
Maximizing All Margins: Pushing Face Recognition with Kernel Plurality

Ritwik Kumar
IBM Research - Almaden

rkkumar@us.ibm.com

Arunava Banerjee, Baba C. Vemuri
University of Florida

{arunava,vemuri}@cise.ufl.edu

Hanspeter Pfister
Harvard University

pfister@seas.harvard.edu

Abstract

We present two theses in this paper: First, performance
of most existing face recognition algorithms improves if in-
stead of the whole image, smaller patches are individu-
ally classified followed by label aggregation using voting.
Second, weighted plurality1 voting outperforms other pop-
ular voting methods if the weights are set such that they
maximize the victory margin for the winner with respect to
each of the losers. Moreover, this can be done while tak-
ing higher order relationships among patches into account
using kernels. We call this scheme Kernel Plurality.

We verify our proposals with detailed experimental re-
sults and show that our framework with Kernel Plurality
improves the performance of various face recognition algo-
rithms beyond what has been previously reported in the lit-
erature. Furthermore, on five different benchmark datasets
- Yale A, CMU PIE, MERL Dome, Extended Yale B and
Multi-PIE, we show that Kernel Plurality in conjunction
with recent face recognition algorithms can provide state-
of-the-art results in terms of face recognition rates.

1. Introduction
There is little debate that today we live in an abundance

of face recognition (FR) methods [24, 12, 2, 3, 14]. Some
of the methods do well on concrete measures like classifi-
cation accuracy and computational efficiency while others
score high on subjective measures like ease of implemen-
tation and public domain availability. Here we intend to
revisit existing FR methods, from the rusty old Eigenfaces
[24] to the more recent Volterrafaces [14], in order to ex-
plore the possibility of squeezing more performance from
them, while maintaining their existing advantages.

We begin by noting that FR as a classification problem
is characterized by high data dimensionality and data spar-
sity. These are the textbook conditions that lead classifiers
to overfit the data. We believe that this is one of the rea-

1Plurality [19] is a form of voting where in a multi-class contest, the
class with the maximum votes wins. This is in contrast to Majority, where
the a winner must get at least half of all the votes.

sons performance of many FR algorithms has been limited
to a much lower level than what could be achieved by them
if this issue is addressed. Our simple yet effective solu-
tion to this problem is to divide images into patches and to
train classifiers per patch location. During the testing stage,
single label for an image is obtained by weighted plurality
voting by the patch locations. Note that use of patches has
been explored from time to time in FR, but our proposal is
broader in the sense that it calls upon all FR methods to be
used in this manner.

Next, we make the observation that in a weighted vot-
ing scheme, the manner in which weights are selected is
critical. There is a large body of literature which has tried
to address this problem with a few significant methods like
Log-Odds Weighted Voting [16], Weighted Majority Vot-
ing [17], Bagging [4], Boosting [21, 9], Stacking [26]. It
has been shown that most of the supervised weighted voting
methods learn weights based on maximization of the mar-
gin of victory [22, 13] in a two class scenario. In the case
of plurality voting (multiclass), there is a margin of victory
with respect to each of the losers. Interestingly even the
more recent multiclass Boosting methods do not take ad-
vantage of this and only maximize the minimum margin of
victory [21]. We propose to learn plurality voting weights
such that all the margins of victory are maximized simulta-
neously. We call our scheme Kernel Plurality since in ad-
dition to maximizing all margins, it also allows for higher
order relations among various patch labels to be taken into
account while weight computation via the use of kernels.

We corroborate our proposals with extensive experimen-
tal results using five different benchmark face datasets and
five different FR algorithms. We show that: (1) FR algo-
rithms when used within our framework significantly ex-
ceed their own performance without our framework. (2)
Kernel Plurality outperforms simple Plurality, Log-Odds
Weighted Plurality [16] and Stacking [26] implemented
with SVMs. Note that different FR methods perform dif-
ferently on various datasets and though the absolute perfor-
mance of FR methods is important as shown in Fig. 4, it is
more enlightening to look at the percentage improvement in
performance of various FR methods (Fig. 5). That said, in

1

Symbol Meaning
D, xi Feature/Input/Data space, ith vector in it.
L, lj Label space, jth label in it.
C, ck Classifier ensemble, kth classifier in it.
wk weight associated with classifier ck.

ck(x) Label assigned by ck to x ∈ D
R,R+ Set of Real numbers, positive Real numbers
IA(x) Indicator function, 1 if x ∈ A else 0
P Prediction subspace, P = {−1, 0, 1}|C|
δi,j Kronecker delta function, 1 if i = j, else 0

K, ϕ,K(·, ·) Kernel space, Mapping, Matrix
T Training set, T ⊂ D

Table 1. Symbols and their meaning

conjunction with the recently proposed Volterrafaces [14]
and LBP [2], Kernel Plurality does provide the state-of-the-
art results.

To summarize, the key points made in this paper are: (1)
Patch based voting outperforms holistic classification for
various algorithms across databases. (2) Using off-the-shelf
classifiers (e.g. SVMs) for label aggregation is not opti-
mal. (3) Kernel Plurality outperforms existing voting meth-
ods across most databases and training set sizes indicating
utility of all-margin maximization. (4) On average, Ker-
nel Plurality improves accuracy over Plurality by 3 − 21%
while for a state-of-the-art method like Volterrafaces im-
provement ranges from 5− 66%.

