
Scalable and Interactive Segmentation and Visualization of
Neural Processes in EM Datasets

Won-Ki Jeong,
School of Engineering and Applied Sciences at Harvard University

Johanna Beyer, IEEE[Student Member],
VRV is Center for Virtual Reality and Visualization Research, Inc

Markus Hadwiger, IEEE[Member],
VRV is Center for Virtual Reality and Visualization Research, Inc

Amelio Vazquez, IEEE[Student Member],
School of Engineering and Applied Sciences at Harvard University

Hanspeter Pfister, IEEE[Senior Member], and
School of Engineering and Applied Sciences at Harvard University

Ross T. Whitaker, IEEE[Member]
Scientific Computing and Imaging Institute at the University of Utah
Won-Ki Jeong: wkjeong@seas.harvard.edu; Johanna Beyer: msh@vrvis.at; Markus Hadwiger: johanna.beyer@vrvis.at;
Amelio Vazquez: amelio@seas.harvard.edu; Hanspeter Pfister: pfister@seas.harvard.edu; Ross T. Whitaker:
whitaker@cs.utah.edu

Abstract
Recent advances in scanning technology provide high resolution EM (Electron Microscopy)
datasets that allow neuroscientists to reconstruct complex neural connections in a nervous system.
However, due to the enormous size and complexity of the resulting data, segmentation and
visualization of neural processes in EM data is usually a difficult and very time-consuming task.
In this paper, we present NeuroTrace, a novel EM volume segmentation and visualization system
that consists of two parts: a semi-automatic multiphase level set segmentation with 3D tracking for
reconstruction of neural processes, and a specialized volume rendering approach for visualization
of EM volumes. It employs view-dependent on-demand filtering and evaluation of a local
histogram edge metric, as well as on-the-fly interpolation and ray-casting of implicit surfaces for
segmented neural structures. Both methods are implemented on the GPU for interactive
performance. NeuroTrace is designed to be scalable to large datasets and data-parallel hardware
architectures. A comparison of NeuroTrace with a commonly used manual EM segmentation tool
shows that our interactive workflow is faster and easier to use for the reconstruction of complex
neural processes.

Index Terms
Segmentation; neuroscience; connectome; volume rendering; implicit surface rendering; graphics
hardware

For information on obtaining reprints of this article, please send tvcg@computer.org.

NIH Public Access
Author Manuscript
IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

Published in final edited form as:
IEEE Trans Vis Comput Graph. 2009 ; 15(6): 1505–1514. doi:10.1109/TVCG.2009.178.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

1 Introduction
The reconstruction of neural connections to understand the function of the brain is an
emerging and active research area in bioscience that is often called Connectomics [28]. With
the advent of high-resolution scanning technologies such as 3D light-microscopy and
electron microscopy (EM), reconstruction of complex 3D neural circuits from large volumes
of neural tissues has become feasible. Among them, however, only EM data can provide
sufficient resolution to identify synapses and to resolve extremely narrow neural processes
such as dendritic spines of roughly 50 nm in diameter. Current EM technologies are able to
attain resolutions of 3–5 nanometers per pixel in the x–y plane. Due to its extremely high
resolution, an EM scan of a single section from a small tissue sample can easily be as large
as tens of gigabytes, and the total scan of a tissue sample as large as several terabytes of raw
data.

These high-resolution, large-scale datasets are crucial for reconstruction of detailed neural
connections, but pose very challenging problems for 3D segmentation and visualization.
First, the current common practice for segmentation of objects of interest in EM datasets is a
mostly manual process, which is very labor-intensive and time-consuming. Even though
there have been research efforts to develop automated EM segmentation algorithms, they are
not robust enough to deal with common artifacts of real datasets, such as noise and
misalignment. Second, the complex structure of nerve cells makes direct volume rendering
of EM datasets very difficult. Transfer functions based solely on image intensity and
gradient result in cluttered renderings, which degrades visualization quality. Finally, it is
important that the segmentation and visualization algorithms are scalable, to cope with the
ever-increasing data sizes, while maintaining interactive performance, so that the user can
perform manual modifications at any time if necessary.

In this paper we present NeuroTrace, a system for segmentation of neural processes in high-
resolution EM data that integrates semi-automatic segmentation and centerline tracking with
advanced volume visualization. The resulting workflow improves the current state-of-the-art
approach of neurobiologists significantly. Our first contribution is a novel interactive 3D
segmentation approach that is based on a sequence of 2D segmentations of cell membranes
using active ribbons [32]. By integrating an image correspondence energy into the level set
formulation we achieve robust transition between consecutive slices. Using these 2D
segmentations and a tracking method with weighted path extrapolation we can robustly trace
a 3D centerline of a neural pathway along non-axis aligned slices. The second contribution
is a volume rendering method with on-demand filtering for de-noising and detection of
structure boundaries. A local histogram-based edge metric provides better visual cues to
easily find regions of interest in complex EM datasets compared to traditional transfer
functions. A third contribution is the efficient implementation of these algorithms on the
GPU. We use a dynamic out-of-core caching system to ensure scalability to arbitrary input
data sizes. A fourth contribution is a combined high-quality visualization of the volume and
the segmented neural processes, combining direct volume rendering and implicit surface
ray-casting in a single rendering pass. Our final contribution is an integrated workflow that
provides a unified user-interface to easily explore large EM volumes and extract neural
processes at interactive rates (Figure 1). The results of our user study show that NeuroTrace
is more efficient and accurate than the leading segmentation tool.

2 Previous Work
Automated EM Segmentation

Large scale EM reconstruction with automated methods has only very recently gained much
attention. Jurrus et al. [13] proposed an automated method to trace axons in serial block-face

Jeong et al. Page 2

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

scanning EM datasets. Their method uses iterative Kalman filtering together with an active
contour model and a vector field produced by an optical flow method to estimate the axon
location on each slice. Macke et al. [17] proposed a probabilistic framework to guide level
set propagation on each slice, where the probabilistic framework models the similarity
between slices. Mishchenko [21] proposed a 3D neural reconstruction method consisting of
a Hessian-based 2D ridge detector to extract axon boundaries and a weighted graph
clustering method to generate a connectivity map across slices. All these methods assume
that the neural processes follow a specific direction, usually orthogonal to the scanning
plane. However, this assumption fails for many axons. The non-axis aligned arbitrary 3D
tracking method proposed in this paper provides much more flexibility to handle axons at
various orientations. Bartesaghi et al. [2] use 3D minimal surface to segment cell boundaries
in high resolution electron tomograms. However, their method cannot be directly applied to
segment elongated structures as in our case because the method assumes the target structure
is spherical topology.

Vessel Extraction and Virtual Endoscopy
Segmentation and tracking of thin structures is an ongoing area of medical research. Kirbas
et al. [15] give an extensive review of automated vessel extraction methods. In virtual
endoscopy, the focus is on 3D path planning inside elongated structures (e.g., [11, 3, 7]).
However, these approaches either require already segmented data or are not directly
applicable to high-resolution EM volumes because of the more complicated structures
involved.

