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Abstract— As the cloud computing paradigm has gained
prominence, the need for verifiable computation has grown
increasingly urgent. Protocols for verifiable computation
enable a weak client to outsource difficult computations to
a powerful, but untrusted server, in a way that provides
the client with a guarantee that the server performed
the requested computations correctly. By design, these
protocols impose a minimal computational burden on the
client, but they require the server to perform a very large
amount of extra bookkeeping to enable a client to easily
verify the results. Verifiable computation has thus remained
a theoretical curiosity, and protocols for it have not been
implemented in real cloud computing systems.

In this paper, we assess the potential of parallel process-
ing to help make practical verification a reality, identifying
abundant data parallelism in a state-of-the-art general-
purpose protocol for verifiable computation. We implement
this protocol on the GPU, obtaining 40-120× server-side
speedups relative to a state-of-the-art sequential imple-
mentation. For benchmark problems, our implementation
thereby reduces the slowdown of the server to within
factors of 100-500× relative to the original computations
requested by the client. Furthermore, we reduce the al-
ready small runtime of the client by 100×. Our results
demonstrate the immediate practicality of using GPUs for
verifiable computation, and more generally, that protocols
for verifiable computation have become sufficiently mature
to deploy in real cloud computing systems.

I. INTRODUCTION

A potential problem in outsourcing work to commer-
cial cloud computing services is trust. If we store a large
dataset with a server, and ask the server to perform a
computation on that dataset – for example, to compute
the eigenvalues of a large graph – how can we know
the computation was performed correctly? We don’t
want to compute the result ourselves, and we might not
even be able to store all the data locally. Despite these
constraints, we would like the server to both provide us
with the answer and convince us the answer is correct.

Protocols for verifiable computation offer a possible
solution. The primary goal is to enable the client to
obtain results with a guarantee of correctness from the
server much more efficiently than performing the com-
putations herself. Another important goal is to enable
the server to provide guarantees of correctness almost as
efficiently as providing results without such guarantees.

Interactive proofs are protocols for establishing guar-
antees of correctness between a client and server. Al-

though they have been studied in the theory community
for decades, there has been no significant effort to imple-
ment or deploy such proof systems until very recently.
However, a recent line of work substantially advanced
the practicality of these techniques. In particular, the
work of Cormode, Mitzenmacher, and Thaler [3] demon-
strates that: (1) a powerful general-purpose methodology
due to Goldwasser, Kalai and Rothblum [5] approaches
practicality; and (2) special-purpose protocols for a large
class of streaming problems are already practical.

We take things a key step further by leveraging
the parallelism offered by GPUs to obtain significant
speedups relative to state-of-the-art implementations of
[3]. We expect that practical verification protocols will
have to be utilized eventually if cloud computing solu-
tions are to be widely adopted for correctness-critical
applications, and we expect that parallelization will
necessarily be an important part of making this a reality.

Many of the insights of our GPU implementation
would also apply to a multi-core CPU implementa-
tion. However, here we focus on GPUs because they
are increasingly widespread, cost-effective, and power-
efficient, and they offer potential speedups beyond those
possible with commodity multi-core CPUs.

We obtain server-side speedups ranging from 40-120×
for the general-purpose protocol due to Goldwasser et al.
[5], and 20-50× speedups for related protocols targeted
at specific streaming problems. Our general-purpose
implementation reduces the server-side cost of providing
results with a guarantee of correctness to within factors
of 100-500× relative to a sequential algorithm without
such guarantees. Similarly, our implementation of the
special-purpose protocols reduces the server-side slow-
down to within 10-100× relative to a sequential algo-
rithm without such guarantees. Due to space limitations,
we only present our general-purpose implementation; the
full version of the paper is available on the arxiv [9], and
our source code is available at [8].

The costs of obtaining correctness guarantees with
techniques in this paper may already be considered mod-
est in some correctness-critical applications. Consider
e.g. Assured Cloud Computing for military contexts:
a user may need integrity guarantees when computing
in the presence of cyber attacks, or when coordinating



critical computations across a mixture of secure and
insecure networks [1]. As another example, a hospital
that outsources the processing of patients’ electronic
medical records may require guarantees that none of
the records are dropped or corrupted. Even if every
computation is not explicitly checked, the mere ability
to check the computation could mitigate trust issues and
stimulate users to adopt cloud computing solutions.