2. Kernel Plurality
Kernel Plurality is a new kernel based voting method. In

the next subsection we describe the process through which
the optimal weights are obtained for a given kernel using
a training set of feature vectors. Following that we will
outline the process by which a winning label is selected
for a test feature vector using a given kernel and computed
weights.

2.1. Weight Computation

The meaning of various symbols and functions used in
this discussion is summarized in Table 1. According to
weighted Plurality, if we ignore ties for the moment, xi is
assigned a label l according to following criteria

l = argmax
j

{
|C|∑
k=1

wkδck(xi),j |j ∈ L} (1)

where δ is the Kronecker delta function and wk ∈ R is
the weight associated with the classifier ck. Another way
to express the criteria in Eq. 1 is to say that xi should be
assigned the label l such that∏

m∈L,m ̸=l

IR+(Alm(xi)) > 0, (2)

A DB C

Classi�er 1

Classi�er 2

Classi�er 3

Classi�er 4

Classi�er 5

A DB C

Classi�er 1

Classi�er 2

Classi�er 3

Classi�er 4

Classi�er 5

Classi�er 6

Classi�er 7

Classi�er 8

E

A

B

D

C

E

(a) Classi�er Voting Pattern
(b) Voting Digraph and

its Strongly Connected Components Graph

Figure 1. Plurality as a set of pair-wise contests: (a) Votes cast
by 8 classifiers toward classes A to E. (b) The corresponding vot-
ing digraph (in black) showing pair-wise contests and its Strongly
Connected Components graph (in color).

where Alm(xi) =
∑|C|

k=1(δck(xi),l − δck(xi),m)wk and I is
the indicator function (Table 1). Eq. 2 encodes that the win-
ner label l must have more weighted votes than each of the
other losing labels. We can rewrite this in dot product form
as ∏

m∈L,m̸=l

IR+
(⟨−→p lm(xi),

−→w ⟩) > 0, (3)

where

−→p lm(xi) = (δc1(xi),l−δc1(xi),m, · · · , δc|C|(xi),l−δc|C|(xi),m)T

(4)
is the prediction vector and −→w = (w1, w2, · · · , w|C|)

T ∈
R|C| is the weight vector. Note that −→p lm(xi) ∈
{−1, 0, 1}|C| = P, the prediction subspace.

The transformation of the decision criteria from Eq. 1
to Eq. 3 brings out the fact that a Plurality contest among
multiple classes can be fully described by a set of multiple
pair-wise contests. To understand it more clearly, consider
the example outlined in Fig. 1. There are eight classifiers
that vote for five classes (A-E) as shown in Fig. 1(a). In this
example, Eq. 1 selects class E as the winner of the Plurality
contest. The same conclusion can also be reached if we
consider all binary contests between the classes A-E, which
we represent using a digraph (directed graph) in Fig. 1(b)
with an edge from label li to lj if

IR+(⟨−→p lj li(yi),
−→w ⟩) > 0. (5)

If there is a tie, edges pointing to both labels are added.
Given such a digraph, the winner of the Plurality contest
is the root of the corresponding Strongly Connected Com-
ponents (SCC) graph [6, 18]. The SCC graph is shown in
Fig. 1(b) using colored overlays where class E, the correct
winner, is also the root of the SCC graph. In case of a tie
for the win, the SCC root will correspond to multiple voting
digraph nodes (i.e. Eq. 3 will be set to zero for multiple l)
and a strategy must be chosen to resolve the tie. We will
revisit this graph formulation of voting while using Kernel
Plurality on test feature vectors.

At this stage we introduce the first of the two key ideas
behind Kernel Plurality. Note that the ensembles we are
considering have fixed size and the classifiers are learned
independently using different patches. In such a setting,
the linear relation in Eq. 3 implies that the elements of
−→p lm(xi) act independently as they contribute their votes
toward a decision. For instance, conditions such as ‘The
winner should be the label that is picked by both classifier
1 and classifier 2’ cannot be encoded using a linear equa-
tion like Eq. 3. We would like to take such higher order
interactions among classifiers into account while deciding
a winner of a Plurality contest. Mathematically, this trans-
lates to transforming the prediction vector −→p lm(xi) and the
weight vector −→w using some mapping ϕ to a kernel space
K. The winner label l must be now be chosen such that∏

m∈L,m ̸=l

IR+(⟨ϕ(−→p lm(xi)), ϕ(
−→w)⟩) > 0. (6)

For a given ensemble and ϕ, we do not know the best −→w
a priori and would like to recover it using the training data.
This brings us to the second key idea behind Kernel Plu-
rality. For the case of two-class weighted voting contests,
Lin et al. [16] show that the reliability of classification in-
creases with the margin of victory. Since a Plurality con-
test can be defined in terms of multiple two-class contests
(Fig. 1), we reason that Plurality would provide more reli-
able generalization performance on a test set if its weights
are set such that the margin of victory with respect to each
losing class is maximized for the training feature vectors.
Note that this is in contrast to maximization of the mini-
mum margin, which some existing techniques [21] try to
achieve. The idea of maximizing all-margins as opposed to
only the minimum margin is explained with a toy example
in Fig. 2. Fig. 2(a) shows four classes in some embedding
space with two noisy data points that belong to class 1. Note
that due to their proximity to class 2 and 4, respectively, the
two data point cannot be reliably classified. If the mini-
mum margin for class 1 is maximized, we get to a situation
shown in Fig. 2(b), where class 2, the class closest to class
1 is pushed far away, but other classes have clustered not
far from class 2. In this case, ambiguity for the data points
which was closer to class 2 has been removed, but the other
point is still closer to class 4. If, as proposed, all the margins
are maximized with respect to class 1, we get the situation
shown in Fig. 2(c) where classes 3 and 4 are pushed farther
away than before. Thus it is more likely that ambiguity for
the second data point would also be removed.

