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Abstract We present a pose estimation method for rigid
objects from single range images. Using 3D models of the
objects, many pose hypotheses are compared in a data-paral-
lel version of the downhill simplex algorithm with an image-
based error function. The pose hypothesis with the lowest
error value yields the pose estimation (location and orienta-
tion), which is refined using ICP. The algorithm is designed
especially for implementation on the GPU. It is completely
automatic, fast, robust to occlusion and cluttered scenes, and
scales with the number of different object types. We apply
the system to bin picking, and evaluate it on cluttered scenes.
Comprehensive experiments on challenging synthetic and
real-world data demonstrate the effectiveness of our method.
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1 Introduction

The estimation of the 3D orientation and location (i.e., pose)
of an object is a fundamental task in computer vision. Often,
pose estimation is used during runtime (e.g., for robot nav-
igation or human–computer interaction) or as a preprocess-
ing step for other algorithms (e.g., for object recognition or
tracking). However, pose estimation of objects in complex
and cluttered scenes is challenging because the appearance
of an object in a 2D image is sensitive to illumination, shad-
ows, and lack of visual features. In addition, the objects may
partially occlude each other. Some of these problems can be
avoided using depth information. Since recent depth acquisi-
tion systems have reached a high level of reliability, the use of
range images, i.e., images with per-pixel depth, to overcome
some of these problems is promising.

We present an algorithm for model-based pose estimation
from single range images that is based on comparing many
pose hypotheses in parallel. It is completely automatic, does
not require an initial guess, and consistently finds the global
optimum. The algorithm has been developed to exploit the
computational power of modern graphics hardware and runs
entirely on the GPU. The GPU consists of many small pro-
cessing units that are able to run many simple programs in
parallel. Because not every algorithm is easily parallelizable,
it is beneficial to specifically design the algorithm for imple-
mentation on the GPU.

In a pre-processing step, we build a database of refer-
ence range images by rendering a 3D CAD model of the
object with many different orientations. A key question we
are addressing in this paper is how these reference poses are
optimally selected. During runtime, we automatically iden-
tify a large visible object close to the camera in the input
range image. We then compare the alignment of every refer-
ence range image to the input range image in parallel. The
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comparison is based on a novel image-based error function
that can be evaluated very quickly. We adjust the transla-
tion of the reference range images by iterative energy min-
imization using a parallelized version of the downhill sim-
plex algorithm. The pose hypothesis with the smallest error
yields a rough pose estimation that is then being refined using
ICP.

The system presented in this paper is a substantial exten-
sion of our previous work [11]. We improved the algorithm
robustness by enhancing the initial object localization method
so that the performance is independent of the complexity
of the input scene. The error function has been modified
to take the uncertainty of pixels into account and to give
more preference for poses with larger visible area. Further-
more, we developed a novel adaptive pose sampling method
to automatically build an optimal, yet compact reference pose
database. Finally, we added ICP to refine the initial pose esti-
mation, thereby increasing robustness and estimation
accuracy. Also, to achieve greater speedup and code
portability, we implemented the system using NVIDIA’s
Compute Unified Device Architecture (CUDA) [24] instead
of the OpenGL Shading Language (GLSL). We apply
our pose estimation algorithm to bin-picking, which
is an important problem in machine vision and
robotics.

Our system is reliable, runs completely automatic, and
has a framerate of 3 fps. The runtime does not depend on
the complexity of the object or scene, but only on the res-
olution of the reference images, thus on the desired estima-
tion accuracy. In contrast to other methods (e.g. [2,5,29]),
our method works also for partially occluded and complex
objects (i.e., not consisting of planar surfaces) and for clut-
tered scenes. Different objects can be detected at the same
time by increasing the number of objects in the reference
database. In experiments, we demonstrate the effect of the
adaptive reference pose database and the increase in accu-
racy from the pose refinement stage using ICP. We present
extensive evaluations of the estimation error and the runtime
for real-world and synthetic data. Finally, the influence of the
algorithm parameters is discussed.

The contributions of this paper include (1) a framework
for model-based pose estimation based on aligning and com-
paring many pose hypotheses in parallel, (2) an adaptive sam-
pling method of the pose space to build the reference pose
database, (3) a novel image-based error function to compare
the alignment of two range images, and (4) an efficient data-
parallel implementation of the algorithm on the GPU. Our
method has specifically been designed to exploit the tremen-
dous data-parallel processing performance of modern graph-
ics cards, yielding a 30× speedup in contrast to a comparable
CPU implementation.

2 Related work

2.1 Pose estimation

The main challenge in object pose estimation is invariance to
partial occlusions, cluttered scenes, and large pose variations.
Approaches based on 2D images and video generally do not
overcome these problems due to their dependency on appear-
ance and sensitivity to illumination, shadows, and scale.
Among the most successful attempts are methods based on
global appearance [17], and methods based on local (2D)
features [31,34]. However, these methods usually require a
large number of labeled training examples.

Recently, model-based surface matching techniques using
3D models have become popular due to decreasing costs of
range scanners. The most popular method for aligning 3D
models and range images is the ICP algorithm [3,7] and its
variations (e.g. [9,26,32]). However, ICP is a pose refine-
ment method that requires a sufficiently good initial pose
estimation to avoid local minima [33]. To compute an ini-
tialization for ICP, e.g., Shang et al. [35] propose to use the
Bounded Hough Transform (BHT) [13]. Similarly, we com-
pute a coarse pose estimation that is then refined using ICP.
Unlike other methods (e.g., [35]), our method does not rely on
pose tracking over multiple frames, which may suffer from
drift or jitter and need a restart after complete occlusion of
the field of view.

