Distributed Terascale Volume Visualization
Using Distributed Shared Virtual Memory

Johanna Beyer* Markus Hadwiger Jens Schneider Won-Ki Jeong Hanspeter Pfister
KAUST KAUST KAUST Harvard University Harvard University
Electron [‘ E—
Microscope | —— : =
S Rendering CPU [GPU
Virtual Octree Server /
Page Directory = = Master
1 Data Backend I 1 Teene
2D Image Data CPU Page Table| GPU
Tiles. T [Reconstruction Block Cache Cache Block Cache - ,
Shared - — MPI Client
File System Slaves

Figure 1: Our terascale volume rendering system builds on the concept of distributed shared virtual memory, which facilitates the distribution
of the rendering process to multiple nodes and GPUs. Each node refers to the same shared 3D virtual memory space that represents the
entire volume, which can be accessed independently on each GPU. Ray-casting on each GPU independently determines small 3D blocks that
are actually accessed, which correspond to memory pages. Virtual memory is managed via a two-level hierarchy of page tables, and physical
memory is only mapped for the current working set of pages. Memory management and ray-casting operate independently on each node.

1 INTRODUCTION

Recent advances in data acquisition techniques such as high-
resolution electron microscopy (EM) result in volume data of ex-
tremely large size. For example, in neuroscience current EM data
sets of brain tissue have pixel resolutions of 3-5nm, resulting in
volumes of hundreds of terabytes, rapidly approaching the petas-
cale [3]. Volume rendering such data presents new challenges and
usage patterns. EM data is extremely dense and neurobiologists
tend to explore the volume at close range most of the time, while
looking at the entire volume only in the beginning. This usually re-
sults in rather uniformly filled view frustums, in which nevertheless
only a small percentage of the whole volume is visible. Addition-
ally, the resolutions of EM data are so high that multi-resolution
approaches are necessary to avoid aliasing due to undersampling in
zoomed-out views, and to bound the maximum working set size.
Our volume rendering system employs distributed shared vir-
tual memory, which comprises a single virtual memory space that
is shared by all rendering nodes [4]. We combine this with a sort-
last (object-space decomposition) approach for volume rendering
on a GPU cluster. We employ GPU-based ray-casting on each node,
but in contrast to single-GPU out-of-core ray-casters [1], our sys-
tem performs efficient multi-GPU volume ray-casting that allows
to leverage much more overall physical cache memory. On each
node, we allow the ray-caster to sample the shared virtual volume
space at arbitrary positions. Only the memory pages that are ac-
tually accessed are mapped to physical memory on the respective
node. At a higher conceptual level, object space decomposition is
done in large virtual distribution units, each of which comprises
many much smaller virtual memory pages. We refer to these pages
also as blocks, which are small 3D sub-volumes of 323 voxels that
allow each node to perform efficient culling, streaming, and mem-
ory management. In contrast to many existing systems for dis-
tributed volume rendering [2], our system targets GPU clusters with
only a few nodes and does not require an explicit load balancing

*e-mail:johanna.beyer @kaust.edu.sa

IEEE Symposium on Large Data Analysis and Visualization
October 23 - 24, Providence, Rhode Island, USA
978-1-4673-0155-8/11/$26.00 ©2011 IEEE

scheme [5]. Our main motivation for using a cluster is allowing a
larger total working set size, and implicitly balancing the data load
between nodes, as opposed to mainly targeting rendering perfor-
mance. Overall, a distributed shared virtual memory space greatly
simplifies the distribution of rendering and volume data.