In terms of the mathematical formulation, the similarity
between our objective in the prediction space P and the ob-
jective of Support Vector Machines [7] can be readily noted.
Borrowing the formalism from SVM, for a given training
set T of feature vectors xi with labels li, we would like to

Class 1

Class 1

Class 4

Class 4

Class 2

Class 2

Class 3

Class 3

(a) Original class con�guration

Class 4Class 4Class 4Class 4

ass 2ClaCCCC s

44

lass 3ass

(b) Con�guration after minimum

 margin maximization

Class 1

Class 4

Class 2

Class 3

s

ClassC

Class 4C

ss 2lassC

Classs

4

ass 3ss 3

(c) Con�guration after all

margin maximization

Noisy data points belonging to Class 1

ss 11

s 1s 1

Figure 2. All margin maximization: (a) Four classes embedded
in some space with two noisy data points that belong to class 1, but
seem closer to classes 2 and 4. (b) If for class 1, only the minimum
margin is maximized, classes 3 and 4 can possibly cluster just be-
yond the closest class (1). As a result, ambiguity for the noisy data
point closer to class 4, as shown, may remains. (c) If for class 1,
all pairwise margins are maximized, classes 3 and 4 can be pushed
farther away and ambiguity for both the noisy data points can be
reduced.

set the weights −→w ⋆ such that

−→w ⋆ = argmin
w

∥ϕ(w)∥2,

s.t. ⟨ϕ(−→p lim(xi)), ϕ(
−→w)⟩ ≥ 1

∀xi ∈ T,∀m ∈ L,m ̸= li. (7)

Note that we have encoded the problem such that the mar-
gins should be above a certain threshold and the norm of
the weight vector −→w , which is inversely proportional to the
margin, should be minimized. To build robustness against
outliers we also introduce soft-margins in our formulation
and allow for certain ⟨ϕ(−→p lim(xi)), ϕ(

−→w)⟩ to be less than
1. This transforms Eq. 7 to

−→w ⋆ = argmin
w,ξ

∥ϕ(w)∥2 + C

|T|∑
i=1

ξi,

s.t. ⟨ϕ(−→p lim(xi)), ϕ(
−→w)⟩ ≥ 1− ξi

∀xi ∈ T, ∀m ∈ L,m ̸= li, ξi ≥ 0, (8)

where ξi are the slack variables and C is a constant control-
ling the soft-margin trade-off.

A few salient points should be noted: Firstly, in terms
of SVM, we only have one class whose margin has to be
maximized with respect to the origin. Consequently, the
decision plane runs through the origin and b, the intercept
parameter in the standard SVM formulation [7] is set to 0.
Secondly, we can generate an equivalent two-class problem
by negating all the vectors and labeling them class 2. The
symmetry would force the decision plane to pass through
the origin. Thirdly, recall from the beginning of this section
that unlike most other weighted voting schemes which re-
strict the weight vector to the positive quadrant, we defined

Classi�er 2

Classi�er 3

C
la

ss
i�

er
 1

Classi�er 2

Classi�er 3

C
la

ss
i�

er
 1

(0,0,0)Classi�er 1

Classi�er 2

Classi�er 3

(0,0,0)(0,0,0)
φ

φ

φ

φ

φ

1

2

3(1,1,1)

(1,1,-1)
(-1,-1,-1)

(-1,1,1)

(1,-1,-1)

(w)

(f) Kernel

 Space

(d) Prediction Space

(a) Feature

 Space

(c) Feature

 Space

 1 1 1

 1 1 -1

 1 -1 -1

-1 1 1

-1 -1 -1

Classi�ers

1 2 3

(b) Classi!er

 Performance

(e) Prediction Vector Encoding

Support Vectors

are circled

Figure 3. Kernel Plurality: Given a set of data points (a) and an ensemble of classifiers that labels them (b), we can encode each data
point (c) with a prediction vector p as tabulated in (e). Kernel Plurality tries to find a weight vector in the prediction space P such that the
associated decision boundary separates all the p’s from the origin with maximum margin, as shown in (d). A non-linear decision boundary
in P corresponds to a linear hyperplane in the kernel space K associated with mapping ϕ, as shown in (f). which is were we compute.

w ∈ R|C|. This was done since in simple weighted Plurality
(ϕ is the identity function), ∀ w ∈ R|C| ∃ w′ ∈ R|C|

+ which
picks the same winner as w using Eq. 1, but this cannot be
guaranteed for any general kernel space K. Finally and most
importantly, the procedure outlined above is not classifying
the feature vectors xi ∈ D using an SVM. We are working
in the prediction space P, where we have a two-class prob-
lem, while we have an |L|-way classification problem in D.
We have simply used the mathematical modeling provided
by SVMs to optimize our objective function of maximizing
all victory margins in a Plurality contest.