Volume Rendering of EM Data
Volume rendering of microscopic structures is a very recent area of research. Mayerich et al.
[20] segment and visualize microvascular structures and their relationships, but the
resolution is two orders of magnitude lower than EM data. We employ GPU-based ray-
casting of volumes and implicit surfaces [25] using a bricking scheme for large data [4]
implemented in CUDA. Enhancing edges or structure boundaries has always been important
in volume rendering, and is typically achieved using higher-order transfer functions [14].
Caban et al. [5] have recently introduced texture-based tranfer functions based on first-,
second-, and high-order local (histogram) statistics. However, these methods are not
effective in dealing with noise in EM images. Our rendering framework employs a general
filtering and de-noising step with a neighborhood size that can be changed interactively.
Martin et al. [19] define a set of brightness, color, and texture cues for constructing a local
boundary model. To enhance edges during ray-casting we extended their 2D boundary
detection framework using local histogram comparisons.

Iso-Surface Rendering
Rendering elongated structures with elliptical cross-sections has been of interest in diffusion
tensor imaging (DTI). Interpolation between successive ellipses has been used together with
ray-casting [24], as well as with a geometry setup stage [23]. Instead of targeting many
relatively thin fibres, we use interpolating quaternion frames between successive ellipses.
Our method requires few evaluations of trigonometric functions, which enables high
rendering performance and simple implementation.

3 Workflow
We assume that registration of the EM data is performed in a pre-processing step. The
individual image tiles acquired by the cameras in the EM are warped and stitched together to
obtain slice images of very high resolution. These slices are then registered in 3D so that
they are aligned and structures can be followed from slice to slice.

Jeong et al. Page 3

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3.1 Current Practice
There are a number of manual tools for the segmentations of EM datasets [27]. The software
package most commonly used by neuroscientists is Reconstruct [9]. The main window of
this tool displays a 2D axis-aligned view of the current slice. To identify the structures of
interest, users can move from one slice to the next and inspect each in turn using basic
viewing functions such as zoom, pan, scale, and rotation. The segmentation is manual, using
polygon, curve, and free-form drawing tools. The final segmented neural processes can be
rendered as 3D polygon meshes. To generate higher-quality images, the scientists often use
additional volume visualization packages, such as Amira (http://www.amiravis.com).

This workflow is straightforward but also very labor-intensive and time-consuming. It lacks
integrated volume visualization of the input data and high-quality visualization of the
resulting segmentation. Reconstruct only allows axis-aligned tracking, so neural processes
parallel to the image are difficult to segment. In addition, the data has to fit into main
memory, which limits the scalability of the system.

3.2 Proposed Workflow
Figure 2 illustrates our integrated, interactive workflow for visualizing and segmenting
neural processes. The first step in our workflow is to inspect the input volume using volume
rendering before any segmentation is performed in order to obtain an overview and to
determine a region of interest (ROI) (Figure 1 middle). In order to better delineate the
structures of interest we modified the volume rendering such that the boundaries of neural
processes are depicted more clearly (Section 5).

Using the 3D volume view, the user can specify the center of the current ROI on an
arbitrarily oriented 2D clipping plane. The corresponding oblique slice is then shown in an
additional 2D view (Figure 1 top right). The next step is to quickly paint a rough
approximation of a boundary of interest, e.g., of an axon, in this 2D view. This input is used
to initialize an active ribbon that automatically performs tracking of the cell boundary from
slice to slice (Section 4). The individual cell boundaries are shown in the 2D view and can
be inspected and modified interactively at any time.

While the segmentation and tracking is in progress, the segmentation obtained thus far is
concurrently shown in the 3D volume view (Figure 1 middle). The long, elongated
structures that are of highest importance in our application can be represented well by
elliptical cross-sections. Therefore, in order to use as little memory as possible, an ellipse is
fitted to the active ribbon in each slice. These ellipses are interpolated on-the-fly during
volume ray-casting in order to obtain smooth, connected implicit surfaces in 3D (Section
5.2). This process is repeated for every neural process of interest, iteratively adding
additional structures, which are all depicted concurrently in 3D.

The main advantage of our workflow is that it tightly integrates semi-automatic
segmentation and visualization, which allows the user to inspect and modify the ongoing
tracking and segmentation process at any time, while minimizing the amount of user
interaction that is necessary.

4 Segmentation
We compute 3D segmentations using a combination of 2D neural membrane segmentations
and 3D centerline tracking. For 2D segmentation we use a modified multiphase level set
active ribbon model originally proposed by Vazquez et al. [32] (Figure 3). Because level set
segmentation is very sensitive to initialization, we propose a novel active ribbon formulation
by adding an additional constraint based on image correspondence between current and

Jeong et al. Page 4

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.amiravis.com

previous slices. Once 2D segmentation is done, we extrapolate the next point along the
centerline of the possibly non-axis aligned neural process.

4.1 2D Neural Membrane Segmentation
The active ribbon model is based on two deformable moving interfaces (ϕ1 and ϕ2 in Figure
3 left) interacting with each other to maintain ribbon topology. The level set equation for
each ϕi of the active ribbon model is defined as follows:

(1)

where

is the data dependent speed to move toward the membrane boundary, c1 and c2 are the
average pixel intensity of inner cell region and cell membrane, respectively, and I is the
pixel intensity of the input image.

is the ribbon consistency speed to keep constant distance between two level set interfaces ϕi

and ϕj. σi (ϕj) returns a positive value if two level sets are too close and a negative value
otherwise (more details can be found in [32]). FK is the mean curvature speed to maintain
the smoothness of the interfaces. Because two interfaces push or pull each other until they
converge to the target, the active ribbon model is very robust in noisy and feature-rich EM
images. In addition, the model includes a force field that allows neighboring ribbons to
interact with each other.

However, Vazques et al. [32] assume that neural processes are orthogonal to the image plane
and that there is no large displacement between consecutive slices, which is typically not the
case. In addition, the cross sectional shape of the neural process may deform significantly
between slices, making initialization of the active ribbon challenging. Therefore, we propose
a new active ribbon formulation by adding a force field that maps one image to another
using image correspondence. This allows us to robustly initialize the location of the neural
membranes on subsequent slices.

Let Ii and Ii+1 be two consecutive slices, where each slice is defined on a 2D domain Ω. We
can define the energy between two images for a given vector field v, which describes how
different two images are, as follows:

(2)

where Ĩi is the image Ii deformed by the vector field v, and α is a regularization parameter.
Finding the vector field v that minimizes Equation 2 is a nonrigid image registration
problem [1, 6]. In order to find v, we use a gradient flow method along the negative gradient
direction of EI with respect to v. To avoid local minima and to handle large deformations

Jeong et al. Page 5

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

more efficiently, we use a multilevel approach and compute the solution on different scales,
from coarse to fine.

