteria.

for 10 ◦, respectively. Compared to other systems that work

for such large pose variations, like the one of Seemann et

al. [25] (95.1% pose estimation success rate for an error

smaller than 20 ◦, and 75.2% for 10 ◦), or the state of the

art 2D system of Osadchy et al. [18] (80% correctly es-

timated yaw-rotations within 15 ◦ error), our method ap-

pears to be more accurate (and is faster, see below). How-

ever, no direct comparison is possible because different

datasets were used. With a conservative threshold for a

true positive rate of 80% and false positive rate of 3%, the

mean error and standard deviation of the pose estimation are

(µφ = 6.1 ◦, σφ = 10.3 ◦), (µθ = 4.2 ◦, σθ = 3.9 ◦), and

(µnose = 9 mm, σnose = 14 mm), respectively. Because

our test dataset does not include roll rotations, we quantita-

tively evaluated only the estimation of yaw and pitch rota-

tion. However, our method is able to robustly estimate arbi-

trary roll rotations by including appropriate reference pose

range images, as shown in the companion video. The test

data set covers a pose range of ±90 ◦ yaw and ±45 ◦ pitch

rotation. Since the pose coverage is not uniform for differ-

ent poses (because the persons were allowed to freely move

their head), we normalize the pose error over the number

of available test images per pose range. In Fig. 10, the test

images are divided into pose areas of 15 ◦ × 15 ◦, and the

number of images per area is color-encoded. For each pose

area, the pose estimation success rate (see Sec. 4.3) is indi-

cated. We only show estimation results for areas where at

least 10 test images were available. This evaluation demon-

strates that even for large pose variations, such as in profile

views, the results of the algorithm are good. To the best of

our knowledge, the pose estimation accuracy has not been

evaluated for other methods that work for such large pose

variations. Therefore, no direct comparisons are possible.

The resulting computation time for different parts of the

algorithm are shown in Table 1. On average, about 481

pose hypotheses are evaluated. The performance for the

pose estimation algorithm is about 55.8 fps, or about 42.5
fps including data transfer from memory to GPU. This is

Figure 10. Pose estimation success rate dependent on pose area:

The data set is divided into pose areas of 15 ◦ × 15 ◦ and colored

proportional to the number of test images in this area (see color

scale). The number in each area is the success rate.

Signature Computation 3.5 ms

Signature Selection 2.1 ms

Selection of 5 Pose Hypotheses 9.6 ms

Error Comput. of 125 Hypotheses 2.8 ms

Total Pose Estimation 18 ms (55.8 fps)

With Data Loading Memory - GPU 23.5 ms (42.5 fps)

Table 1. Computation time for different parts of the algorithm.

some factors faster than other comparable methods (e.g.,

Seemann et al. [25] report a runtime of 10 fps). The range

image acquisition system runs at 28 fps. Together, the com-

plete system runs at about 15 fps on one machine with an

Intel Core Duo 2 CPU and a NVIDIA GeForce 8800 GTX.

Because of the low resolution of the reference images

(see Sec. 4.3), the average face model generalizes well, and



face variations due to differences between persons, expres-

sion, or glasses etc. can be neglected (see Figs. 2(a)-2(c)).

Although our algorithm fails if the nose in the image is com-

pletely occluded, wrong estimations can be detected based

on the low confidence (i.e., high error) value (see Fig. 2(f)).

Furthermore, our method estimates the pose of several faces

in the same image without additional computation time (see

Fig. 2(e)). We simply output either the n best pose hypothe-

ses, or those whose error is below a certain threshold.

6. Conclusion

Our real-time pose estimation algorithm is scalable, ro-

bust to large pose changes and facial variations, works for

previously unseen persons and multiple faces in the field

of view, does not require manual initialization or interac-

tion, does not suffer from the disadvantages of tracking, and

does not require a costly training procedure with a lot of

data. While previous approaches might be almost as fast

or precise, our algorithm combines the advantages of dif-

ferent methods. This makes it unique and possible to gen-

eralize for other applications. Future work will include ex-

periments with different range data acquisition systems, and

systematic evaluation of roll rotation estimation.
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