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Domino: Extracting, Comparing, and Manipulating Subsets
across Multiple Tabular Datasets

Samuel Gratzl, Nils Gehlenborg, Alexander Lex, Hanspeter Pfister and Marc Streit

origin ARTISTS Australia Europe North America studio albums (count)

continent

first album (year)

number one hits

5 Countries

5 Artists

start of 
career (year)

career status
in business at first album

inactive
gender

gender  inactive

sold albums (absolute)

COUNTRIES

population (million)

Barbados
Ireland

Sweden

UK

US

Rihanna
U2

ABBA

Elton John
The Beatles

Whitney Houston
The Black Eyed Peas

Britney Spears
Eminem

Michael Jackson
Madonna

Elvis Presley

A
us

tra
lia

Fr
an

ce
Ita

ly
S

w
ed

en
S

pa
n

A
us

tri
a

G
er

m
an

y
N

et
he

rla
nd

s
Ire

la
nd

U
K

U
S

C
an

ad
a

inactive active

male group female

Artists
Countries

12
12

0
1

Fig. 1: Domino showing relationships between subsets of a music charts dataset. The visualization illustrates that Whitney Houston
is a female, inactive artist who has had many number-one hits in English speaking countries but produced fewer than 10 studio
albums. The schematic illustration in the top-right corner shows the setup using a graphical notation.

Abstract— Answering questions about complex issues often requires analysts to take into account information contained in multiple
interconnected datasets. A common strategy in analyzing and visualizing large and heterogeneous data is dividing it into meaningful
subsets. Interesting subsets can then be selected and the associated data and the relationships between the subsets visualized.
However, neither the extraction and manipulation nor the comparison of subsets is well supported by state-of-the-art techniques. In
this paper we present Domino, a novel multiform visualization technique for effectively representing subsets and the relationships
between them. By providing comprehensive tools to arrange, combine, and extract subsets, Domino allows users to create both
common visualization techniques and advanced visualizations tailored to specific use cases. In addition to the novel technique, we
present an implementation that enables analysts to manage the wide range of options that our approach offers. Innovative interactive
features such as placeholders and live previews support rapid creation of complex analysis setups. We introduce the technique and
the implementation using a simple example and demonstrate scalability and effectiveness in a use case from the field of cancer
genomics.

Index Terms—Multiple coordinated views, visual linking, relationships, heterogeneous data, categorical data

1 INTRODUCTION

Common heterogeneous data visualization methods show data asso-
ciated with a single shared item type. The popular cars dataset [12],
for example, is defined over the item type car and contains multiple
observations across several data types for each car. A parallel coordi-
nates plot could be used to visualize such data. Multi-dataset visual-
izations typically follow the same pattern: they refer to a single, shared
item type. A medical dataset may contain data about patients, such as
gender, birth date, or height, while a blood test dataset for the same
patients will contain measurements such as blood type or white blood
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cell count. These datasets follow a relational data model where each
dataset contains one or more observations for a given item type.

In practice, however, an increasing number of domains contain rich
data for multiple item types. Figure 1 shows a simple illustrative ex-
ample from the music industry1 that includes multiple datasets defined
in terms of the item types artist (e.g., count of number-one hits, gen-
der, origin) and country (e.g., number-one hits per artists, total number
of albums sold, sales normalized to population).

The primary contribution of this paper is Domino, a novel visual-
ization technique that enables analysts to explore a mix of numerical
and categorical data connected via various item types. This is achieved
by allowing users to freely arrange, combine, and manipulate subsets
(blocks), visualize associated data, and explicitly represent the rela-
tionships between these subsets. Domino enables analysts to rapidly
assemble both established visualization techniques and novel combi-
nations specifically tailored to the task at hand.

Our secondary contribution is a prototype implementation that en-
ables users to exploit the wide spectrum of possibilities that the tech-
nique offers. To assist users in the process of adding new subsets to

1The dataset was collected from multiple web sources. References and the

dataset are available at http://domino.caleydo.org.
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the setup and combining previously defined ones, we introduce place-
holders that indicate possible options for placing a subset, and live
previews that show possible visual encodings of the associated data.

We demonstrate the utility and flexibility of the system by means of
two use cases: the first discusses a small music charts dataset, while
the second uses a collection of datasets from cancer genomics.

2 RELATED WORK

Domino is a visualization technique designed for multiple hetero-
geneous, high-dimensional datasets and relationships between them.
These relationships can also be interpreted as set relationships. There-
fore, the relevant body of related work comprises visualization tech-
niques for both sets and high-dimensional heterogeneous data. As
Domino is a meta-visualization technique that enables users to create
new visualizations which are interlinked, we also discuss multiple co-
ordinated view systems in general, and integrated views systems that
explicitly represent relationships between linked visualizations in par-
ticular.