The solution of the mathematical program in Eq. 8 is
given by

−→w ⋆ =
l∑

i=1

αiϕ(x
′
i), (9)

where ϕ(x′
i) are the support vectors and αi are the corre-

sponding coefficients. Like in SVMs, the exact form of the
mapping ϕ is not required as long as the kernel matrix K,
with its ith row jth column given as Kij = K(pi, pj) =
⟨ϕ(pi), ϕ(pj)⟩, is available for all the prediction vectors
pi, pj ∈ P.

We summarize the key ideas behind the Kernel Plural-
ity weight learning algorithm with an example in Fig. 3. In
Fig. 3(a) we show feature vectors in the input space D with
3 linear classifiers. The different labeling imposed by the 3
classifiers is shown in Fig. 3(b). In Fig. 3(c) we have col-
ored feature vectors according to their corresponding pre-
diction vectors listed in Fig. 3(e) (given by Eq. 4). Eq. 8

asks for such a weight vector −→w ⋆ that the prediction vectors
are separated from the origin with maximum margin in the
prediction space P as shown in Fig. 3(d). We allow for a
non-linear boundary in P by using kernel mapping ϕ. This
corresponds to the separation boundary being a hyperplane
in the Kernel Space K as depicted in Fig. 3(f) where we do
our computations. We must mention that the complexity of
our method is governed by the efficiency of the quadratic
program solver used to find the weights.

2.2. Voting with Kernel Plurality

Given the set of prediction labels {ck(yi)} for a test vec-
tor yi, we now consider the problem of conducting a Kernel
Plurality contest among the elements of L to pick a label for
yi. Combining Eq. 3 and Eq. 1, we pick l as the label for yi
if ∏

m∈L,m ̸=l

IR+(⟨ϕ(−→p lm(yi)),

l∑
i=1

αiϕ(x
′
i)⟩) > 0,

⇒
∏

m∈L,m̸=l

IR+(
l∑

i=1

αi ·K(−→p lm(yi), x
′
i)) > 0. (10)

In case of a tie for the win, the left hand side of Eq. 10
would be zero for all the tied labels. For the purpose of the
results presented in this paper, we randomly choose one of
the tied labels as the winner.

In practice, instead of evaluating Eq. 10 explicitly, we
found it more efficient to generate the set of pair-wise pre-
diction vectors {−→p lilj (yi)}li,lj∈L and classify them using

Algorithms Abbr. Description
Face Recognition Methods:
Nearest Neighbor NN L2 distance based classification
Eigenfaces [24] Eig PCA + NN
Volterrafaces [14] Vol Discriminative filtering + NN
Tensor Subspace Analysis [12] TSA Tensor extension of Locality Preserving Projections (LPP) [11]
Local Binary Patterns [2] LBP Local features + NN

Label Aggregation Methods:
Support Vector Machine [7] SVM Label vectors classified with linear SVM as in Stacking [26].
Log-Odds Weighted Voting [16] WMV Plurality with voters weights set to log of its correct classification odds.
Simple Plurality [16] Vot Plurality with weights set to unity.
Linear Kernel Plurality Lin Kernel Plurality with K(u, v) = u′v.
RBF Kernel Plurality RBF Kernel Plurality with K(u, v) = e−γ||u−v||2 , γ = 1

|C| .
Polynomial Kernel Plurality Poly Kernel Plurality with K(u, v) = (γu′v)3, γ = 1

|C| .
Sigmoid Kernel Plurality Sig Kernel Plurality with K(u, v) = tanh(γu′v), γ = 1

|C| .

Table 2. Details of Face Recognition and Label Aggregation Algorithms used in our experiments.

a SVM with weight vector −→w ⋆ and associated kernel. The
classification results are used to build the edges in the vot-
ing digraph (Fig. 1) and a winner is picked using a SCC
algorithm.

3. Experiments & Results
In order to validate our framework, we conducted exten-

sive experiments using five different benchmark FR datasets
- Yale A, CMU PIE, Extended Yale B, Multi-PIE and
MERL Dome. Details of these datasets are summarized in
Table. 3. We used the preprocessing protocol proposed in
[12] that is also used by other methods like [14] and ref-
erences therein. For the Yale A, CMU PIE, and the Ex-
tended Yale B datasets, we obtained the preprocessed im-
ages from the authors of [12]2. For the Multi-PIE and the
MERL Dome3 datasets, we used a subset of 50 labels (sub-
jects), which were then manually cropped and aligned in
line with the other three datasets. Note that all the reported
results were generated by running various algorithms on the
same set of images.