II. BACKGROUND

What are interactive proofs? Interactive proofs (IPs)
were introduced within the computer science theory
community more than a quarter century ago. In any IP,
there are two parties: a prover P , and a verifier V . P
is typically considered to be computationally powerful,
while V is considered to be computationally weak.

In an IP, P solves a problem using her (possibly vast)
computational resources, and tells V the answer. P and
V then have a conversation, which involves engaging in
a randomized protocol involving the exchange of one or
more messages. During this conversation, P’s goal is to
convince V that her answer is correct.

IPs naturally model the problem of a client (whom
we model as V) outsourcing computation to an untrusted
server (whom we model as P). That is, IPs provide a way
for a client to hire a cloud computing service to store and
process data, and to efficiently check the integrity of the
results returned by the server. This is useful whenever
the server is not a trusted entity, either because the server
is deliberately deceptive, or is simply buggy or inept. We
therefore interchange the terms server and prover where
appropriate, and similarly for client and verifier.

Any IP must satisfy two properties. The first is that if
P answers correctly and follows the prescribed protocol,
then P will convince V to accept the provided answer.
The second is a security guarantee, which says that if P
is lying, then V must catch P and reject the provided
answer with high probability. A trivial way to satisfy this
property is to have V compute the answer to the problem
herself, and accept only if her answer matches P’s. But
this defeats the purpose of having a prover. The goal of
an interactive proof system is to allow V to check P’s
answer using resources considerably smaller than those
required to solve the problem from scratch.

At first blush, this may appear difficult or even im-
possible to achieve. However, IPs have turned out to be
surprisingly powerful. We direct the interested reader to
[2, Chapter 8] for an excellent overview of this area.

How do interactive proofs work? At the highest level,
many interactive proof methods work as follows. Sup-
pose the goal is to compute a function f of input x.

First, the verifier makes a single streaming pass over
the input x, during which she extracts a short secret s.
This secret is actually a single (randomly chosen) symbol

of an error-corrected encoding Enc(x) of the input. To
be clear, the secret does not depend on the problem
being solved; for our protocol, it is not necessary that the
problem be determined until after the secret is extracted.

Next, P and V engage in an extended conversation,
during which V sends P various challenges, and P
responds to the challenges. The challenges are all related
to each other, and the verifier checks that the prover’s
responses to all challenges are consistent.

The challenges are chosen so that the prover’s re-
sponse to the first challenge must include a (claimed)
value for the function of interest. Similarly, the prover’s
response to the last challenge must include a claim about
what the value of the verifier’s secret s should be. If all
of P’s responses are consistent, and the claimed value
of s matches the true value of s, then the verifier is
convinced that P followed the prescribed protocol and
accepts. Otherwise, the verifier knows that P deviated
at some point, and rejects. From this point of view, the
purpose of all intermediate challenges is to guide the
prover from a claim about f(x) to a claim about the
secret s, while maintaining V’s control over P .

Intuitively, what gives the verifier surprising power
to detect deviations is the error-correcting properties of
Enc(x). Any good error-correcting code satisfies the
property that if two strings x and x′ differ in even
one location, then Enc(x) and Enc(x′) differ in many
locations. In the same way, interactive proofs ensure
that if P flips even a single bit of a single message,
then P either has to make an inconsistent claim at some
later point, or else has to lie almost everywhere in her
final claim about the value of the secret s. Thus, if the
prover deviates from the prescribed protocol even once,
the verifier will detect this with high probability.