Once we have the vector field v, we can define the energy Eϕ that measures the difference
between two distance fields ϕi and ϕi+1 for the images Ii and Ii+1 as follows:

(3)

where ϕ ̃i is ϕi deformed by v. Note that ϕi and ϕi+1 in this discussion are not the inner and
outer level set for the active ribbon (Figure 3 left) but a single level set on two different
images. Thus we can define the level set function for ϕi+1 that minimizes Eϕ as follows:

(4)

where FC is the image correspondence speed and γ is a level set parameter. The image
correspondence speed FC can be defined using the gradient of Eϕ with respect to ϕ as
follows:

(5)

The image correspondence speed FC can be integrated into the level set equation 1 like other
speed functions. In our implementation, we gradually decrease ξ as the level set iteration
proceeds so that the entire active ribbon can move towards the correct location of the target
membrane at the beginning, and then becomes more stable at the end such that the ribbon
boundaries can close in on the membrane boundaries. Figure 4 shows the robust transition of
the active ribbon between slices with the image correspondence force.

4.2 3D Centerline Tracking
To deal with non-axis aligned neural processes, we implemented a tracking algorithm that
follows the centerline of the process. Even though tracking a centerline through membrane
centers may seem straightforward, it is not simple in our case because we do not know
membrane locations in advance. In other words, even though the current slice position and
segmentation are given, we do not know the position and segmentation of the next slice.

To tackle this problem, we propose a two-step method that consists of estimation and
correction steps. In the estimation step, the tangent direction Vt at the last center point is
computed using a one-sided finite difference method. We also keep the previous tracking
direction Vp. The new tracking direction is then the weighted average between those two
vectors: V = ωVp + (1 − ω)Vt (Figure 3 right). The weight ω controls the amount of history
used to determine the current tracking direction. We typically use a value of ω = 0.9 for
smooth transition between slices.

Once we compute a new tracking direction, a temporary new center position Ci+1 of the next
slice can be estimated by simple extrapolation as C̃i+1 = Ci + δV, where δ is the pixel width
(i.e., grid spacing) in order to move no more than one pixel distance per estimation step. The
local frame of the previous slice is then projected onto the new plane defined by the center
C̃i+1 and the normal V. A new 2D slice is resampled from the volume data using the new
local frame and used for segmentation. Finally, in the correction step, C̃i+1 is replaced by the

Jeong et al. Page 6

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

correct center of the segmented neural membrane, Ci+1. Figure 5 shows an example of 3D
centerline tracking and segmentation using NeuroTrace.

4.3 GPU Implementation
Our GPU level set solver updates the level set only in active regions using a block-based
narrow band proposed by Lefohn et al. [16]. A slight difference is that we collect all the
blocks within a user-defined narrow band size, where the minimum distance to the zero level
set of each block is computed in the redistance step without explicitly checking the
activation of neighboring blocks. The main level set update process consists of four steps:
(1) Form the active list by collecting the active blocks. (2) Iteratively update the level set on
each active block in the active list up to the pre-computed number of iterations (based on the
narrowband width). (3) Recompute the distance from the zero level set. (4) Stop if the level
set converges to a steady state or the maximum number of iterations is reached. Otherwise
go to (1).

The active list is a one dimensional array of unsigned integers. The first element in this list
is the total number of active blocks, and the rest of the array contains the active block
indices. To manage the active list efficiently, we store it entirely on the GPU. The only
interaction between the CPU and the GPU is copying the first element of the active list from
the GPU to the CPU. Then the host code launches a CUDA kernel with the grid size equal to
the total number of active blocks. The size of a CUDA block is the same as an active block
for our level set. In the CUDA kernel, the global memory address is computed by off-setting
from the base address using the active block index. Managing the active list, i.e., adding new
active blocks and removing non-active blocks, can be achieved using the atomic hardware
operators of recent NVIDIA GPUs without using additional stream compaction processes.
We can compute the minimum distance to the zero level set for each block using parallel
reduction. If the minimum distance is smaller than the user-defined narrow band width, the
total number of active blocks is increased by one using AtomicAdd (). Then the current
block index is stored at the end of the current list using the index returned by the atomic
operator.

Once the active list is formed, then each block in the list can be up-dated multiple times
depending on the width of the narrow band. For example, if the grid spacing is 1 and the
width of the narrow band is 10, then we can safely update the active blocks in the current
active list 10 times without refreshing the active list (i.e., explicitly checking the
(de-)activation of the blocks). This is because the CourantFriedrichsLewy (CFL) condition
[26] guarantees that the maximum deformation incurred by a single update of the level set
cannot be greater than the grid spacing. The level set update is done using a Jacobi update
method, and communication between block boundaries can be handled implicitly by calling
the new CUDA kernel for each level set update because the new solutions are written back
to global memory after each update.

In extending the single level set method to multiphase level sets we need to evaluate the
correct distance between two level sets to keep the topology of the active ribbon consistent.
However, the active ribbon does not guarantee the correct distance after deformation due to
the combination of various force fields. Therefore, we recompute the distance field for each
level set when the list of active blocks is up-dated. Note that we need to redistance not only
on the active lists but the complete level sets because the level sets may not share the same
active list unless they are very close to each other. To quickly compute the distance fields
we employ the GPU-based Eikonal solver by Jeong etal. [12].

We implemented the nonrigid image registration method using semi-implicit discretization
as a two-step iterative process, updating and smoothing the vector field v as follows:

Jeong et al. Page 7

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(6)

(7)

where G is a Gaussian smoothing kernel. Equation 6 is a simple Euler integration that can be
efficiently mapped to the GPU. To interpolate the pixel values Ĩi and ∇Ĩi on locations
defined by v we use texture hardware interpolation on the GPU. Texture memory is cached,
so it is efficient for locally coherent random memory accesses. To speed up the 2D Gaussian
smoothing in image space, we implemented a sequence of 1D convolutions using shared
memory and apply them along x and y, respectively.

5 Volume Visualization
Volume rendering of high-resolution EM data poses several challenges. EM data is
extremely dense and heavily textured, exhibits a complex structure of interconnected nerve
cells, and has a low signal-to-noise ratio. Therefore, standard volume rendering results in
cluttered images that make it hard to identify regions of interest (ROIs) or to observe an
ongoing segmentation.

Our visualization approach supports the inspection of data prior to segmentation, for
identifying ROIs, as well as the visualization of the ongoing and final segmentation (see
Figure 2). To improve the visualization of the raw data prior to segmentation, we have
implemented on-the-fly nonlinear noise removal and edge enhancement to support the user
in finding and selecting ROIs. Using a local histogram-based edge metric, which is only
calculated on demand for currently visible parts of the volume and cached for later reuse, we
can enhance important structures (e.g., myelinated axons) while fading out less important
regions. During ray-casting we use the computed edge values to modulate the current
sample’s opacity with different user-selectable opacity weighting modes (e.g., min, max,
alpha blending).