A large class of methods use deformable (morphable) 3D
models. Usually, these methods aim at minimizing a cost term
such that projections of the model match the input images
(e.g. [4,16]). This requires the optimization of many param-
eters and an initial pose guess or manual interaction, which
is inefficient. To establish multi-view correspondence and
object pose, geometric hashing [18] is an efficient method.
However, the matching process is sensitive to image resolu-
tion and surface sampling.

Another approach is to match 3D features (or shape
descriptors, respectively) to range images. Dorai et al. [8] use
principal curvature features. This requires the surface to be
smooth and twice differentiable, making the algorithm sen-
sitive to noise. Spin-image surface signatures introduced by
Johnson et al. [15] yield good results for 3D registration with
cluttered scenes and occluded objects. However, the method
is sensitive to image resolution and might lead to ambiguous
matches. Mian et al. [22] build a multidimensional table rep-
resentation (referred to as tensors) from multiple unordered
range images. They use a hash-table voting scheme to match
the tensor to objects in a scene. Compared to spin-images
they report a higher success rate, but the method requires
high-resolution geometry and has a runtime of several min-
utes. Similar to our approach, Greenspan [12] pre-computes
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model range maps, but the computation time depends on the
object size.

In Breitenstein et al. [6] we adopted our previous pose
estimation method [11] to the specific task of pose estima-
tion of faces. In contrast to the work presented here, the face
pose estimation algorithm does not use adaptive sampling of
the pose space, relies on shape signatures, and does not use
ICP for the final pose estimation. The error function and opti-
mization framework are different to overcome the variations
of non-rigid faces. The algorithm presented in this paper is
more general in handling different types of rigid objects and
complex scenes.

Lately, Liebelt et al. [20] presented an algorithm for object
class detection and rough pose estimation based on a similar
approach. They render 3D CAD models of objects with dif-
ferent poses to 2D images, and compare the input image to a
codebook of features extracted from this database. However,
their method does not cover the full pose search space and
the pose estimation accuracy is low compared to our method.

2.2 Bin picking

Bin picking is an important application of object pose esti-
mation in machine vision and robotics. For this task, a robot
arm needs to grasp previously known objects from a bin. One
of the main issues is to automatically detect and localize an
object and reliably estimate its pose. Most previous meth-
ods for bin-picking are limited by the type of objects or the
complexity of the scene they can deal with.

Ikeuchi [14] proposed an interpretation tree of selected
views to represent a CAD model. He uses visual edges, sur-
face normals and a depth map to find dominant visible sur-
faces. However, a reliable interpretation tree does not exist for
many types of complex objects without large planar surfaces.
Similarly, Rahardja and Kosaka [29] rely on simple features
which limit the application to simple, planar objects. Boug-
horbel et al. [5] proposed a system using laser and video cam-
eras to reconstruct the 3D scene in a bin. The range image
was then used to fit an object with super-quadric shapes.
However, the system is limited to simple shapes and scenes.

Some algorithms are specifically designed for the applica-
tion of a surface-adapting vacuum gripper (e.g. [1,2]). How-
ever, the gripper requires objects with large planar surfaces,
and the algorithms are not designed to handle arbitrarily
shaped objects.

2.3 General-purpose GPU processing

Traditionally, GPUs were designed to specifically acceler-
ate and enhance computer graphics algorithms. However,
there has been a substantial amount of work to apply the
processing power of GPUs to computer vision and image
processing applications (see, e.g. [10]). The main drawback

of using graphics hardware for non-graphics applications are
the lack of efficient scatter operations, where one process
sends data to other processes. Therefore, it is often not possi-
ble to directly port CPU-based algorithms to the GPU, there-
fore algorithms have to be designed specifically for imple-
mentation on the GPU.

Recently, the release of the NVIDIA’s CUDA develop-
ment platform [24] for general purpose GPU computing
attracted great attention. CUDA allows the user to dynami-
cally control the scheduling of threads and memory
assignment, which is especially important for image process-
ing algorithms. To the best of our knowledge, our work on
pose estimation using GPGPU is the first to this date.

3 Overview of the system

Our algorithm consists of three stages: an offline construction
of the reference pose database, a rough pose estimation, and a
pose refinement (see Fig. 1 for an overview). We assume that
the objects whose locations and poses we want to estimate
are rigid and that their 3D CAD models are available. We
give an overview of the different stages and describe them in
detail in the following sections.

3.1 Adaptive reference pose database construction

A pose hypothesis consists of a reference range image that
is created by rendering a 3D CAD model of the object with
a corresponding orientation. We build a database of refer-
ence range images for each object once in an offline process.
Instead of sampling the pose space uniformly (as in our pre-
vious method [11]), we sample the pose space more densely
for poses that are more probable (see Sect. 4). This allows to
estimate typical object poses more accurately.

3.2 Rough pose estimation

First, the coarse location of the object in the input range image
is estimated based on depth information and the Euclidean
distance transform of the 2D image (see Sect. 6). Starting
from this location, the translation parameters for each ref-
erence pose image are iteratively refined by an energy min-
imization procedure based on a parallelized version of the
downhill simplex algorithm [23]. A novel error function (see
Sect. 6.2) compares the alignment of each reference pose
image to the input range image. This is done for all pose
hypotheses in parallel on the GPU. Finally, the pose hypoth-
esis with least alignment error is selected as the rough pose
estimation. Its error value serves as a confidence measure,
indicating how good the alignment is.
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Fig. 1 Overview of our system

3.3 Fine pose estimation

The rough pose estimation is refined using ICP [3,7] (see
Sect. 7). Because of the limited number of reference pose
images in the database, ICP can improve the accuracy of the
final alignment. Given the good initialization from the rough
pose estimation ICP converges quickly. We evaluate the pose
accuracy improvements due to ICP in Sect. 8.3.3.