Previous work. Despite their power, IPs have had very
little influence on real systems where integrity guaran-
tees on outsourced computation would be useful. There
appears to have been a folklore belief that these methods
are impractical [7]. Nonetheless, a recent line of work
has made substantial progress in advancing the practical-
ity of these techniques. Goldwasser et al. [5] described a
powerful general-purpose protocol (henceforth referred
to as the GKR protocol) that achieves a polynomial-
time prover and nearly linear-time verifier for a large
class of computations. Very recently, Cormode, Mitzen-
macher, and Thaler [3] showed how to significantly
speed up the prover in the GKR protocol [5], and
demonstrated experimentally that their implementation
approaches practicality. Even with their optimizations,
the bottleneck in the implementation of [3] is the prover’s
runtime, with all other costs (such as verifier space and
runtime) being extremely low.

A related line of work has looked at protocols for
specific streaming problems. Here, the goal is not just to
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save the verifier time, but also to save the verifier space.
This is motivated by settings where the client does not
even have space to store a local copy of the input, and
thus uses the cloud to both store and process the data.
We omit further discussion of this direction due to space
constraints, but stress that all protocols we consider work
even in this restricted setting.

Also relevant is work by Setty et al. [7], who im-
plemented a protocol for verifiable computation due to
Ishai et al. [6]. While [7] represents a clear advance
in the practicality of verification protocols, the imple-
mentation of the asymptotically more efficient GKR
protocol described in both this paper and in [3] has
several advantages in comparison. For example, the GKR
implementation saves space and time for the verifier even
when outsourcing a single computation, while [7] saves
time for the verifier only when batching together several
dozen computations and amortizing the verifier’s cost
over the batch. Our results also indicate that that the
prover in the sequential implementation of [3] based
on the GKR protocol runs significantly faster than the
prover in the implementation of [7], at least for the
benchmark problem of matrix multiplication.

III. PARALLELIZING THE GKR PROTOCOL

In this section, we give an overview of the methods
implemented in this paper. Due to their highly technical
nature, we seek only to convey a high-level description
of the protocols relevant to this paper, and deliberately
avoid rigorous definitions or theorems. We direct the
interested reader to prior work for further details [3].
Overview of GKR protocol. P and V first agree on a
layered arithmetic circuit of fan-in two over a finite
field F computing the function of interest. An arithmetic
circuit is just like a boolean circuit, except the inputs are
elements of F rather than boolean values, and the gates
perform addition and multiplication over the field F,
rather than computing AND, OR, and NOT operations.

Suppose the output layer of the circuit is layer d, and
the input layer is layer 0. The protocol of [5] proceeds in
iterations, with one iteration for each layer of the circuit.
The first iteration follows the general outline described
in Section II, with V guiding P from a claim about the
output of the circuit to a claim about a secret s, via
a sequence of challenges and responses. The challenges
sent by V are simply random coins, which are interpreted
as random points in the finite field F. The prescribed
responses of P are polynomials, where each prescribed
polynomial depends on the preceding challenge.

However, unlike in Section II, the secret s is not
a symbol in an error-corrected encoding of the input,
but rather a symbol in an error-corrected encoding of
the gate values at layer d − 1. Unfortunately, V cannot
compute this secret s on her own. Doing so would

Fig. 1: High-level depiction of the GKR protocol.

require evaluating all previous layers of the circuit, and
the whole point of outsourcing is to avoid this. So V has
P tell her what s should be. But now V has to make
sure that P is not lying about s.

This is what the second iteration accomplishes, with
V guiding P from a claim about s, to the claim about a
new secret s′, which is a symbol in an encoding of the
gate values at layer d − 2. This continues until we get
to the input layer. At this point, the secret is actually a
symbol in an error-corrected encoding of the input, and
V can compute this secret in advance from the input
easily on her own. Figure 1 illustrates the entirety of the
GKR protocol at a very high level.

Parallelizing P’s computation. In every one of P’s
responses in the GKR protocol, the prescribed message
from P is defined via a large sum over roughly S3 terms,
where S is the size of the circuit, and so computing this
sum naively would take Ω(S3) time. Roughly speaking,
Cormode et al. in [3] observe that each gate of the
circuit contributes to only a single term of this sum, and
thus this sum can be computed via a single pass over
the relevant gates. The contribution of each gate to the
sum can be computed in constant time, and each gate
contributes to logarithmically many messages over the
course of the protocol. Using these observations carefully
reduces P’s runtime from Ω(S3), to O(S logS).