Set and Subset Relationships Visualizing sets and their re-
lationships is a problem frequently encountered in many domains.
The most widely used set visualization techniques are Venn and Eu-
ler diagrams, which, however, do not scale beyond very small num-
bers of sets. Consequently, the visualization of relationships between
sets has been, and continues to be, an active area of research. In a
recent survey paper [1], Alsallakh et al. reviewed and classified ex-
isting set visualization techniques based on three classes of tasks:
element-related, set-related, and attribute-related tasks. Most tech-
niques that address attribute-related tasks can handle one or a few
attributes. Domino, however, is designed to deal with relationships
between tabular datasets in which each of potentially thousands of di-
mensions could be seen as a separate attribute.

A technique that effectively compares groups of sets (categories)
with each other is parallel sets [18]. Parallel sets arranges the (non-
overlapping) sets of a group in a column and compares them to ad-
jacent groups of sets using bands. The width of a band encodes the
elements shared between two sets. In previous work, we introduced
techniques that use this parallel sets metaphor for comparing relation-
ships of partitioned datasets and embed the tabular data from which
the partitions were derived, thus visualizing both, set relationships and
attributes efficiently. A common example is clustering performed on
a multi-dimensional dataset (e.g., gene expression data) where items
(genes) are partitioned according to similarities in the data. Analysts
are usually not only interested in the partitioning of the items, but also
in the actual data associated with the items. The Matchmaker tech-
nique [21] supports this task by juxtaposing multiple partitioned tabu-
lar datasets, represented as heatmaps, and connecting the groups with
bands and the items with individual splines. This column-based ap-
proach enables analysts to compare different partitions of the same
dataset (e.g., the results of different clustering algorithms) or to ex-
plore relationships among multiple partitioned datasets containing the
same items (e.g., multiple clustered expression datasets from differ-
ent groups of patients containing the same genes). VisBricks [19]
generalized this approach by allowing users to switch between vari-
ous visualization techniques independently for each subset – a con-
cept known as multiform visualization [19, 28]. Analysts can, for in-
stance, choose parallel coordinates as the representation for individ-
ual groups to perform filtering tasks and a heatmap to see the overall
pattern. StratomeX [22] introduced subset visualization for multiple
heterogeneous datasets.

All three techniques—Matchmaker, VisBricks, and StratomeX—
show the relationships between multiple partitioned sets together with
the multi-dimensional datasets on which the partitions are defined.
However, due to the column-based arrangement of the tabular datasets,
the analyst is limited to relationships of one type. For instance, if two
clustered gene expression tables are positioned side by side (genes x
patients), the analyst must choose to visualize either gene or patient
relationships, depending on the arrangement of the datasets. The free
arrangement of subsets in Domino removes this restriction.

Another limitation of these techniques is that they require parti-
tioned (categorical) datasets as columns, while Domino allows ana-
lysts to mix partitioned and numerical data. While our previous work
focused on relationships between the partitioned sets, drawn as bands
connecting the columns, Domino is able show relationships between
datasets at different levels of granularity: at the level of items, groups
of items, or whole datasets. Finally, our earlier techniques do not al-
low users to extract and manipulate subsets, which is a central aspect
of Domino.

In recent work we described Furby [31], a method for visualizing
biclustering results in a force-directed layout. Bands between the clus-
ters represent their overlaps in both rows and columns. However, simi-
lar to the approaches discussed above, Furby only encodes the overlap
between whole biclusters and does not enable users to see individ-
ual relationships between shared items (rows/columns). Furthermore,
Furby focuses on the overlap between matrix subsets, preventing users
from including partitioned and numerical subsets in the sense-making
process. Furby also does not address the extraction and manipulation
of subsets.

Multiple Coordinated and Integrated Views An alternative
to the multiform approaches described above are standard multiple co-
ordinated views (MCV) [28], where each subset is visualized as a sep-
arate view. Using linking & brushing, users can then explore the re-
lationships between the subsets. MCV is also applicable to scenarios
that include multiple datasets connected by different item types. How-
ever, as MCV systems keep relationships between linked views [15]
only implicitly, the approach has a major limitation: it requires users
to actively select or filter items in order to see relationships between
the subsets. Further, as the selected items from one view are simul-
taneously highlighted in all other views, users can generally only see
that the item is part of the selection, but cannot determine which item
in one view corresponds to which item in the other views if multiple
items are selected.