2 VIRTUAL MEMORY-BASED GPU VOLUME RENDERING

The overall structure of our system is illustrated in Figure 1. Each
cluster node is running its own pipeline for ray-casting, virtual vol-
ume and memory management, and paging. Ray-casting is per-
formed on a huge virtual 3D volume, which is conceptually given
on a regular grid in 3D. However, this volume is virtual because the
data that are sampled by the ray-caster are only created on demand
(i.e., read from disk or reconstructed on-the-fly), as determined by
the actual visibility of small cubical blocks or memory pages of
323 voxels each. In order to be able to adapt the data resolution
used for ray-casting to the output screen resolution, we represent
the whole virtual volume as a virtual octree multi-resolution hier-
archy, which is mapped to a large shared virtual memory address
space. Each octree node is solely comprised of the block of 323
voxels that it represents, which conceptually resides in virtual mem-
ory. This small block size allows for a fine granularity of visibility
detection and culling, as well as fine-grained paging of blocks into
physical memory with low latency. Ray-casting traverses the vol-
ume in virtual memory, and performs on-the-fly address translation
from virtual to physical memory addresses for each sample. The
ray-caster computes a level-of-detail (LOD) value for each sample
individually, which determines the octree level and thus resolution
to be sampled. The ray-caster detects, in front-to-back order, cache
misses of virtual octree nodes whose block of voxel data is not res-
ident in the GPU block cache. If a cache miss also cannot be satis-
fied from the larger CPU block cache, the physical data of matching
resolution are read in the background, while rendering proceeds at
interactive rates in the foreground. Determining the octree nodes
in this display-aware fashion significantly bounds the actual cache
working set required for volume rendering, because even high dis-
play resolutions are much smaller than our data sets.

For distributed rendering on multiple GPU nodes, the whole ren-
dering and memory management pipeline is duplicated on each

127

128

Distribution Units

= e B

B T EHT
- new active blocks
moved viewport

mouse cortex

Figure 2: Spatial arrangement of virtual distribution units. Units de-
picted in the same color are assigned to the same GPU node. This
spatial assignment, together with further subdivision into blocks of
323 voxels, achieves a roughly equal maximum working set size for
each node with respect to visible blocks inside the view frustum.

GPU node, where each node references the same shared virtual
memory space and operates largely independent of the other nodes,
leading to a very small amount of communication between nodes.

For distributed rendering, we employ a sort-last scheme with
direct-send compositing. However, we do not explicitly split up
the volume data into bricks assigned to each render node. Instead,
each node is simply assigned responsibility for different cubical re-
gions in the global virtual memory space. We call one such region
a virtual distribution unit and specify the size of this unit such that
it corresponds to a relatively large cubical region of voxels, such as
10243, This fixed set of virtual distribution units for each node is ar-
ranged in an interleaved, repeating spatial layout (see Figure 2). For
each frame, only the distribution units intersecting the view frustum
are set to active, and thus need to be rendered and composited.

The main motivation behind this approach is that while roaming
the volume, old distribution units leave the current view frustum,
and new distribution units enter it, in a roughly equally-distributed
fashion. Note, however, that this approach is only feasible because
the distribution units are further subdivided into small blocks of
323 voxels that can be paged in and out of cache texture memory
individually with fine granularity. The size of the distribution units
is chosen small enough to ensure data load balancing when roam-
ing the volume and to fit comfortably into GPU memory, and at
the same time large enough to avoid splitting the volume into too
many different parts that need to be composited later on. Due to
our shared virtual memory approach the assignment of virtual dis-
tribution units to GPU nodes and subsequent rendering is straight-
forward. Before rendering a frame, each node culls the distribution
units in this list given their geometric position, and the current view
frustum, and sorts the units into a front-to-back order. Next, the
node loops over each of these distribution units indivudially, and
renders, reads back and directly sends out the images for parallel
compositing. Furthermore, we use a distribution unit’s alpha im-
age to employ occlusion culling for the remaining distribution units.
For this we send out a low-resolution occlusion map of the rendered
distribution unit to all other nodes, which blend it with their local
occlusion information. This leads to skipping of occluded distribu-
tion units, and significantly reduces the communication overhead
between nodes and overall render time.