Since the our framework is independent of any one par-
ticular FR algorithm, we selected five different publicly
available FR methods for our experiments. These are Eigen-
faces (Eig) [24] - a PCA based method, Volterrafaces4 (Vol)
[14] - a recently proposed state-of-the-art method, Tensor
Subspace Analysis (TSA)5[12] - a method representative of
the class of embedding based techniques, Local Binary Pat-
tern6 (LBP) [2] - a recently proposed features based state-
of-the-art method and Nearest Neighbor (NN) Classifier -
a baseline method. More details for these methods can be
found in Table 2. For each algorithm, we also created an as-

2Obtained from http://people.cs.uchicago.edu/∼xiaofei/
3Obtained from the authors of [25]
4Obtained from http://www.seas.harvard.edu/∼rkkumar
5Obtained from http://www.zjucadcg.cn/dengcai/
6Obtained from http://ljk.imag.fr/membres/Bill.Triggs/

sociated ensemble of classifiers where each constituent clas-
sifier worked with only a 8× 8 pixels patch of the face im-
age. The different methods for label aggregation we tested
included SVM [7] (an instance of Stacking [26]), log-Odds
Weighted Voting (WMV) [16], Simple Plurality (Vot), Plu-
rality with Linear Kernel (Lin), Radial Basis Function Ker-
nel (RBF), Polynomial Kernel (Pol) and Sigmoid Kernel
(Sig). We used the LIBSVM [5] software package as our
SVM implementation. These methods are summarized in
Table 2.

All the conclusions drawn in this section are based on
tabulated classification error rates for Extended Yale B, Yale
A, MERL Dome, CMU PIE, and Multi-PIE datasets pre-
sented in Fig. 4. The reported error rates are the averages
over ten different random splits of the data. Each row of
these tables is labeled by the name of the algorithm used to
generate the results listed in it. The name is given in the
format ‘ALG + AGG’, where ALG is the abbreviated FR
method name and AGG is the abbreviated label aggregation
method name (see Table 2). Parameters for the FR algo-
rithms were set using cross validation as recommended in
[14]. The heading of each column indicates the number (n)
of images per label used for training. In each case, ∼ n/2
images were used as gallery images while the rest were
used as probe images while generating the prediction vec-
tors to learn Kernel Plurality weights. The algorithm with
the lowest error rate for each FR algorithm is indicated in
bold black while the best performer for the whole database
is indicated in bold red. We conducted experiments with
seven different training set size for each dataset-algorithm
combination. Due to lack of space, we have only included
results for three representative training set size in Table 4.
Our complete results can be found in the Supplementary
Material (http://www.seas.harvard.edu/∼rkkumar).

First, we test the broader proposal made in this paper
that almost all FR algorithms benefit by patch based clas-

sification and subsequent label fusion. For this we com-
pare the performance of each selected classifier (ALG) on
the whole image to the performance of the corresponding
ensemble with traditional label aggregation methods like
ALG+WMV and ALG+Vot. It can be noted that across
databases, FR methods, and training set sizes, the ensem-
bles results are significantly better than that of correspond-
ing FR methods applied to the whole image (ALG) (only
one exception was observed). At the same time, the impor-
tance of a good label aggregation method is highlighted by
ALG+SVM results. Here we used the labels generated by
the ensemble directly as input to a multi-class SVM. Since
the number of classes (|L|) is large in all the databases used,
it can be noted that ALG+SVM almost always fails in im-
proving the performance over ALG.

Next we examine our second hypothesis that the Kernel
Plurality method, which picks voting weights so as to max-
imize the victory margin with respect to each losing class,
is indeed effective. From the tabulated error rates, we can
note that across most databases, FR methods, and training
set sizes, the ensembles results with Kernel Plurality (Lin,
RBF, Pol and Sig) are better than those from the existing
methods like (WMV and Vot). We have color coded those
cases of Lin, RBF, Pol and Sig that outperform correspond-
ing Vot method in black for easy reading.

The gains provided by Kernel Plurality are quantitatively
captured in the plot presented in Fig. 5. For each database-
training set size combination presented in Fig. 4, we have
plotted the percentage improvement in error rate achieved
by the Kernel Plurality variants of the five selected FR al-
gorithms over simple Plurality. Each bar show the range
of improvement achieved by the five FR algorithms on a
particular database-training set combination and the marker
shows the average improvement. The average improvement
ranges from 3− 21% for different cases. But the maximum
improvement, typically achieved by Volterrafaces, spans a
more significant 5− 66% range.

The effectiveness of the Kernel in Kernel Plurality is
demonstrated by the fact that the RBF, Pol, and Sig variants
of Kernel Plurality outperform the Lin variant in most cases
(Fig. 4). This is highlighted by the fact that in most cases,
the best performer for a given database-algorithm-training
set size (encoded in bold black font) is one of the Kernel
methods. We must point out that the use of patch-wise
classification and Kernel Plurality not only improves perfor-
mance of individual classifiers, but in conjunction with the
recent algorithms like Volterrafaces [14] and LBP [2], our
framework can achieve state-of-the-art performance. In-
stances of this are highlighted with red bold font for all of
the selected databases. These rates also compare favorably
with respect to the performance of many other existing FR
methods listed in [14].

Finally, it is instructive to consider a failure case for Ker-

Database Labels Images\Label Total
Yale A [1] 15 11 165
CMU PIE [23] 68 170 11560
Extended Yale B [15] 64 38 2432
MERL Dome [25] 50 16 800
Multi-PIE [10] 50 19 950

Table 3. Databases used in our experiments.

nel Plurality. An easy to understand failure case would be a
face image whose prediction vectors falls within the SVM
margin due to the slack ξ (Eq. 8). Even though it is possible
to assign voters weights such that this face is classified cor-
rectly, it is sacrificed in hope for better generalization per-
formance. This face image would likely be correctly clas-
sified by other weighting schemes like log-Odds Weighted
Voting.