5.1 On-demand Filtering
The main motivations for on-demand filtering (i.e., noise removal and edge detection) are
the flexibility offered by being able to change filters and filter parameters on the fly while
avoiding additional disk storage and bandwidth bottlenecks for terabyte-sized volume data.
We perform filtering only on blocks of the volume that are visible from the current
viewpoint, and store the computed data directly on the GPU for later reuse. We have
implemented a caching scheme for these pre-computed blocks on the GPU to avoid costly
transfers to and from GPU memory while at the same time avoiding repetitive recalculation
of filtered blocks. During visualization we display either the original volume, the noise-
reduced data, the computed edge values, or a combination of the above.

Our on-demand filtering algorithm consists of several steps: (1) Detect for each block in the
volume if it is visible from the current viewpoint. (2) Build the list of blocks that need to be
computed. (3) Perform noise removal filtering on selected blocks and store them in the
cache. (4) Calculate the histogram-based edge metric on selected blocks and store those
blocks in the cache. (5) High-resolution ray-casting combining edge values and original data
values. The detection of visible blocks (Step 1) is done either in a separate low-resolution
ray-casting pass or included in Step 5.

Jeong et al. Page 8

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

5.1.1 Noise Removal—Since EM data generally exhibits a low signal-to-noise ratio we
have integrated an on-demand noise removal filter step into our pipeline prior to calculating
the local histogram-based edge metric. We perform the filtering only on those blocks that
were marked as visible and are not present in the cache yet. We have implemented 2D and
3D Gaussian, mean, non-linear median, bilateral [31], and anisotropic diffusion filters [22]
with user adjustable neighborhood sizes. Especially non-linear filters have shown good
noise removal properties without degrading edges in the EM data [30]. Our main objective,
however, was to develop a general framework for noise removal, where additional filters
could be added easily. The results for each processed block is stored in the cache and used
as input for the edge detection algorithm.

5.1.2 Local Histogram-based Edge Detection—We use a local histogram-based edge
metric to modulate the opacity of the EM data during raycasting. Boundaries in the volume
get enhanced while more homogenous regions are supressed. This helps the user in
navigating through the unsegmented dataset and in finding regions where a segmentation
should be started. The edge metric is computed only for visible blocks that are not stored in
the cache yet.

Our edge detection algorithm is based on the work of Martin et al. [19] who introduced edge
and boundary detection in 2D image based on local histograms. They did a thorough
evaluation of different brightness, color, and texture cues for constructing a local boundary
model, which was subsequently used to detect contours [18] in natural images.

In our local histogram-based edge detection approach we take a block neighborhood around
each voxel to calculate the brightness gradient for different directions. We separate the
voxel’s neighborhood along the given direction into two halves and calculate the histogram
in each half-space. Finally, the histogram difference is calculated using the χ2 distance
metric. A high difference between histograms indicates an abrupt change in brightness in the
volume, i.e., an edge. The maximum difference value over all directions is saved as the edge
value in the cache block. As the neighborhood size for the histogram calculation can be
adjusted to match the resolution level of the current input data, this approach scales to large
data and to volume subdivision schemes like octrees. Again, we have kept the
implementation of our edge detection framework as modular as possible to support adding
different edge detection algorithms in the future. During volume rendering, we fetch at each
sample location the corresponding edge value and use it to modulate the sample’s opacity
and/or color. Optionally, the user can first use a windowing function on the calculated edge
values to further enhance the visualization.

5.1.3 Dynamic Caching—To improve the performance of our edge-based visualization
scheme we have implemented a dynamic caching scheme for storing on-the-fly computed
blocks. Two caches are allocated directly on the GPU, one to store de-noised volume blocks
and the second to store blocks containing the calculated edge values. First, the visibility of
all blocks is updated for the current viewpoint in a first ray-casting pass and saved in a 3D
array corresponding to the number of blocks in the volume. Next, all blocks are flagged as
either: (1) visible, present in cache; (2) visible, not present in cache; (3) not visible, present
in cache; or (4) not visible, not present in cache. Visible blocks that are already in the cache
(flagged with (1)) do not need to be recomputed. Only blocks flagged with (2) need to the
processed. Therefore, indices of blocks flagged with (2) are stored for later calculation (see
Section 5.1.4). During filtering/edge detection the computed blocks are stored in the
corresponding cache. A small lookup table is maintained for mapping between block storage
space in the cache to actual volume blocks as described in [4]. Unused blocks are kept in the
cache for later reuse (flagged with (3)). However, if cache memory gets low, unused blocks
are flushed from the cache and replaced by currently visible blocks.

Jeong et al. Page 9

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

5.1.4 GPU Implementation—After detecting which blocks need processing, a CUDA
kernel is launched with grid size corresponding to the number of blocks that need to be
processed. For simplicity we explain the implementation of our filtering and edge detection
algorithm in 2D. The extension to 3D is straightforward.

To calculate filter/edge values in each block, we start a CUDA kernel with a CUDA block
size that corresponds to the user specified neighborhood size, but with one dimension less
than the actual neighborhood (e.g., for a 3D neighborhood a 2D CUDA block is started, for
a 2D neighborhood a ID CUDA block is started). Figure 6 depicts the case where the edge
detection of a block uses a 5×5 neighborhood. In this case the kernel is started with 5
concurrent threads. Next, the threads iterate over the entire block that needs to be filtered
and calculate the filter/edge values for each voxel. Each thread is responsible for only one
part of the filter’s neighborhood, as depicted by the colored areas in Figure 6. To reduce
redundant texture fetches each thread locally caches its last computed values. The size of
this thread-local array corresponds to the neighborhood size of the filter. Therefore, at each
step a thread only needs to perform one texture fetch, and store the value in its local cache
(Figure 6, middle).

To calculate the local-histogram based edge metric, all samples in a voxel’s neighborhood
need to be assigned to one of the two local histograms (for both half-spaces), as depicted in
Figure 6, right. The histograms are stored in shared CUDA memory and used for the final
calculation of the χ2 histogram difference. The main steps for each thread are: (1) Update the
histogram of the first half-space (histogramleft) by removing the sample that has left the
filter neighborhood and adding the last sample from histogramright. (2) Remove the sample
that has left the filter neighborhood from the thread-local cache. (3) Fetch the sample that
has entered the filter neighborhood from the volume texture and store it in the thread-local
cache. (4) Update the histogram of the second half-space (histogramright) by removing the
sample that is now in histogramleft and adding the sample that has just been fetched from the
volume texture. All threads are synchronized after they have performed the above steps
using atomic CUDA operations for updating the shared histograms. Now the χ2 histogram
difference for the current neighborhood can be computed and stored in the cache.

To implement the de-noising filters we use the same basic strategy. For Gaussian filters we
transfer a 1D look-up table of the weights to the GPU to speed up the calculation. For
bilateral filtering we use the same look-up table to calculate the geometric closeness
function, whereas the photometric similarity function is calculated on-the-fly in the CUDA
kernel. For median filtering we implemented bitonic sort on the GPU to find the median
value of the filter neighborhood. Anisotropic diffusion filtering is the most complex filter in
our framework. It requires a second filter cache to allow ping-pong swaps between source
and destination. Also, costly neighborhood lookups in the source cache are needed to
compute the boundary values of the destination blocks.