For very large volumes, the geometric size of the virtual distribu-
tion units with respect to the normalized volume bounding box can-
not be kept constant without increasing the number of distribution
units inside the field of view significantly when zooming away from

the volume. A high number of distribution units, however, would
result in too many ray-casting passes and a significant composit-
ing overhead. Therefore, we switch the size of virtual distribution
units according to the overall view zoom factor at which the volume
is currently viewed. Switching the size of distribution units is syn-
chronized between cluster nodes, and depends on the current screen
resolution, volume size and level-of-detail settings. This, however,
is straightforward because the necessary calculations can be per-
formed independently on each node since the same virtual volume
space is shared by all nodes. For seamless switching of distribution
unit size, prefetching of volume data corresponding to the new size
is necessary in order to avoid delays in rendering on the individual
nodes. For this, we employ a synchronization flag that signals to all
nodes that prefetching has completed, and all nodes switch in sync.

The communication between the different render nodes is done
with asynchronous MPI messages. Rendering and sending out im-
age tiles and occlusion maps is decoupled from receiving images
for compositing and receiving occlusion maps, to avoid stalling in-
dividual nodes while they wait on other nodes. For transmitting the
final image to the client (i.e., PC or IPad application), we use TCP
sockets and support different image compression schemes.

3 RESULTS

Table 1 illustrates the impact of different distribution unit sizes,
different screen resolutions, and numbers of GPU nodes. We use
two and four GPUs (NVIDIA Quadro 5000 with 2.5 GB mem-
ory) and a mouse cortex EM dataset (see Figure 2) of resolution
21,494 x 25,790 x 1,850 = 955GB. The size of the virtual distri-
bution units significantly influences the data distribution between
nodes. Small distribution units result in a high depth complexity
for compositing. Large distribution units lead to a low utilization of
GPUs, because in the worst case only a single distribution unit will
be in view, which is rendered by only a single node. The choice
of an optimal distribution unit size depends on three major factors:
the output screen resolution, the block cache size on each node, and
the number of nodes. Currently, we are working on optimizing the
compositing step and network communication between nodes.

REFERENCES

[1] C.Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. GigaVoxels : Ray-
Guided Streaming for Efficient and Detailed Voxel Rendering. In Proc.
of Symp. on Interactive 3D Graphics and Games, pages 15-22, 2009.

[2] T. Fogal, H. Childs, S. Shankar, J. Kriiger, R. Bergeron, and P. Hatcher.
Large Data Visualization on Distributed Memory Multi-GPUs Clusters.
In Proc. of High Performance Graphics, pages 57-66, 2010.

[3] W.-K. Jeong, J. Beyer, M. Hadwiger, R. Blue, C. Law, A. Vasquez,
C. Reid, J. Lichtman, and H. Pfister. SSECRETT and NeuroTrace:
Interactive Visualization and Analysis Tools for Large-Scale Neuro-
science Datasets. IEEE CG&A, 30(3):58-70, 2010.

[4] A. Moerschell and J. D. Owens. Distributed Texture Memory in a
Multi-GPU Environment. In Graphics Hardware, pages 31-38, 2006.

[5] C.Miiller, M. Strengert, and T. Ertl. Optimized Volume Raycasting for
Graphics-Hardware-based Cluster Systems. In Eurographics Sympo-
sium on Parallel Graphics and Visualization (EGPGV06), pages 59-66.
Eurographics Association, 2006.

pactive biocks #GPUs 2 GPUs (— 4 GB cache) 4GPUs (— 8 GB cache)
- screen res. 5122 768x512 1Kx768 5122 768x512 1Kx768
linn 5 dist. unit size 256 512 10247 256 5123 10247
// —' ray-cast (ms) 37.0 344 58.8 21.0 54.9 60.9
H total frame (ms) 95.2 117.6 208.3 67.5 142.8 188.6
B B ebooe [Fastamt [0] <F | o [5] = | =
viewport
Woan Table 1: Results for the 955GB dataset for different numbers of
GPUs, screen resolutions, and distribution unit sizes. We give times
paged out blocks in ms for ray-casting and for thg totallof all stages (ray—casting, image
previous I read-back and send, compositing, client transmission). We also give
viewport | s=zsEEnE the number of distr. units in view that are actually rendered per node.