4. Discussion
Here we note the similarities and dissimilarities among

Kernel Plurality, Boosting, and SVMs, especially in the
context of all margin maximization and Kernel Space vot-
ing.

Boosting can be looked as a weighted voting method
with the constraint that all the votes sum to unity and be
positive. In a two-class scenario, Boosting has been linked
to victory margin maximization [22]. Though there is lack
of a proof for some of its variants like Adaboost[9] that they
indeed maximizes the victory margin, there are other two-
class classification algorithms like LPBoost [8] that do so.
Thus, barring the important concepts of Kernel voting and
possible negative weights, it would seem that Kernel Plural-
ity is similar in spirit to Boosting for the two-class scenario.

As we move to the case of multi-class classification, the
notion of margin of victory in a voting scheme must be se-
mantically expanded. For the winner now, there is a margin
of victory with respect to each of the losers. But Boosting
has traditionally defined the margin in the multi-class sce-
nario as the minimum of all the margins [22]. This has also
been noted in the very recently published multi-class gen-
eralization of LPBoost [21], which ends up maximizing the
minimum margin. At this point Kernel Plurality departs sig-
nificantly (in addition to having negative weights and ker-
nels) from Boosting since it explicitly tries to maximize all
the margins. As in the case of two-class voting [16], the ex-
pected improvement in the generalization performance due
to all-margin maximization was confirmed by our results.

Investigations into margins have also revealed connec-
tions between Boosting and SVMs [22, 20]. They are not
exactly the same, but for the binary classification problem,
Boosting with a given set of hypotheses is ‘similar’ to run-
ning an SVM with a kernel mapping related to the label vec-
tor generated by the hypothesis set [20]. Such a relation is
not clear for the multi-class scenario, hence our use of ker-
nels with SVM in the prediction space P warrants further

Algorithms

NN: Nearest Meighbor Classi�er

Eig: Eigenfaces

Vol: Volterrafaces

TSA: Tensor Subspace Analysis

LBP: Local Binary Patterns

Label Aggregation Methods

SVM: Support Vector Machine

WMV: Plurality with Log-Odds weights

Vot: Plurality with unit weights

Lin: Kernel Plurality with linear kernel

RBF: Kernel Plurality with Radial Basis Function kernel

Pol: Kernel Plurality with Polynomial kernel

Algorithms 3 6 9 3 6 10 3 6 9 3 6 9 3 10 40

NN 27.50 22.07 20.00 74.89 65.19 55.77 56.99 42.80 32.38 43.36 26.96 18.20 65.56 44.00 23.60

NN + SVM 77.91 74.27 72.00 97.51 96.88 96.65 95.40 93.72 93.00 95.35 93.91 92.74 94.83 93.31 87.31

NN + WMV 23.15 19.11 18.15 70.76 66.44 43.07 70.21 48.58 47.84 49.26 40.29 36.64 60.95 32.53 34.27

NN + Vot 22.64 19.11 19.44 69.08 55.05 37.88 52.91 31.02 24.55 39.65 22.74 12.02 54.18 21.09 2.60

NN + Lin 22.87 18.52 18.15 67.37 55.00 38.60 53.27 30.31 27.43 39.71 24.93 11.13 53.46 20.96 2.13

NN + RBF 22.50 18.81 18.15 67.42 53.01 36.89 53.35 29.31 24.89 39.60 23.04 11.09 53.58 21.53 2.14

NN + Pol 22.31 19.41 17.78 67.42 53.22 36.64 53.18 29.36 24.98 39.17 23.09 10.93 53.89 19.92 2.17

NN + Sig 22.50 18.81 18.50 67.27 52.97 36.54 52.29 29.33 24.16 39.31 22.65 11.24 53.36 20.95 2.18

Eig 30.46 18.52 10.37 75.09 68.22 58.06 62.38 50.40 37.52 44.14 29.25 20.98 61.92 49.42 31.53

Eig + SVM 79.58 78.00 78.00 97.50 97.19 96.57 94.62 94.16 92.29 95.34 93.10 91.80 94.99 92.33 87.53

Eig + WMV 23.67 20.93 27.33 75.10 60.31 48.18 71.38 61.67 35.54 47.31 42.85 42.32 52.70 40.03 20.20

Eig + Vot 23.98 14.15 8.70 70.25 54.88 40.70 55.22 36.28 20.68 33.99 14.18 7.87 48.22 22.91 3.16

Eig + Lin 24.07 13.63 7.78 69.68 56.03 42.18 55.31 36.38 22.63 33.91 14.19 7.73 46.70 22.83 2.89

Eig + RBF 24.26 14.07 8.15 69.64 53.88 39.06 55.91 35.71 20.00 34.00 13.47 7.27 46.64 21.76 2.88

Eig + Pol 23.98 14.07 8.52 69.72 53.93 39.43 55.56 35.20 20.06 34.13 13.62 7.04 46.77 21.72 2.81

Eig + Sig 23.98 14.37 8.15 69.63 53.70 39.08 54.80 34.98 19.40 33.42 13.32 7.00 46.74 21.63 2.84

Vol 26.08 23.46 19.33 46.53 26.70 18.35 11.43 5.12 4.66 3.75 1.35 0.15 30.78 12.87 4.25