4 Adaptive reference pose database construction

One way to create the reference pose database is to uniformly
sample all possible (infinitely many) 3D orientations of an
object. However, depending on the object or the application
(e.g., picking), certain object poses appear more commonly
than others. Instead of sampling orientations uniformly (as
in our previous work [11]) we sample them more densely
for poses that are more probable. This strategy is especially
suitable for bin-picking, where the robot arm needs to select
the object that is most easy to grasp, i.e., the topmost object
or the object with the most reliable pose estimation.

4.1 Construction of one reference pose range image

For each pose to be tested, we render the 3D CAD model of an
object using orthogonal projection. Because the depth values
of the 3D scan and the physical size of the CAD models are
known, we can scale the reference pose images such that the
actual size of the object in both input and reference image
is the same. These reference range images are then saved
into one large image texture per object, consisting of all pose
test samples. This reference pose database is uploaded to the
memory of the graphics card during initialization of the pose

estimation algorithm. In our experiments, we operate with
a resolution of the reference range images of 64 × 64 and
32 × 32 pixels.

In addition to the depth values, we compute other values
that are necessary for the pose estimation algorithm (Euclid-
ean distance values, edge values, probability values; see
Sects. 5 and 6.2.2). These are stored as 32 bit floating point
values in the color and alpha channels of an image. A part of
the reference pose database is illustrated in Fig. 2.

4.2 Estimation of pose probability density function

Because the shape of a 3D object is topologically uneven
(unless the model is a sphere), some poses tend to appear
more often than others if an object is dropped onto a surface
(e.g., the situation in Fig. 3a is more likely than in Fig. 3b).
To sample the pose space of an object non-uniformly, we
estimate the probability density function (PDF) of the pose.
The pose PDF is approximated by a histogram for each Euler
angle by simulating dropping the object onto a surface or into
a bin and observing the frequency of poses.

For our bin picking application, 3D objects are repeatedly
dropped into bins with random initial location and pose. We
used the PhysX library of NVIDIA [25] to simulate colli-
sions between the objects and between objects and walls. An
example of a virtual bin for the pipe object in Fig. 3 is shown
in Fig. 4a. For each object model, we simulate about 500 bins
with 50 to 80 objects each (about 35,000 to 40,000 objects
in total) to get a robust estimation of the pose PDF. Theo-
retically, the PDF for each object should be estimated not
only individually (i.e., by simulating bins consisting of only
this object), but for all combinations of objects. However, the
differences appeared to be marginal in our experiments.
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Fig. 2 A small section of the reference pose database: a the EDT val-
ues are stored in the red color channel of an RGB image, b the depth
values are stored in the green channel, and c the edge pixels are stored
in the blue channel, d the uncertainty value (see Sect. 6) is stored in the
alpha channel

Fig. 3 Some poses of an object appear more often in a bin than others,
e.g. (a) is more probable than (b)

In Figs. 4b–d, the results for the experiments with the pipe
object from Fig. 3 are shown, which demonstrate a nonuni-
form distribution of the poses. Although Euler angles (i.e.,
successive rotations around three axis) are easy to use tech-
nically, a spherical parameterization (consisting of azimuth,
elevation and in-plane rotation) is more intuitive for drawing.
Dense and sparse pose regions are clearly distinguishable in
Fig. 5a and e, where a position on the sphere represents azi-
muth and elevation angles, and the direction of the vector
attached to a point represents the in-plane rotation.

Fig. 4 The nonuniform pose
histograms from the virtual bin
simulation of the pipe object,
using Euler angles: a example of
a virtual bin, b pose histogram
for rotation around the X axis,
c around the Y axis, d around
the Z axis
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Fig. 5 Example of estimated pose distribution and clustering of poses
using hierarchical K-means: In (a) and (e), each point on the unit sphere
represents an observed pose, consisting of azimuth and elevation angle
(position on the sphere) and in-plane rotation (direction of the vector
attached to the point). In (a), a dense region with many observations
of similar poses is shown (with some examples), whereas for the pose
region in (e), not many observations have been made. In (b) and (f),

we show the clustering results for the estimated pose distribution of the
pose regions shown in (a) and (d). The observations belonging to one
cluster center are colored. The images in (c) and (g) show the cluster
centers in comparison to a regular sampling of the poses in (d) and (h).
The poses represented by the cluster centers (azimuth and elevation) and
arrows (in-plane rotation) are the poses in the reference pose database

4.3 Sampling poses using K-means clustering

To create more reference pose samples in pose areas of higher
probability, we hierarchically cluster the observed poses
using K-means [21]. First, we cluster with respect to the
azimuth and elevation angles, i.e., the points on the unit
sphere in Fig. 5a and e are clustered using the Euclidean
distance as the distance measure. In a second step, we clus-
ter the in-plane rotations using the distance between angles,
taking into account all points from each cluster of the first
step.

We create as many cluster centers as the desired number of
reference pose range images for the pose database. Because
the range of the elevation angle is [0, π ] compared to [0, 2π ]
for azimuth and in-plane rotation, the cluster parameters
(K1 and K2) are chosen proportionally to this range. In our
case, to create 2,048 reference pose images (see Sect. 8), we
chose K1 = 16 × 8 and K2 = 16.

For the pose distribution illustrated in Fig. 5a and e, the
clustering results are shown in Fig. 5b and f, where differ-
ent clusters are marked with colors and with arrows (for the
in-plane orientation). In Fig. 5c and g, the cluster centers
are shown in comparison to the regularly placed samples in
Fig. 5d and h.

5 Input range image processing

The input range image is typically acquired with an active
light system (e.g., a laser range scanner), or with passive ste-
reo methods (that are prone to more noise and holes). In our
system the resolution of the input images are 128 × 128 or
64 × 64 pixels, i.e., double the resolution of the reference
images to account for potential inexact initialization of the
object position.