If the noise removal step is performed prior to the edge detection, the local histogram
calculation uses the values from the filtered block cache as input values instead of the
original volume texture. Therefore, special care has to be taken when fetching de-noised
values for a neighborhood at an edge-block’s boundary. This case can be handled by either
extending the dimensions of the de-noised blocks compared to the edge-detected blocks, or
by detecting which additional blocks would have to be de-noised and performing a
neighborhood lookup for areas outside an edge block’ boundary.

5.2 Visualization of Segmented Neural Structures
In order to visualize and inspect the segmented neural processes in 3D, we depict the
original volume data together with semi-transparent iso-surfaces that delineate structures

Jeong et al. Page 10

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

such as axons or dendrites. The output image is generated in a single ray-casting pass for
both the iso-surfaces and the part of the volume that is shown using direct volume rendering.
While stepping from sample to sample along a given viewing ray, the direct volume
rendering integral is solved via front-to-back compositing. At the same time, each sample is
tested for potential intersections with iso-surfaces. If a surface is intersected, its color and
transparency are composited with the accumulated volume-rendered part, and direct volume
rendering is continued behind the surface intersection.

Our active ribbon segmentation described in Section 4 outputs a set of implicit surfaces for
each 2D slice. However, in order to make the system scalable for large EM data, we do not
store these 2D distance fields. Instead, we convert the segmentation to a very compact
format by fitting an ellipse to each active ribbon. An entire structure such as an axon is then
represented as a simple list of elliptical cross-sections, which reduces the memory footprint
significantly.

5.2.1 Implicit Surfaces from Elliptical Cross-Sections—To render smooth,
connected surfaces from elliptical cross-sections we compute implicit surfaces from the set
of ellipses on-the-fly. Although everything is computed in a single ray-casting pass, in order
to simplify the problem we treat it as two conceptually separate parts. The first part is ray-
casting of an implicit surface in a distance field ϕ(x), where the surface is defined by the
points where ϕ(x) = 0. The second part is the computation of ϕ(x) for any point x in volume
space. Here, a point x is either a sample p on a viewing ray, or the location of a central
differences computation during shading.

The ray-caster renders and shades implicit surfaces by evaluating ϕ(p) along viewing rays.
Intersection with an implicit surface is detected between two successive points on a ray
when ϕ(pi) < 0 and ϕ(pi+1) > 0, i.e., the first sample is in front and the second one behind the
surface. We carry out a predetermined number of bisection steps in order to find a
sufficiently accurate intersection position [10]. At that location, we compute the shading
using the normalized gradient obtained from central differences in the distance field,
evaluating ϕ(x) at six additional locations. In order to simplify accommodating multiple
axons that are represented as implicit surfaces each, we map every point x in volume space
for surface intersection and shading purposes to only one distance ϕ(x), which is the distance
to the closest axon. Conceptually, each axon is represented by a 3D distance field ϕi, and the
ϕ(x) used in the ray-casting loop is ϕ(x) = mini (ϕi(x)).

In order to obtain implicit surfaces in 3D from a collection of 2D elliptical cross-sections,
we have to be able to evaluate ϕ(x) throughout the volume. We want this interpolation to be
fast and easy to implement, and still result in smooth shaded surfaces. Each cross-section is
represented by a single ellipse elli = (ci,qi,), where ci is the center in 3D, and the 3D
coordinate frame is represented by the unit quaternion qi and the lengths of the ellipse’s
semi-axes, , respectively. This results in a very compact representation with just nine
floating point values per ellipse. During rendering, we convert between quaternions and
explicit coordinate frames when needed, denoting the normal vector of the ellipse’s plane as
ni. Additionally, an integer axon ID is stored with each ellipse, which allows rendering
axons with individual color and transparency.

The main idea for evaluating ϕ(p) at a given point p is to directly compute a single
interpolated ellipse whose plane exactly or almost contains p, and then to perform a straight-
forward 2D point-to-ellipse distance computation in this plane. That is, we first compute an
interpolated ellipse ell(p) = (cp,qp,), whose plane (cp,np) approximately contains p, then
obtain a point p′ by projecting p into this plane, and finally compute the distance of p′ to

Jeong et al. Page 11

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

ell(p) in 2D. The distance for p is thus approximated as ϕ(p) ≈ ϕ(ell(p),p′). The ellipse ell(p)
is interpolated between the nearest pair of ellipses (elli,elli+1) that encloses p. This pair is the
one where p is in the front halfspace of elli, i.e., p · ni > ci · ni, and the back halfspace of
elli+1, i.e., p · ni+1 < ci+1 · ni+1. For interpolation, a parameter α ∈ [0, 1] is required for a
given p, which we compute as follows:

(8)

This is illustrated in Figure 7 (left).

We compute α such that it is always 0 in the plane of elli, and 1 in the plane of elli+1, which
guarantees that successive segments between ellipse pairs line up exactly. We require a
vector n ̄ that is guaranteed not to be parallel to either ellipse, and compute α as the ratio of
k0, the distance from p along n ̄ to elli, to k0 + k1, the total distance between elli and elli+1
along ñ through p. We have chosen ñ as the half-way vector between ni and ni+1. This
choice fulfills our requirements and yields smooth results. Another obvious choice would be
ci+1 − ci. However, in our case this vector can be close to parallel to the ni, which can result
in numerical problems in the denominators of k0 and k1 (Equation 8).

After α has been computed, it is used to obtain ell(p) as linear interpolation between the
ellipse centers and axis lengths, yielding cp, , and spherical linear interpolation
between qi and qi+1, yielding qp. Then, p is projected into the ellipse’s plane: p′ = p − np (p
· np − cp · np). From this, the distance value ϕ (ell(p), p′) is computed entirely in 2D in the
plane of the ellipse.

This approach gives completely accurate results for parallel ellipse planes, which is a
common case in axon tracking where the planes are often orthogonal to the z axis. It is an
approximate solution for non-parallel planes that works well in practice. The angle between
two successive ellipse planes ni and ni+1 is always quite small, even though the whole axon
is allowed to curve significantly from the first cross-section to the last. Figure 7 (middle)
shows a close-up of an axon with non-parallel ellipse planes, which illustrates that our
approach results in visually smooth results.

5.2.2 GPU Implementation—In order to speed up finding the two ellipses nearest to a
given point p in the CUDA ray-casting kernel, ellipses are sorted into a 3D block structure
(e.g., 163 blocks) before rendering that only needs to be up-dated when new ellipses are
added. Each block contains links (integer indices) to all ellipses intersecting it. A single
ellipse can be linked to by several blocks, but during rendering only a single block needs to
be examined for each point p. In order to efficiently handle empty blocks, each block only
stores the number of ellipses that intersect it and a start index into a global array of links to
ellipses. The array is packed tightly such that all links of non-empty blocks are stored at
consecutive memory locations. Actual ellipse information (axon-ID,ci,qi,) is stored in a
separate global ellipse array that is indexed using these links. In order to allow multiple
axons to intersect the same block, multiple counts need to be stored in each block, one per
axon. Furthermore, all links in a block are pre-sorted such that ci+1 · ni > ci · ni∀i, i.e., each
subsequent ellipse’s center is in the front halfspace of the preceding ellipse. This simplifies
the run-time search for ellipse pairs needed for interpolation, as described above. This block
structure is also used for empty space skipping. Blocks with no ellipse links do not need to
be searched for implicit surface intersections, and can be skipped entirely if they are
transparent due to the transfer function.