Vol + SVM 92.66 91.46 92.33 97.80 97.16 97.34 95.35 95.40 95.49 96.01 95.95 95.96 96.10 95.46 95.25

Vol + WMV 11.48 8.30 33.70 38.81 39.11 24.18 78.40 44.84 34.26 2.78 0.74 0.18 15.93 11.62 0.40

Vol + Vot 11.50 7.41 4.81 38.85 22.93 12.36 3.03 0.34 0.30 1.56 0.26 0.16 14.04 2.83 0.32

Vol + Lin 11.02 7.11 4.44 37.35 22.29 12.71 2.65 0.20 0.16 1.51 0.27 0.16 12.87 2.38 0.30

Vol + RBF 11.02 7.11 4.81 36.75 21.41 12.54 2.50 0.24 0.13 1.44 0.26 0.16 12.90 2.36 0.28

Vol + Pol 11.48 6.81 4.44 36.90 21.53 12.02 2.62 0.22 0.13 1.40 0.27 0.16 13.17 2.36 0.27

Vol + Sig 11.20 6.96 4.81 36.71 21.40 12.46 2.53 0.27 0.10 1.46 0.26 0.10 12.82 2.40 0.28

TSA 43.15 23.85 16.67 57.27 18.74 25.04 52.60 43.69 35.90 20.24 0.74 0.20 52.48 25.06 8.26

TSA + SVM 77.87 70.52 63.70 97.04 96.26 95.80 94.26 92.36 90.89 93.94 91.52 90.85 93.80 91.57 88.75

TSA + WMV 25.73 18.22 17.14 60.26 34.29 27.96 35.42 29.80 32.00 38.88 8.44 5.31 50.43 33.41 1.38

TSA + Vot 25.97 14.44 7.22 56.54 19.06 22.56 46.80 33.03 25.45 32.48 6.15 1.76 46.77 10.62 0.94

TSA + Lin 25.19 13.93 7.41 56.86 20.47 23.58 45.45 33.22 25.94 30.97 5.06 0.64 46.32 10.03 0.85

TSA + RBF 25.28 13.93 7.04 56.08 19.25 22.18 45.25 31.82 24.22 31.25 5.15 0.87 46.26 9.57 0.84

TSA + Pol 25.46 13.78 7.41 56.23 15.07 22.36 45.50 31.87 24.67 31.13 4.97 0.84 46.44 9.67 0.85

TSA + Sig 25.56 14.07 7.04 55.87 14.95 22.01 45.52 31.47 24.19 31.28 5.30 0.98 46.32 9.65 0.85

LBP 7.41 4.56 3.70 72.16 65.46 54.21 46.39 29.44 20.10 45.31 20.54 12.10 48.83 19.23 3.84

LBP + SVM 78.15 73.04 72.22 97.26 96.78 96.08 92.68 91.98 91.27 94.54 92.62 91.45 94.38 92.47 87.39

LBP + WMV 7.04 4.44 2.59 57.50 43.81 30.38 49.10 46.32 37.97 28.49 17.68 23.56 48.24 20.21 30.52

LBP + Vot 6.60 4.67 3.15 47.89 38.19 22.90 31.98 15.87 9.44 29.76 10.67 3.41 46.32 16.68 2.56

LBP + Lin 6.30 4.52 2.96 48.48 37.98 23.43 31.04 16.77 10.79 27.50 10.08 4.20 45.07 16.09 2.52

LBP + RBF 6.20 4.44 2.96 47.33 36.99 22.18 31.28 15.47 9.71 27.50 9.77 3.30 45.12 16.23 2.42

LBP + Pol 6.11 4.44 2.59 47.28 37.05 22.11 31.33 15.93 9.65 28.00 9.77 3.20 45.13 15.94 2.34

LBP + Sig 6.20 4.59 2.96 47.31 37.07 21.78 31.04 15.40 9.40 27.69 9.62 3.10 45.12 16.08 2.35

Extended Yale B

Training Set Size
O

u
r

M
e

th
o

d
s

O
u

r
M

e
th

o
d

s

CMU PIE

Training Set Size

MERL Dome

Training Set Size

Mul!-PIE

Training Set Size
O

u
r

M
e

th
o

d
s

O
u

r
M

e
th

o
d

s
O

u
r

M
e

th
o

d
s

Training Set Size

Yale A

Black Bold Font: best result for dataset-

 algorithm combination

 Red Bold Font: Best result for the dataset

 Black Font: better results than

 corresponding unit weight

 Pulurality

Figure 4. Classification Error Rates: Key for algorithm names and color encoding is provided below the table. Lower the error, better
the method. In most cases - across databases, FR algorithms and training set sizes - Kernel Plurality methods (Lin, RBF, Pol and Sig)
outperforms the competing methods.

theoretical investigation.

The difference between Kernel Plurality, which maxi-
mizes all victory margins, and a collection of SVMs max-
imizing all pair-wise margins in the feature space D must
also be appreciated. First, the former works in the pre-

diction space while the latter in feature space. Second, in
the former case we have one classifier which in required to
make O(2|L|) prediction vectors classifications to classify
each test feature vector, while the latter case requires train-
ing of O(2|L|) classifiers, instead of one.