5.1 Edge detection

We reduce noise in the input image using a median filter with
a mask of 3×3 pixels. The range image of the input scene in
Fig. 6a is shown in Fig. 6b, and the result of the median filter
in Fig. 6c. A simple heuristic is applied to detect edges in the
image by comparing range values of neighboring pixels: If
the range difference exceeds a predefined threshold (in our
case 4% of the image width), a pixel is marked as an edge
(see Fig. 6d).

5.2 Euclidean distance transform

Based on the edge image, we compute the signed Euclidean
distance transform (EDT). The EDT is the distance of a pixel
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Fig. 6 Results of 3D scan processing: a input scene, b original range
image, c median filtered range map, d result of edge detection, e signed
Euclidean distance transform (EDT), f pixel grouping based on the of
EDT image

Algorithm 1 Algorithm for parallelized signed EDT
computation

coord(p) = coordinates of the closest edge e found so far
value(p) = signed distance value to e

Require: value(b) = −(m + 1) ∀b ∈ background
Require: value( f ) = +(m + 1) ∀ f ∈ foreground
Require: value(e) = 0 ∀e ∈ edge
Require: coord(p) = (x p, yp) ∀p ∈ image

for all iterations m do
for all pixels p do

for all direct neighbors n of p do
if distance(p, coord(n)) < |value(p)| then

value(p) = signed_distance(p, coord(n))

coord(p) = coord(n)

to the nearest pixel containing an edge. An example of an
EDT is shown in Fig. 6e, computed from Fig. 6d. In our GPU
implementation of the EDT, we employ a variation of the
ping-pong rendering algorithm [27,30]. We use two image
buffers and consecutively switch their role as rendering
source and target. Both buffers contain four channels per
pixel and are allocated in the video memory. The values in
the first two channels represent the coordinates of the closest
edge pixel found so far, the third channel stores the signed
distance, and the fourth channel indicates if an edge pixel is
already found.

Algorithm 1 shows the pseudo-code of our EDT algo-
rithm. The parameter m determines the number of iterations.
The distance values are initialized to −(m + 1) for back-
ground pixels (i.e., range value = 0), to m +1 for foreground
pixels (i.e., range value �= 0), and to 0 for all edge pixels. The
first two channels are initialized to the pixel coordinates. In
each iteration, the distance value of each pixel is compared
with the distance to the coordinates stored as closest edge
pixels of its eight direct neighbors. The distance value and
coordinates of the recent pixel p are updated if the distance
from p to the edge pixel in a neighboring pixel n is smaller

Fig. 7 Parallelized computation of the signed EDT: The values repre-
sent distances to the closest edge pixels. a shows the initialization step
and b–d demonstrate the first three iterations

than the value saved at p. This information is iteratively prop-
agated over the entire image at each step, as shown in Fig. 7.

The number of iterations m corresponds to the maximum
distance of any pixel to its closest edge. For convergence, m
needs to be equal to the length of the larger side of the image
in pixels. However, to speed up the algorithm we make use of
the fact that the distance of each pixel to an object edge is typ-
ically much smaller. Furthermore, an approximation of the
exact EDT is sufficient for our purpose. In our experiments,
we found that m = 7 for an image resolution of 64 × 64
pixels and m = 15 for 128 × 128 are sufficient.

5.3 Pixel grouping

To find proper initial search locations for the downhill sim-
plex optimization, we perform a simple pixel grouping
method in the input range image. Therefore, the pixels are
grouped into patches such that each patch represents a
(mostly) smooth segment of the object surface. They will be
used for the initialization of the pose estimation algorithm
(see Sect. 6.1). The initial positions for the downhill simplex
will be searched within patches that are close to the camera.

Pixels in the input image are grouped using the edge image
(see Sect. 5.1) by detecting connected non-edge pixel regions.
First, different labels are assigned to each non-edge pixel.
Then, non-edge pixels are iteratively merged if they have
non-edge neighbors. This requires the same number of itera-
tions (m) as for the EDT computation. Finally, the maximum
EDT value of a pixel in one patch corresponds to the size
of the patch. We filter out small patches (i.e., patches where
the highest EDT value is low) to avoid over-segmentation.
A pixel grouping result is shown in Fig. 6f.
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6 Rough pose estimation

For the rough pose estimation step, each reference image is
translated over the input image, and the corresponding align-
ment error is computed for each position. In the following
sections, the rough pose estimation is described in detail.
First, we present a method to find the initial translation of
the object in the input image in Sect. 6.1. Then, we define
the error function to measure the alignment of one reference
range image Ri and an input range map I in Sect. 6.2. Finally,
we present the optimization procedure to find the globally
optimal pose match in Sect. 6.3. The optimization and error
evaluation are performed in parallel for all reference range
images.

6.1 Initial translation parameters

A good choice of initial translation parameters (x0, y0, z0)

influences the accuracy and the convergence rate of the down-
hill simplex optimization. Therefore, we look for a largely
visible object that is close to the camera. This choice is par-
ticularly reasonable for the application of bin picking.

First, our algorithm computes the average depth values for
each patch of the pixel grouping result (see Sect. 5.3). Then,
it selects the patch P with the minimum average depth. The
pixel p ∈ P with highest EDT value is taken as an initial
point that represents the “center” of the visible area.

To increase the robustness of the downhill simplex opti-
mization we employ multiple initializations simultaneously
by selecting the center pixels of the n closest patches. Exam-
ples of this method are shown in Fig. 8. In our experiments,
we use n = 1 and n = 3 initial starting points to show the
tradeoff between speed and accuracy (see Sect. 8).