Jeong et al. Page 12

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6 Results
We implemented our segmentation and visualizations system on a Windows XP PC
equipped with quad-core Intel Xeon 3.0 GHz CPU, 16 Gigabytes main memory, and
NVIDIA Quadro 5800 and Tesla C1060 GPUs. We used a single CPU core and one GPU to
compare the running time on each architecture. The CPU version is implemented using the
ITK image processing library (http://www.itk.org). The main computational code is similar
on the CPU and GPU for a fair comparison.

6.1 Segmentation
The running time of the CPU level set solver for 100 iterations on a 512 × 512 image is 7
seconds. It is only 0.3 second on the GPU, which shows about 23 times speed-up. Our GPU
image registration runs less than a second on a 512 × 512 image (500 iterations). The total
running time of our segmentation method per slice, without user interaction, is only about a
second, which is sufficient for interactive applications.

To assess the performance of our segmentation method, we have segmented multiple axons
in two EM datasets and measured the total and per-slice times, the amount of user
intervention, and the ellipse approximation errors. The first dataset is an adult mouse cortex
that consists of 101 slices of 1008 × 1065 2D image, where each pixel has five nanometers
resolution and the section thickness is about 30 nanometers. The second dataset is an adult
mouse hippocampus that consists of 50 slices of 1278 × 756 2D image, where each pixel is
four nanometers wide and the section thickness is 29.4 nanometers. Figure 8 shows 3D
renderings of the segmented axons and Table 1 lists the segmentation result for each dataset.

In the mouse cortex dataset, axons A to D were traced using only axis-aligned tracking
directions and axons E to H were traced using arbitrary tracking directions. All axons were
traced along the z-axis in the mouse hippocampus dataset. Roughly between five to ten
percent of the total number of slices were manually edited for correct segmentation for the
mouse cortex dataset, and up to 20 percent of the total slices were edited on the mouse
hippocampus dataset. Note that the image resolution of our input EM data is up to a factor of
five higher than those used in previous work [13, 17]. The data contains more complex
neural structures and is very challenging for automated methods. Total times and computing
times are not significantly different between axons, and about half of the total time is used
for computation.

Our ellipse-based 3D neuron representation can greatly reduce the memory footprint. For
example, for an axon of 350 nm diameter we need about 70 × 70 pixels where the pixel
width is 5 nm, which requires 9800 floats to store two distance fields. In contrast, to
represent an equivalent 3D ellipse we only need to store nine floats, three for center and six
for two axis. This yields a compression ratio of more than a factor of a thousand. Table 1
also shows the average distance between the ellipse and the membrane of neurons. The
relative ellipse approximation errors, shown in parenthesis, range only between 0.6 to six
percent of the longest axis of the ellipse, which is acceptable considering the high
compression ratio we achieve.

6.2 Visualization
The prefiltering and edge-detection methods (Figure 9) were both implemented entirely in
CUDA and achieve interactive framerates. Filtering blocks on-demand and caching them for
later reuse allows the user to change filters and filter settings interactively. Especially de-
noising prior to calculating the edge metric improved the results considerably. The best
results were achieved using anisotropic diffusion filtering. For our local histogram-based
edge metric we found a histogram with 64 bins to be sufficient for our data. Also, a simple

Jeong et al. Page 13

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.itk.org

average-based histogram difference operator showed good results compared to the
computationally more complex χ2 distance metric. For our caching scheme we used 83 sized
blocks, but this can be adjusted according to the resolution of the data. At the moment our
implementation of the cache is based on CUDA arrays, but in the future we would like to
use 3D textures to improve tri-linear filter performance during ray casting.

The dimension of EM data is highly anisotropic, with z-slice distances that can be a factor of
10 or more larger than pixel resolution. This poses real problems for volume visualization,
since the visible edges from axons are shifted by large amounts between slices. Even though
our filtering and edge detection method works better than traditional transfer functions, the
results are sometimes still ambiguous and confusing, requiring closer inspection of the 2D
slice views to identify the ROI.

6.3 User Study
We have conducted informal user studies of our segmentation method to assess the usability
and accuracy of NeuroTrace by comparing it with Reconstruct [9]. We selected six test
subjects in total. Two (Expert 1 and 2) are expert neuroscientists, and the other four (Novice
1 to 4) are novices with no previous neural process segmentation experience. We conducted
two user studies, where each study required four test subjects (two experts and two novices)
to perform segmentation of the same axon (axon E in the mouse cortex dataset and axon A
in the mouse hippocampus dataset). We measured the total time and segmentation accuracy
for both systems. We also received qualitative feedback from the users.

To measure the segmentation error, we used the Dice metric [8] that is commonly used to
quantitatively measure the accuracy of segmentation algorithms [29]. The Dice metric
measures similarity between two sets A and B using 2|A ∩ B|/(|A| + |B|), where | · | indicates
set size. In our case, A is the ground truth set of pixels, and B is the set of pixels from the
segmentation result. Dice values range between 0 and 1, where 1 implies a perfect match.
We compute the Dice value for each 2D segmentation by comparing it to ground truth that
was obtained by careful manual segmentation. Table 2 and 3 show the total segmentation
times and average Dice values, and Figure 10 and 11 show plots of Dice values for each
slice.

For manual segmentation using Reconstruct there is no significant difference between the
two groups in terms of the total time, but the results from the novice users are less accurate
than those of the expert users. In contrast, the results using NeuroTrace do not show a
significant difference between the two groups, and the novice users usually generated
slightly less errors (higher Dice values) than the experts (Table 2). That indicates that the
semi-automated NeuroTrace is less prone to lead to human errors. In addition, NeuroTrace
provides better segmentation results up to three times faster than Reconstruct. Note that
Expert 2 is an exception because he spent longer time than usual and performed very
accurate segmentations using Reconstruct. It is also interesting to note that the results of
Reconstruct become less accurate over time, especially for novice users (Figure 10 Novice 1
and 2). This can be explained by fatigue due to the laborious manual segmentation.

The users have given highly positive feedbacks about the usability and accuracy of
NeuroTrace compared to Reconstruct: “A lot easier to use; more efficient; automatic
function is nice; trustworthy” (Novice 1). “Less work-demanding and accurate” (Novice 2).
“Automatic segmentation was far easier to use and quicker” (Novice 3). “It is a more
practical program to use and all of it’s tools are very helpful and useful” (Novice 4). “It
proceeds automatically, can tilt the tracing plane” (Expert 1). “Fast, user friendly, easy to
correct; visualization of the segmented data” (Expert 2). The suggestions for improvements
include the addition of advanced user interface functions such as browsing of neural tracks

Jeong et al. Page 14

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

and editing previous history, and adaptation to different data modalities, e.g., optical
fluorescent confocal microcopy. Our neuroscientist collaborators are currently using
NeuroTrace in their Connectomics research.