3 6 9 3 6 10 3 6 9 3 6 9 3 10 40
-10

0

10

20

30

40

50

60

70

%
 Im

p
ro

v
e

m
e

n
t

in
 t

h
e

 E
rr

o
r

R
a

te

Plurality + Linear Kernel

Plurality + RBF Kernel

Plurality + Polynomial Kernel

Plurality + SIgmoid Kernel

Yale A

Training Set Size

CMU PIE MERL Dome Multi-PIE Extended Yale B

3 6 9 3 6 10 3 6 9 3 6 9 3 10 40

Figure 5. Percentage Improvement in Error Rates: For each database-training set size combination in Fig. 4, we have plotted the
percentage improvement in error rates achieved by Kernel Plurality methods over Plurality (Vot). Each bar shows that range of improvement
achieved by the five selected FR algorithms and the marker shows their average.

5. Conclusions
In a literature landscape teeming with face recognition

algorithms, instead of introducing yet another method, here
we have made proposals that can potentially improve per-
formance for most of them. We note that face recogni-
tion as a classification problem is especially susceptible to
over-fitting and for various popular algorithms, this seems
to be holding their performance back. We propose and
demonstrate that applying face recognition algorithms to
patches and then appropriate aggregating the labels tends
to do better than the algorithms applied to the whole im-
age. Aggregating labels without taking higher order inter-
actions among patch labels into account amounts to neglect
of correlated discriminatory information present in image
patches. To remedy this we propose a new voting algorithm
called Kernel Plurality, which takes these high order inter-
actions into account while maximizing the margin of vic-
tory for the correct label with respect to each of the losers.
This results in better generalization performance of Kernel
Plurality as compared to Log-Odds weighted Plurality, Sim-
ple Plurality and Stacking with SVMs.

6. Acknowledgements
This work was supported in part by NSF Grant No. PHY-
0835713 to Hanspeter Pfister.

References
[1] http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
[2] T. Ahonen, A. Hadid, and M. Pietikainen. Face Description

with Local Binary Patterns: Application to Face Recogni-
tion. IEEE PAMI, 28(12):2037–2041, 2006.

[3] P. N. Belhumeur, J. Hespanha, and D. J. Kriegman. Eigen-
faces vs. Fisherfaces: Recognition Using Class Specific Lin-
ear Projection. IEEE PAMI, 19(7):711–720, 1997.

[4] L. Breiman. Bagging Predictors. Machine Learning,
24(2):123–140, 1996.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines. http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. 2001.

[7] C. Cortes and V. Vapnik. Support-Vector Networks. Machine
Learning, 20, 1995.

[8] A. Demiriz, K. P. Bennett, and J. S. Taylor. Linear Program-
ming Boosting via Column Generation. Machine Learning,
2002.

[9] Y. Freund and R. E. Schapire. A Decision-Theoretic Gener-
alization of On-line Learning and an Application to Boost-
ing. Journal of Computer and System Sciences, 1997.

[10] R. Gross, I. Matthews, J. Cohn, S. Baker, and T. Kanade. The
CMU Multi-Pose, Illumination, and Expression (Multi-PIE)
face database. Technical Report TR-07-08, CMU, 2007.

[11] X. He, D. Cai, and P. Niyogi. Locality preserving projec-
tions. In NIPS, 2003.

[12] X. He, D. Cai, and P. Niyogi. Tensor subspace analysis. In
NIPS, 2005.

[13] S. Kodipaka, A. Banerjee, and B. C. Vemuri. Large Margin
Pursuit for a Conic Section Classifier. CVPR, 2008.

[14] R. Kumar, A. Banerjee, and B. C. Vemuri. Volterrafaces:
Discriminant Analysis using Volterra Kernels.

[15] K. Lee, J. Ho, and D. J. Kriegman. Acquiring Linear Sub-
spaces for Face Recognition under Variable Lighting. PAMI,
2005.

[16] X. Lin, S. Yacoub, J. Burns, and S. Simske. Performance
Analysis of Pattern Classifier Combination by Plurality Vot-
ing. Pattern Recognition Letters, 24, 2002.

[17] N. Littlestone and M. Warmuth. Weighted Majority Algo-
rithm. IEEE Symposium on Foundations of CS, 1989.

[18] N. R. Miller. Graph-Theoretical Approaches to the Theory
of Voting. American Journal of Political Science, 21(4):768–
803, 1977.

[19] B. Parhami. Voting Algorithms. IEEE Tran. on Reliability,
43(4):617–629, 1994.

[20] G. Ratsch, B. S. S. Mika, and K.-R. Muller. SVM and Boost-
ing: One Class. Tech. Report, 2000.

[21] A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof.
Online Multi-Class LPBoost. CVPR, 2010.

[22] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boost-
ing the Margin: A New Explanation for the Effectiveness of
Voting Methods. The Annals of Statistics, 1998.

[23] T. Sim, S. Baker, and M. Bsat. The CMU Pose, Illumination,
and Expression (PIE) Database. AFGR, 2002.

[24] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nal of Cognitive Neurosciences, 3:72–86, 1991.

[25] T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner,
C. Tu, J. McAndless, J. Lee, A. Ngan, H. W. Jensen, and
M. Gross. Analysis of human faces using a measurement-
based skin reflectance model. ACM SIGGRAPH, 2006.

[26] D. Wolpert. Stacked Generalization. Neural Networks, 1992.