6.2 Error function

Given an input range image I and the reference pose image
Ri , the error value Ei for the translation parameters (x, y, z)

Fig. 8 Starting points (marked as white ‘+’) for the optimization,
selected by our algorithm

is defined as:

Ei (I, Ri , x, y, z) = ri
(
Ecover(x, y) + λErange(x, y, z)

)

(1)

where

ri = Ai

Amax

Ecover(x, y) =
∑

u,v f (u + x, v + y)δcover(u, v, x, y)
∑

u,v f (u + x, v + y)

Erange(x, y, z) =
∑

u,v c(u + x, v + y)δrange(u, v, x, y, z)
∑

u,v c(u + x, v + y)
.

(2)

The error function in Eq. 1 consists of the cover error term
Ecover(x, y) and the depth error term Erange(x, y, z). Both are
evaluated at the pixel position (u, v) of I . The cover error
term Ecover measures the error of aligning the silhouettes,
inspired by [19], while the depth error term Erange compares
the topologies of the reference and input range images. The
term ri is the ratio of the foreground area Ai of Ri compared
to the maximum observed foreground area Amax across all
the reference views. This term favors alignments (and thus
poses) where a large part of the object is visible. The transla-
tion parameters (x, y, z) determine the relative position with
respect to I . The two error terms are weighted by λ to balance
the different scale of Ecover and Erange, and summed over all
image pixels. λ is experimentally set to 20 by minimizing the
position error in experiments with synthetic data where we
have ground truth. The factors f (u, v) and c(u, v) make the
error independent of the object size and assign less weight to
less reliable pixels (see the next subsections). The alignment
(x, y, z) of one reference pose image Ri is optimal if its error
value is lower than any other alignment of Ri .

6.2.1 Cover error term

Given a pixel (u, v) in an alignment of Ri and I , the cover
error is defined as the difference of the corresponding pix-
els in the Euclidean distance transform images of I and Ri ,
EDTI and EDTRi :

δcover(u, v, x, y) = ∣∣EDTI (u, v) − EDTRi (u + x, v + y)
∣∣

(3)

where (x, y) is the translation vector of Ri with respect to I .
The cover error term is minimal if the silhouettes and edges
of the objects in I and Ri match perfectly. Only non-back-
ground pixels of Ri with positive range values are considered,
enforced by the cover error weighting factor f (u, v):

f (u, v) =
{

1 if E DTRi (u, v) > 0
0 otherwise.

(4)
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6.2.2 Depth error term

The depth error term compares the depth values zI and zRi

of the overlapping foreground pixels in I and Ri :

δrange(u, v, x, y, z)

=
⎧
⎨

⎩

∣∣zI (u, v) − (zRi (u + x, v + y) + z)
∣∣ ,

if zI (u, v) �= 0 ∧ zRi (u + x, v + y) �= 0
0, otherwise.

(5)

where Ri is translated by (x, y) and z is added to all range
values of R.

If the angle of the surface normal is very large compared
to the viewing direction (orthogonal to the image plane), the
depth difference can become erroneously large, although the
object in the reference image is well aligned to the input
image. To put more weight on pixels where the alignment
error is reliable, we introduce the term c(u, v):

c(u, v) =
{ | cos(V, N(u, v))| if zRi (u, v) �= 0

0 otherwise
(6)

where V is the viewing vector of Ri and N(u, v) is the sur-
face normal vector at (u, v). c(u, v) is computed offline for
all reference pose images, and the values are stored in the
alpha channel of the images in the database (see Fig. 2d;
Sect. 4.1).

6.2.3 Implementation on the GPU

The error function in Eq. 2 is computed on the GPU using
CUDA. In a naive implementation, all reference pose images
would be stored in video memory, and the number of threads
would be equal to the number of pixels in the reference
view database. However, to avoid background pixels, only
the image region around the bounding box of the object is
transferred to video memory.

During online pose estimation, each thread computes the
error terms of Eqs. 3 and 5 for one pixel. The current transla-
tion parameters (x, y, z) in Eqs. 1 and 2 and the error value
are stored in separate arrays. Each pixel’s score Si is stored
in an array of the global memory space on the graphics card.

In the next step, pixel-wise errors are summed up over all
pixels of each reference view, yielding Ri ’s current error Ei

in Eq. 1. To achieve parallelism, we sum the pixels using the
scheme illustrated in Fig. 9: beginning with a step size s = 1,
the values at the pixel positions (u, v), (u+s, v), (u+s, v+s),
(u, v + s) are added and stored at S(u, v). Subsequently, s
is doubled after each iteration. The final result of the error
function is stored at pixel Si (0, 0) after s = log(l) steps,
where l is the image width in pixels.

Fig. 9 Parallelized error computation on the GPU: in each iteration
k, information at the current pixel position (marked with circle) is
collected from the upper, upper right, and right neighbor at distance
s = 2k

6.3 Parallel optimization framework

We formulate pose estimation as the problem of finding the
location parameters (x̂, ŷ, ẑ) and orientation parameters
(θ̂ , φ̂, σ̂ ) of an object in an image according to this 6-DOF
optimization problem:

(x̂, ŷ, ẑ, θ̂ , φ̂, σ̂ ) = arg min
i

⎛

⎜
⎜⎜
⎝

min
x,y,z

Ei (I, Ri , x, y, z)
︸ ︷︷ ︸

step 1

⎞

⎟
⎟⎟
⎠

︸ ︷︷ ︸
step 2

(7)

In step 1, the translation parameters (x, y, z) are found,
which minimize the error Ei (from Eq. 1), measuring the
alignment of one reference pose image Ri and the input
range image I . We use a parallelized version of the down-
hill simplex algorithm [23] (see Sect. 6.3.1 for implemen-
tation details). This is done for every pose hypothesis i and
corresponding reference range image Ri in parallel. In our
experiments, it took about 20 to 30 iterations for the downhill
simplex algorithm to converge.