7 Conclusions and Future Work
In this paper we introduced NeuroTrace, a novel interactive segmentation and visualization
system for neural processes in EM volumes. The main contributions are a novel semi-
automatic segmentation and 3D tracking method, efficient volume rendering with on-the-fly
filters and edge detection, a scalable implementation of these methods on the GPU, and a
novel workflow that has been shown to be more accurate and efficient than current practice.

In the future we would like to implement a greater variety of filters and edge-detection
approaches (e.g., Canny edge detection). Also we plan to automatically adjust pre-defined
filter settings and opacity windowing function depending on the resolution of the input data.
The biggest challenge are the extremely large z-slice distances in EM datasets. The
integration of shape based-interpolation or directional coherence methods into the volume
rendering might be a promising direction to solve this problem. We also would like to
extend the current segmentation and tracking method to handle merging and branching of
neural processes. Simultaneous tracking of multiple neural processes in a GPU cluster
system would be another interesting future direction.

Acknowledgments
This work was supported in part by the National Science Foundation under Grant No. PHY-0835713, the Austrian
Research Promotion Agency FFG, Vienna Science and Technology Fund WWTF, the Harvard Initiative in
Innovative Computing (IIC), the National Institutes of Health under Grant No. P41-RR12553-10 and U54-
EB005149, and through generous support from Microsoft Research and NVIDIA. We thank our biology
collaborators Prof. Jeff Lichtman and Prof. Clay Reid from the Harvard Center for Brain Science for their time and
the use of their data. We also wish to thank Dr. Juan C. Tapia, Dr. Ju Lu, Thomas Zhihao Luo, May Zhang, Bo
Wang, and Robert Cole Hurley for participating in the user study.

References
1. Anandan P. A computational framework and an algorithm for the measurement of visual motion.

Journal on Computer Vision. 1989; 2:283–310.
2. Bartesaghi A, Sapiro G, Subramaniam S. An energy-based three-dimensional segmentation

approach for the quantitative interpretation of electron tomograms. IEEE Trans. Image Proc. 2005
September; 14(9):1314–1323.

3. Bartz D, Straßer W. Interactive exploration of extra- and intracranial blood vessels. In Proc. of IEEE
Visualization. 1999:389–392.

4. Beyer, J.; Hadwiger, M.; Möller, T.; Fritz, L. Smooth mixed-resolution GPU volume rendering;
IEEE International Symposium on Volume and Point-Based Graphics (VG ’08); 2008. p. 163-170.

5. Caban J, Rheingans P. Texture-based transfer functions for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization ’08). 2008;
14(6):1364–1371.

6. Clarenz, U.; Droske, M.; Rumpf, M. Inverse Problems, Image Analysis and Medical Imaging, AMS
Special Session Interaction of Inverse Problems and Image Analysis. Vol. volume 313. AMS; 2002.
Towards fast non–rigid registration; p. 67-84.

7. Deschamps T, Cohen LD. Fast extraction of minimal paths in 3d images and applications to virtual
endoscopy. Medical Image Analysis. 2001; 5:281–299. [PubMed: 11731307]

8. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945; 26:297–
302.

9. Fiala JC. Reconstruct: a free editor for serial section microscopy. Journal of Microscopy. 2005
April; 218(1):52–61. [PubMed: 15817063]

Jeong et al. Page 15

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

10. Hadwiger M, Sigg C, Scharsach H, Bühler K, Gross M. Real-time ray-casting and advanced
shading of discrete isosurfaces. Computer Graphics Forum (Proc. Eurographics 2005). 2005;
24(3):303–312.

11. Hong, L.; Muraki, S.; Kaufman, A.; Bartz, D.; He, T. Virtual voyage: interactive navigation in the
human colon. In; SIGGRAPH 97 Conference Proceedings; 1997. p. 27-34.

12. Jeong W-K, Whitaker RT. A fast iterative method for Eikonal equations. SIAM Journal on
Scientific Computing. 2008; 30(5):2512–2534.

13. Jurrus E, Hardy M, Tasdizen T, Fletcher P, Koshevoy P, Chien C-B, Denk W, Whitaker R. Axon
tracking in serial block-face scanning electron microscopy. Medical Image Analysis (MEDIA).
2009 February; 13(1):180–188.

14. Kindlmann G, Durkin J. Semi-automatic Generation of Transfer Functions for Direct Volume
Rendering. Proceedings of IEEE Volume Visualization ’98. 1998:79–86.

15. Kirbas C, Quek F. A review of vessel extraction techniques and algorithms. ACM Comput. Surv.
2004; 36(2):81–121.

16. Lefohn A, Kniss J, Hansen C, Whitaker R. Interactive deformation and visualization of level set
surfaces using graphics hardware. Proceedings of IEEE Visualization. 2003:75–82.

17. Macke JH, Maack N, Gupta R, Denk W, Schölkopf B, Borst A. Contour-propagation algorithms
for semi-automated reconstruction of neural processes. Journal of Neuroscience Methods. 2008;
167(2):349–357. [PubMed: 17870180]

18. Maire, M.; Arbelaez, P.; Fowlkes, C.; Malik, J. Using contours to detect and localize junctions in
natural images; IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08); 2008.
p. 1-8.

19. Martin D, Fowlkes C, Malik J. Learning to detect natural image boundaries using local brightness,
color, and texture cues. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2004; 26(1):
530–549.

20. Mayerich D, Abbott L, Keyser J. Visualization of cellular and microvascular relationships. IEEE
Transactions on Visualization and Computer Graphics. 2008; 14(6):1611–1618. [PubMed:
18989017]

21. Mishchenko Y. Automation of 3d reconstruction of neural tissue from large volume of
conventional serial section transmission electron micrographs. Journal of Neuroscience Methods.
2009; 176:276–289. [PubMed: 18834903]

22. Perona P, Malik J. Scale space and edge detection using anisotropic diffusion. IEEE Trans. in
Pattern Analysis and Machine Intelligence. 1990; volume 12:629–639.

23. Petrovic V, Fallon J, Kuester F. Visualizing whole-brain dti tractography with gpu-based tuboids
and lod management. IEEE Trans. Vis. Comput. Graph. 2007; 13(6):1488–1495. [PubMed:
17968101]

24. Reina, G.; Bidmon, K.; Enders, F.; Hastreiter, P.; Ertl, T. GPU-Based Hyperstreamlines for
Diffusion Tensor Imaging; Proceedings of EUROGRAPHICS - IEEE VGTC Symposium on
Visualization 2006; 2006. p. 35-42.

25. Scharsach H, Hadwiger M, Neubauer A, Bühler K. Perspective iso-surface and direct volume
rendering for virtual endoscopy applications. Eurovis 2006. 2006:315–322.