The same observation reveals that P’s computation
can be parallelized: each gate contributes independently
to the sum in P’s prescribed response. Hence P can
compute the contribution of many gates in parallel, save
them in a temporary array, and use a parallel reduction
to sum the results. Figure 2 illustrates this process.

Parallelizing V’s computation. The bulk of V’s compu-
tation (by far) consists of computing her secret s from
the error-corrected encoding of the input x. As observed
in prior work [4], each symbol of the input contributes
independently to s. Thus, similarly to P , V can compute
the contribution of many input symbols in parallel, and
sum the results via a parallel reduction. Although V runs
extremely quickly even in the sequential implementation
of [3], parallelizing V’s computation is an appealing
goal, especially as GPUs and multi-cores become more
common on personal computers and mobile devices.
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Fig. 2: Illustration of parallel computation of the server’s
message to the client in the GKR protocol.

Implementation Challenges. The primary bottleneck in
the scalability of our parallel implementation is the
memory-intensive nature of the GKR protocol: for a
circuit of size S, the prover in the GKR protocol has to
store all S gates explicitly, because she needs the values
of these gates to compute her prescribed messages. This
means that even “small” circuits with tens of millions of
gates cannot fit in device memory.

We succeeded in mitigating this issue by keeping the
circuit in host memory, and only copying information to
the device when it is needed. This is possible because the
GKR protocol satisfies the following critical property:
any iteration of the protocol involves only two layers
of the circuit at a time. In the ith iteration, the verifier
guides the prover from a claim about gate values at layer
d−i to a claim about gate values at layer d−i−1. Gates
at higher or lower layers do not affect the prescribed
responses within iteration i.

Thus, only two layers of the circuit need to reside in
device memory at a time. Although host-to-device copies
are expensive, this approach is viable because copying
only needs to happen once per layer. Since there are
several dozen messages to be computed for each layer,
this ensures that the copying from host to device can be
amortized highly effectively over many messages.

IV. EVALUATION

In this section we describe our results for two bench-
mark problems: matrix multiplication (denoted MAT-
MULT) and computing the sample variance of a data
stream (denoted F2). These two problems are represen-
tative of two important yet qualitatively distinct kinds
of computation. F2 is a well-studied data aggregation
problem in the streaming literature; due to its low com-
plexity, we could evaluate our implementation on rather
large inputs. In contrast, we chose matrix multiplication
as a benchmark application requiring superlinear time to
solve. The arxiv version considers additional problems.

With one exception, we performed our experiments on
an Intel Xeon 3 GHz workstation with 16 GB of host
memory, and an NVIDIA GeForce GTX 480 GPU with
1.5 GB of device memory. By running on a NVIDIA

Tesla C2070 GPU with 6 GBs of device memory, we
were able to push to 256×256 matrices for MATMULT,
as reported in Table I. We implemented all our GPU code
in CUDA and Thrust with all compiler optimizations
turned on. We stress that all reported costs do count the
time taken to copy data between host and device, and
that all reported speedups are relative to the sequential
(i.e. single-threaded) implementation of [3].

Figure 3 demonstrates the performance of our GPU-
based implementation of the GKR protocol. Table I also
gives a succinct summary of our results, showing the
costs for the largest instance of each problem we ran
on. We consider the main takeaways of our experiments
to be the following.

Server-side speedup obtained by GPU computing.
Compared to the sequential implementation of [3], our
GPU-based server implementation ran over 100× faster
for the F2 circuit and about 40× faster for MATMULT.
For F2, we need to look at large inputs to see the
asymptotic behavior of the parallel prover’s runtime.
Due to the log-log scale in Figure 3, the curves for
both the sequential and parallel implementations are
asymptotically linear, and the 100× speedup obtained by
our GPU-based implementation manifests as an additive
gap between the two curves. The explanation for this
is simple: there is considerable overhead relative to the
total computation time in parallelizing the computation
at small inputs, but this overhead is more effectively
amortized as the input size grows.