In step 2, we select the best pose hypothesis î (correspond-
ing to the orientation parameters (θ̂ , φ̂, σ̂ )) with the lowest
error, together with (x̂, ŷ, ẑ) from step 1 belonging to î .

6.3.1 Data-parallel downhill simplex on the GPU

To find the best translation parameters for one reference pose
image in step 1 (Eq. 7), we use the downhill simplex algo-
rithm [23,28]. Although the downhill simplex algorithm can
require more iterations than other optimization algorithms
based on gradients, it is well suited for a GPU implemen-
tation because the computational cost for each iteration is
low and the read/write operations are well distributed across
memory. An n-dimensional simplex consists of n+1 verti-
ces, in our case (n = 3) it is a tetrahedron. After initializa-
tion, the downhill simplex algorithm changes the positions
of the vertices in every iteration step towards a minimum
of a given n-dimensional function. There are four types of
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such changes: reflection where the vertex ph with the highest
function value is mirrored at the plane P defined by the three
other points, reflection and expansion where the reflected
vertex is also moved away from the plane, contraction where
p is moved towards P , and multiple contractions where more
than one vertex is moved towards the others. Only the param-
eters of the simplex (vertex positions) are updated, and the
error function in Eq. 1 is evaluated using pixel-wise opera-
tions. Furthermore, there are no complex logical branches.

If we use a database with 2,048 reference pose images,
2,048 downhill-simplex algorithms run in parallel. For a ref-
erence pose image resolution of 64×64 pixels, over 8 million
threads are processed in one iteration of our optimization
procedure, exploiting the massive data-parallel processing
power of modern GPUs.

The vertices of the simplex are initialized to (x0, y0, z0),
(x0 + d, y0, z0), (x0, y0 + d, z0) and (x0, y0, z0 + d), where
x0, y0 and z0 are the initial parameters described in Sect. 6.1.
In our experiments, an adequate value for the step size of the
simplex is d = 2 pixels.

The complete optimization procedure is implemented usi-
ng three different CUDA programs. The first one implements
the downhill simplex algorithm as described above. It takes
care of the shape changes of the simplex. The second program
computes the error terms in the Eqs. 3 and 5, and the third
one computes the final error value (Eq. 1). These three pro-
grams are executed for each evaluation of the error function
in the downhill simplex algorithm. If the normalized differ-
ence between maximum and minimum error values in one
iteration is below a threshold of 5% (see [28]), the downhill
simplex thread stops and the parameters (x, y, z) are stored
for this reference pose. Finally, the reference pose image with
the least error is returned together with its stored parameters
as the result.

7 Fine pose estimation

Although the accuracy of our rough pose estimation is ade-
quate for most applications (see Sect. 8), we can refine the
estimation using ICP.

The vertex densities of the CAD mesh model and a mesh
model of the input image are not equal. Also, a simple mesh
of the input is often irregular. Therefore, a direct applica-
tion of ICP often does not work correctly. To overcome this
problem, we use a partial mesh model obtained by rendering
the CAD model in the roughly estimated pose. This adjusts
the vertex resolution of the reference to the input model,
and provides significant overlap between the meshes. If the
rough pose estimation results in a correctly estimated pose,
ICP further reduces the remaining pose error (see Sect. 8;
Fig. 10).

Fig. 10 Pose estimation results: a the estimated rough pose (shown
overlaid), b the partial mesh constructed from the depth map based on
the estimated pose, c the result of ICP using the partial mesh in (b) and
the mesh from depth map of the input scene, d the estimated fine pose

8 Experiments and discussion

We evaluated the algorithm extensively on different syn-
thetic and real input scenes. In this section, we present both
quantitative and qualitative results. Furthermore, we illus-
trate parameter choices and discuss the performance and the
memory footprint of our algorithm. All results were com-
puted using a PC with a 2.83 GHz Intel Core2 Quad CPU
(Q9550) and a NVIDIA GTX 280 GPU with 1GB of video
memory.

8.1 Datasets

We used 243 different datasets consisting of bins with the
same and with different objects.

8.1.1 Synthetic datasets

We constructed 210 virtual bins using a physics-based sim-
ulation of objects falling into a bin. We used this data as
ground truth to precisely analyze the accuracy of our algo-
rithm. Figure 11 shows nine virtual bins consisting of 20 to
30 objects. In this example, each bin is filled with objects of
the same type. In our experiments, the objects whose pose
had been estimated successfully were removed from the bin
one by one until the bin was empty.
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Fig. 11 Synthetic test scenes: a Three different bins with 20 T-pipe
models, b three bins with 30 bolt models, c three bins with 20 elbow
pipe models in each bin

Fig. 12 Experimental setup: the structured light range scanner (left).
Real objects printed by a 3D printer (middle). Corresponding 3D CAD
models (right)

8.1.2 Real datasets

To record real-world data we used a structured light range
scanner consisting of an IEEE 1394 camera and a pocket-
size laser projector (see Fig. 12). The bins and objects were
printed on a 3D printer. Figure 12 shows the hardware setup,
the 3D CAD models, and the printed objects.

We constructed 12 different scenes of real bins with the
same type of objects (see Fig. 13, corresponding to the syn-
thetic bins shown in Fig. 11), and 21 scenes with four differ-
ent objects (see Fig. 15 for the bin and Fig. 12 for an image of
the four objects). In Fig. 15 we demonstrate our bin picking
experiment, performing object detection and pose estimation,

Fig. 13 Examples of real test scenes: a bins with single type of objects
(corresponding to the synthetic scenes in Fig. 11), b the input depth
images, and c the 3D point clouds (slightly rotated for visualization)

and subsequently removing the corresponding object one by
one until the bin is empty.