26. Sethian, J. Level set methods and fast marching methods. Cambridge University Press; 2002.
27. Smith SJ. Circuit reconstruction tools today. Current Opinion in Neurobiology. 2007 October;

17(5):601–608. [PubMed: 18082394]
28. Sporns O, Tononi G, Kötter R. The human connectome: A structural description of the human

brain. PLoS Computational Biology. 2005 September.1(4):e42+. [PubMed: 16201007]
29. Tasdizen T, Awate S, Whitaker R, Foster N. MRI tissue classification with neighborhood statistics:

A nonparametric, entropy-minimizing approach. MICCAI 2005. 2005:517–525.
30. Tasdizen, T.; Whitaker, R.; Marc, R.; Jones, B. Enhancement of cell boundaries in transmission

micropscopy images; IEEE International Conf. on Image Processing (ICIP ’05); 2005. p. 129-132.
31. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. ICCV ’98. 1998:839–846.

Jeong et al. Page 16

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

32. Vazquez-Reina, A.; Miller, E.; Pfister, H. Multiphase geometric couplings for the segmentation of
neural processes; Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); 2009. p. 2020-2027.

Jeong et al. Page 17

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
NeuroTrace allows neuroscientists to interactively explore and segment neural processes in
high-resolution EM data.

Jeong et al. Page 18

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
Pipeline diagram of our integrated, interactive workflow for visualizing and segmenting
neural processes.

Jeong et al. Page 19

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
Neural process segmentation. Left top: Active ribbon model for 2D neural membrane
segmentation. Left bottom: User initialization and solution with inside/outside level sets.
Right: 3D centerline tracking.

Jeong et al. Page 20

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Active ribbon with image correspondence force. Left: Input image. Middle left:
Segmentation using active ribbon on the current slice. Middle right: Incorrect initial position
of active ribbon on the next slice (projection along z-axis). Right: Correct active ribbon
position using image correspondence force.

Jeong et al. Page 21

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
3D segmentation in progress. Green: 2D level set segmentation of neural membranes. Red:
3D centerline tracking.

Jeong et al. Page 22

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 6.
Local histogram-based edge detection in volume blocks using CUDA. Left: Neigbhorhood
required for local histograms. Center: Fetching only one new sample per thread at each step
to update the neighborhood. Right: Shared histograms for calculation of the χ2 difference.

Jeong et al. Page 23

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 7.
Left: On-the-fly interpolation between two elliptical cross-sections (elli,elli+1), see Equation
8. Middle: Although this is an approximation for non-parallel (ni,ni+1), the result is
consistent and smooth over successive cross-sections of an axon. Gradients for shading are
computed via central differences in the resulting distance field ϕ(x). Right: Composite of
elliptically-interpolated axon (left) compared to 2D segmentation results in 3D (right).

Jeong et al. Page 24

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 8.
Result images from NeuroTrace. Left: Volume rendering with edge enhancement in the
upper part of the volume. Middle: Eight axons from the mouse cortex dataset. Right: Eight
axons from the mouse hippocampus dataset.

Jeong et al. Page 25

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 9.
Left: Volume Slab visualization; Top: Original data; Middle: Gradient magnitude displayed
on the top slice; Bottom: Local-histogram edges; Right: Volume Rendering; Top: Original
data; Middle: Gradient-magnitude shaded; Bottom: Pre-filtering and edge enhancement with
opacity weighting.

Jeong et al. Page 26

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 10.
Dice value comparison of user study on the mouse cortex dataset. Left: Reconstruct. Right:
NeuroTrace.

Jeong et al. Page 27

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 11.
Dice value comparison of user study on the mouse hippocampus dataset. Left: Reconstruct.
Right: NeuroTrace.

Jeong et al. Page 28

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jeong et al. Page 29

Ta
bl

e
1

A
xo

n
se

gm
en

ta
tio

n
re

su
lts

 fo
r t

he
 m

ou
se

 c
or

te
x

an
d

hi
pp

oc
am

pu
s d

at
as

et
s.

M
ou

se
 C

or
te

x
M

ou
se

 H
ip

po
ca

m
pu

s

Sl
ic

es
E

di
ts

T
ot

al
 T

im
e

C
om

pu
te

 T
im

e
E

lli
ps

e
E

rr
or

Sl
ic

es
E

di
ts

T
ot

al
 T

im
e

C
om

pu
te

 T
im

e
E

lli
ps

e
E

rr
or

A
10

1
14

6
m

 5
0

s
3

m
 5

9
s

3.
58

4
(3

.9
8%

)
50

4
2

m
 2

7
s

1
m

 4
0

s
7.

01
4

(5
.1

2%
)

B
10

1
12

5
m

 2
4

s
3

m
 3

0
s

7.
46

8
(6

.1
3%

)
50

9
3

m
 1

9
s

2
m

 2
 s

2.
38

0
(2

.7
3%

)

C
10

1
8

4
m

 5
4

s
3

m
 7

 s
5.

40
7

(5
.6

2%
)

50
10

3
m

 1
3

s
2

m
 1

 s
4.

29
2

(3
.9

7%
)

D
10

1
11

5
m

 1
1

s
3

m
 8

 s
5.

11
5

(5
.1

3%
)

50
4

2
m

 1
8

s
1

m
 3

0
s

3.
53

4
(4

.7
6%

)

E
12

7
7

4
m

 1
9

s
3

m
 2

 s
1.

77
5

(2
.4

6%
)

50
6

2
m

 2
8

s
1

m
 4

3
s

1.
81

9
(1

.7
6%

)

F
12

1
4

4
m

 4
2

s
3

m
 0

 s
1.

89
0

(3
.0

1%
)

50
11

3
m

 4
7

s
2

m
 1

5
s

0.
77

3
(0

.6
4%

)

G
10

5
15

5
m

 2
0

s
2

m
 5

2
s

2.
23

0
(2

.6
6%

)
50

9
3

m
 1

4
s

2
m

 1
5

s
4.

96
6

(3
.3

7%
)

H
11

1
7

5
m

 4
9

s
3

m
 3

5
s

3.
99

6
(4

.2
8%

)
50

8
2

m
 4

9
s

1
m

 3
9

s
0.

63
0

(0
.6

7%
)

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jeong et al. Page 30

Table 2

User study results from the mouse cortex dataset.

Reconstruct [9] Neuro Trace

Time Average Dice Time Average Dice

Expert 1 8 min 0.914696 5 min 0.934154

Expert 2 18 min 0.949794 5 min 0.931165

Novice 1 7 min 0.900107 7 min 0.937665

Novice 2 17 min 0.903862 6 min 0.936873

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jeong et al. Page 31

Table 3

User study results from the mouse hippocampus dataset.

Reconstruct [9] Neuro Trace

Time Average Dice Time Average Dice

Expert 1 6 min 0.954107 4 min 0.956324

Expert 2 14 min 0.962313 4 min 0.955967

Novice 3 9 min 0.952097 2.5 min 0.955685

Novice 4 7 min 0.943439 3.5 min 0.954875

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2011 September 25.