In contrast, notice that for MATMULT the slope of the
curve for the parallel prover remains significantly smaller
than that of the sequential prover. This is because our
GPU-based implementation ran out of device memory
well before the overhead in parallelizing the prover’s
computation became negligible. We believe the speedup
for MATMULT would be higher than the 40× speedup
observed if we were able to run on larger inputs.

Could a parallel verifiable program be faster than
a sequential unverifiable one? The first step of the
prover’s computation in the GKR protocol is to evaluate
the circuit. In theory this can be done efficiently in
parallel, but in practice we observe that the time it takes
to copy the circuit to the device exceeds the time it takes
to evaluate the circuit sequentially. This observation
suggests that on the current generation of GPUs, no
prover could run faster than a sequential unverifiable
algorithm. This applies not just to the GKR protocol, but
to any protocol that uses a circuit representation of the
computation (which is a standard technique in the theory
literature [6], [7]). Nonetheless, we can certainly hope to
obtain a GPU-based implementation that is competitive
with sequential unverifiable algorithms.

Server-side slowdown relative to unverifiable sequen-
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Fig. 3: Comparison of P and V runtimes for a sequential implementation of GKR [3] and our GPU implementation.

Problem Input Size Circuit Size GPU P Sequential Circuit GPU V Sequential Unverified
(number of (number of Time (s) P Time (s) Evaluation Time (s) V Time (s) Algorithm
entries) gates) Time (s) Time (s)

F2 8.4 million 25.2 million 3.7 424.6 0.1 0.035 3.600 0.028
MATMULT 65,536 42.3 million 39.6 1,658.0 0.9 0.003 0.045 0.080

TABLE I: Prover and Verifier runtimes in the GKR protocol.

tial algorithms. For F2, the slowdown for the prover
was roughly 130×. We stress that it is likely that we
overestimate the slowdown resulting from our protocol,
because we did not count the time it takes for the
unverifiable implementation to compute the number of
occurrences of each item i, that is, to aggregate the
stream into its frequency vector representation. Instead,
we simply generated the vector of frequencies at random
(we did not count the generation time).

For MATMULT, our GPU-based server implemen-
tation ran roughly 500× slower than naive matrix-
multiplication for 256 × 256 matrices. Moreover, ex-
periments on larger matrices suggest this number is
likely inflated due to cache effects from which the naive
unverifiable algorithm benefited (running times for the
naive algorithm are almost 100 times larger for 512×512
matrices). We therefore expect the slowdown of our
implementation would fall to under 100× if we were
to scale to larger matrices.

Client-side speedup obtained by GPU computing.
The bulk of V’s computation consists of evaluating a
single symbol in an error-corrected encoding of the
input; this computation is independent of the circuit
being verified. For reasonably large inputs, our GPU-
based client implementation performed this computation
100× faster than the sequential implementation of [3].

Client-side speedup relative to unverifiable sequen-
tial algorithms. Our matrix-multiplication results clearly
demonstrate that for problems requiring super-linear time
to solve, even the sequential implementation of [3] will
save the client time compared to doing the computation
locally. Indeed, the runtime of the client is dominated

by the cost of evaluating a single symbol in an error-
corrected encoding of the input, and this cost grows
linearly with the input size. Even for relatively small
matrices of size 256 × 256, the client in the imple-
mentation of [3] saved time. For matrices with tens of
millions of entries, our results demonstrate that the client
will still take just a few seconds, while performing the
matrix multiplication computation would require orders
of magnitude more time. Our results demonstrate that
GPU computing can also be used to reduce the verifier’s
computation time by another 100×.

V. CONCLUSIONS

Practical verification protocols appear key for
cloud computing solutions to be widely adopted for
correctness-critical applications. Our primary contribu-
tion here is demonstrating the power of parallelization,
and GPU computing in particular, to obtain robust
speedups for some of the most promising protocols in
this area. However, substantial work remains to make
practical verification a reality. For example, the GKR
protocol is rather inefficient for the prover non-arithmetic
computations. Developing improved protocols for such
problems remains an important direction for future work.
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