8.2 Error analysis

For test data with ground truth (i.e., the synthetic dataset)
we present results using two error metrics: geometric dis-
tance and Euler angles. The geometric distance error (vertex
error) is computed as the vertex-to-vertex distance between
the corresponding vertices of the object in the input scene (or
its ground truth, respectively) and the object model with the
estimated pose. The distance is normalized by the diagonal
length of the bounding box. The Euler angle error consists of
the difference for each of the three rotational angles around
the x , y, and z axes.

We classify the estimated rough pose as correct if the geo-
metric distance error is less than 10%, which is accurate
enough for ICP to converge. The angular errors are com-
puted only for objects with correct pose estimates because
wrong estimations are often caused by object symmetries
(see Sect. 9) and thus can be as large as 180◦.

8.3 Results for the synthetic datasets

A few examples of typical results are shown in Fig. 14, where
the estimated pose is shown using semi-transparency. The
model is mostly well-aligned. The small red symbol shows
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Fig. 14 Pose estimation results
for synthetic (a, b) and real
scenes (c, d): (a, c) after rough
pose estimation, (b, d) after fine
pose estimation

the location of the initial search point. In general, the rough
pose estimation is successful in 96% of the test cases, and
the axis-angle error for those cases is around 1 degree after
the ICP stage.

8.3.1 Effect of reference pose image resolution

We quantitatively evaluated the accuracy of our algorithm
without the pose refinement stage (see Table 1) for the
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Table 1 Success rates and errors of rough pose estimations for the synthetic datasets with parameters Nref = 1,024 and Ninit = 3 using uniformly
and adaptively sampled databases

Model Trials Sampling
method

Resolution

32 × 32 64 × 64

Correct
poses

Vertex
error

Angular error (in
Euler angles)

Correct
poses

Vertex
error

Angular error (in
Euler angles)

T-Pipe 60 Uniform 48 6.78 (7.75, 6.91, 5.55) 49 6.18 (8.60, 6.27, 5.40)

Adaptive 52 5.24 (5.58, 4.87, 3.46) 56 5.11 (6.56, 5.73, 3.06)

Bolt 90 Uniform 88 6.73 (7.10, 6.70, 6.44) 89 4.98 (6.42, 5.43, 5.42)

Adaptive 89 5.99 (6.41, 5.92, 6.94) 90 4.59 (6.04, 4.81, 4.67)

Elbow 60 Uniform 38 5.67 (7.40, 8.10, 5.75) 44 5.23 (10.72, 6.75, 4.64)

Adaptive 55 4.55 (5.60, 5.03, 4.99) 57 5.03 (5.87, 5.97, 5.26)

Average 210 Uniform 174 (83%) 6.44 (7.37, 7.16, 5.99) 182 (87%) 5.40 (8.27, 6.05, 5.19)

Adaptive 196 (93%) 5.26 (5.86, 5.27, 5.13) 203 (97%) 4.91 (6.16, 5.50, 4.33)

Table 2 Fine pose estimation
error for the synthetic dataset
with parameters Nref = 1,024
and Ninit = 3

Data Trials 32 × 32 64 × 64

Vertex
error

Angular error (in
Euler angles)

Vertex
error

Angular error (in
Euler angles)

T-Pipe 60 0.62 (0.20, 0.52, 0.28) 0.58 (0.61, 0.66, 0.26)

Bolt 90 2.48 (1.58, 1.56, 4.06) 1.28 (0.27, 0.35, 1.48)

Elbow 60 0.35 (0.11, 0.12, 0.11) 0.18 (0.04, 0.04, 0.04)

Average 210 1.15 (0.63, 0.73, 1.48) 0.68 (0.31, 0.35, 0.59)

synthetic dataset. For these experiments, the reference pose
database consists of Nref = 1,024 poses. We use Ninit = 3
starting positions for the downhill simplex algorithm (see
Sect. 6.3). The estimation success rate is 97% for a reference
pose resolution of 64 × 64 pixels, and 93% for a resolution
of 32 × 32 pixels.

8.3.2 Effect of adaptive pose database construction

As can be seen in Table 1, the effect of adaptively construct-
ing the pose database according to the estimated pose dis-
tribution is significant; the success rate increases by about
10%.

8.3.3 Effect of ICP

Table 2 shows the pose estimation result using ICP. There
is a substantial improvement, and the refinement results in
an almost perfect alignment. This effect is slightly higher
for reference pose images with a resolution of 64 × 64 pix-
els. The reason is that the mesh resolution is important for
the precision of ICP in contrast to the rough pose estimation
algorithm.

8.3.4 Effect of the reference database size

We increased the size of the reference database from 1,024
reference pose range images to 2,048 pose samples. The
effect is marginal, as can be seen in Table 3 from both the
success rate as well as the distance and angular errors. We
made the same observation for the real dataset. The reason is
that the smaller reference database already samples the pose
space effectively using the proposed adaptive pose sampling
algorithm.

The memory size of the reference pose database depends
on the object type, image resolution and database size (see
Table 4). It is well manageable on modern graphics cards.

8.3.5 Runtime

Table 5 shows the runtimes for the experiments described so
far, for different image resolutions and database sizes. The
runtime does not primarily depend on the object type. Instead,
it is proportional to the resolution and the size of the reference
view database. As discussed before, using a database with an
image resolution of 64 × 64 pixels and 2,048 pose samples
did not result in a significant increase of accuracy. For the
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Table 3 Success rates and errors of pose estimations for the synthetic datasets with parameters Nref = 2,048 and Ninit = 3

Model Trials Error
measure

Resolution

32 × 32 64 × 64

Correct
poses

Vertex
error

Angular error (in
Euler angles)

Correct
poses

Vertex
error

Angular error (in
Euler angles)

T-Pipe 60 Rough pose 57 5.24 (5.67, 5.73, 2.89) 57 4.74 (5.66, 5.69, 2.59)

Fine pose 0.70 (0.43, 0.35, 0.30) 0.18 (0.05, 0.06, 0.04)

Bolt 90 Rough pose 89 6.37 (9.17, 6.94, 6.47) 90 0.05 (3.70, 4.27, 6.06)

Fine pose 2.26 (2.17, 1.93, 3.05) 0.01 (0.29, 0.32, 1.89)

Elbow 60 Rough pose 54 4.63 (6.68, 5.17, 4.70) 55 3.63 (5.14, 4.97, 4.42)

Fine pose 0.32 (0.12, 0.12, 0.14) 0.14 (0.04, 0.03, 0.03)

Average 210 Rough pose 200 (95%) 5.41 (7.17, 5.95, 4.69) 202 (96%) 2.81 (4.83, 4.98, 4.36)

Fine pose 1.09 (0.91, 0.80, 1.16) 0.11 (0.13, 0.14, 0.65)

Table 4 Required video
memory for different reference
pose databases (in MBytes)

1024 2048

32 × 32 64 × 64 32 × 32 64 × 64

T-Pipe 25.61 73.22 47.00 142.17

Bolt 20.40 50.13 36.41 95.74

Elbow 27.79 82.15 51.48 160.80

Table 5 Computation times
TRough and TFine for the
synthetic dataset (in seconds)

Data Resolution

1024 2048

32 × 32 64 × 64 32 × 32 64 × 64

T-Pipe

Rough pose 0.33 0.46 0.65 0.95

Fine pose 0.01 0.02 0.01 0.02

Bolt

Rough pose 0.26 0.32 0.50 0.63

Fine pose 0.01 0.02 0.01 0.02

Elbow

Rough pose 0.37 0.51 0.72 1.02

Fine pose 0.02 0.02 0.02 0.02

Average

Rough pose 0.32 0.43 0.62 0.87

Fine pose 0.01 0.02 0.01 0.02

database with 1,024 samples our algorithm needs between
0.3 and 0.5 s.

In all the experiments presented so far we used Ninit = 3
starting positions for the downhill simplex algorithm (see
Sect. 6.3). This parameter strongly depends on the degree of
occlusion in the scene. If we use just one starting position
(Ninit = 1) the runtime drops by a factor of three.

8.4 Results for the real datasets

For the real scene shown in Fig. 13, the result is shown in
Fig. 14. For the experiments with the more realistic dataset we
used a reference pose database with Nref = 4,096 poses (1,024
views per object type) and an image resolution of 64 × 64
pixels. The result of sequential object detection and removal
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Fig. 15 Results of consecutive pose estimation and object removal for a complex bin with different types of objects. For every step, the bin and
the corresponding depth scan are shown. The detected object which is removed afterwards is marked overlaid

is shown in Fig. 15, where in each step the pose of an object
was estimated. Because no ground truth is available, the pose
estimation accuracy can not be evaluated quantitatively but
only qualitatively (compare the pose of the projected model
with the estimated pose (marked red) in Fig. 15).

Our approach is applicable to scenes with different objects,
as long as the object types in the scene are known and 3D
CAD models are available beforehand. Since computation
complexity increases proportionally to the number of refer-
ence views, the processing time in this experiment increases

to 0.57 seconds for Ninit = 1 initial positions for the down-
hill simplex algorithm, and to about 1.7 s for Ninit = 3 initial
search points.

8.5 Comparison to a CPU implementation

To compare the runtime between GPU and CPU we ported
the source code to the CPU. Parallel computations are now
executed as double loops. On average, the CPU runtime is
about 115 times higher than on the GPU (note that we run the
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Fig. 16 Typical failure cases: a ambiguous self occlusion, b bad
initial position for the Downhill Simplex algorithm (on the surface patch
marked as solid circle)

code on a quad core CPU). However, since the CPU imple-
mentation is not optimized, this comparison is not entirely
fair.

8.6 Failure cases

In general, the robustness and success rate of our algorithm
is very high. Typical reasons for a wrong pose estimation are
either large self-occlusions or ambiguity of the object loca-
tion because of several similar-looking objects in the scene
(see Fig. 16a). Additionally, heavy occlusions around the ini-
tial search position for the Downhill Simplex algorithm can
lead to a wrong initialization and thus to an erroneous pose
estimation. An example for this case is shown in Fig. 16b),
where the initial search point (red) is at the very border of an
object.

In rare cases, the visible area of an object is too small such
that several objects with different poses are aligned well to
the visible part. However, our algorithm is trying to avoid
such cases by favoring poses with a largely visible object
surface (using the factor ri in Eq. 1 in Sect. 6.2). Addition-
ally, the objects used in our experiments have some similar
parts that can cause confusion, and the range scans could
contain large holes that make it difficult to unambiguously
align an object.

9 Conclusions and future work

We presented a model-based algorithm for automatic 3D pose
estimation that has been designed for efficient GPU imple-
mentation. The method consists of three stages: adaptive con-
struction of a reference pose database, rough pose estimation
without initialization, and pose refinement using ICP.

We applied our method to bin picking, and demonstrated
that our system works fast, accurately, and reliably. Fur-
thermore, we illustrated the influence of different algorithm
parameters and evaluated the performance using challeng-
ing synthetic and real data. The algorithm is scalable with
respect to the number of objects in the database, which is
only limited by the memory on the graphics card.

Future work will include the investigation of automatic
symmetry detection for the objects to reduce the pose search
space. This is currently done by hand, which is feasible for a
typical bin-picking setting where the algorithm usually has to
deal only with a few different object types. Furthermore, we
plan to apply our system to a robot assembly environment.
Therefore, small modifications due to mechanical restrictions
could be useful, e.g., to reject objects that a real robot arm
cannot reach, or to take into account the velocity of the arm
to favor objects near its current position.
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