Instead of implicitly linking items in a MCV setup, explicit links
can be drawn to connect items across the views—an approach Javed
and Elmqvist call integrated views [15]. Examples of integrated views
are semantic substrates [29], the VisLink method [7], or context-
preserving visual links [30]. Note that the multiform approaches de-
scribed earlier in this section can also be seen as integrated views.
While explicit links remove the need for interaction to see relation-
ships, it comes at the cost of added visual clutter. In Domino we also
make use of explicitly connected multiform visualizations; however,
we reduce visual clutter by representing the relationships at various
levels of granularity. In addition to representing relationships between
individual items as single lines, Domino aggregates lines from the
same group of a partition to bands.

Meta-Visualization Techniques The approaches most closely
related to Domino are Flexible Linked Axes (FLINA) [6] by Claessen
and van Wijk and ConnectedCharts [35] by Viau and McGuffin.
Domino is akin to FLINA and ConnectedCharts, as it is also a meta-
visualization for creating advanced visualization setups. However, due
to is its holistic conceptual approach that integrates one-dimensional
numerical, categorical, and tabular data by connecting them at multi-
ple levels of granularity, Domino can be applied to a broader spectrum
of tasks.

FLINA [6] is a meta-visualization approach for creating axis-based
visualization techniques, whose axis relationships can be described
using the ARGOI formalism. Although it is a general and powerful
concept, FLINA is restricted to showing item relationships between
one-dimensional numerical data represented as 1D scatterplots (axes).
ConnectedCharts [35] are related to FLINA in the sense that they also
explicitly draw item-based relationships between visualizations. How-
ever, ConnectedCharts and Domino conceptually go beyond FLINA,
as an axis-based representation is only one of many possible visual-
ization techniques for displaying a subset. Another important differ-
ence from FLINA is that ConnectedCharts and Domino include one-
dimensional and tabular datasets. While FLINA and ConnectedCharts
are both limited to item-based relationships between the visualiza-
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tions, Domino visually links them also on coarser abstractions, making
it possible to show relationships between single items, between groups
of categorical data, or between whole datasets. Another difference be-
tween the Domino technique from both FLINA and ConnectedCharts
is its ability to let users not only explore relationships between subsets,
but also refine existing and extract new subsets, which provides a great
deal of flexibility in exploratory analysis scenarios.

3 DOMINO VISUALIZATION TECHNIQUE

Domino is a meta-visualization technique that enables analysts to ar-
range, extract, and manipulate subsets of interest and show the rela-
tionships between them at multiple levels of detail. The approach is
designed for scenarios that include multiple heterogeneous datasets
which are connected by shared identifiers (artist, country, etc.). The
goal of Domino is to effectively represent subsets, the data associ-
ated with the subsets, and the relationships between the subsets.

The basic visual elements of the Domino technique are blocks, sim-
ilar to tiles in a dominoes game, and block relationships, which con-
nect the individual blocks. Figure 1 shows a snapshot of an analysis
performed with the previously introduced music charts dataset. Blocks
represent one or multiple combined subsets, where subsets can be nu-
merical (e.g., population of countries), partitioned (artists’ gender), or
matrix data (# of number-one hits by artists in various countries). De-
pending on the data and the analysis task, various visualization tech-
niques can be used to represent the subsets. While the matrix, for
instance, is represented as a heatmap, the population of countries is
visualized as a 1D scatterplot. Blocks can be arbitrarily positioned
and rotated. The visual representations of the relationships between
blocks are automatically displayed if the item types of two neighbor-
ing blocks match, analogously to matching dominoes. We consider
two blocks as neighbors if they can be connected by a line without
cutting across another block. The rows in the matrix that correspond
to the artists, for example, are visually linked to the 1D scatterplot
showing the # of studio albums.

In Domino, users are able to switch between three levels of granu-
larity at which the relationships can be represented—focusing on the
overlap between whole blocks, groups within blocks, or down to the
lowest level of individual items. Depending on the arrangement of the
blocks and the chosen granularity level, relationships are represented
using lines, bands (bundles of lines), points, or rectangular regions (see
Figure 1). The flexibility of freely arranging and associating blocks in
Domino allows analysts to both quickly produce established visual-
ization techniques, such as parallel sets, parallel coordinates, 2D scat-
terplots, and to create tailored, complex visualizations to address the
needs of a particular use case.

3.1 Blocks
The basic visual unit of the Domino technique are blocks, rectangular
regions that represent subsets. We define i as an item that is part of the
set I. I contains only items of the same type (e.g., country). A subset S
is defined as a mathematical subset of S⊆ I (countries in Europe). We
distinguish between three functions that determine the possible types
of blocks in Domino (see Figure 2):

A partitioned block is defined by the function fp that maps
items to groups that are associated with unique natural numbers
(e.g.,{Africa(0),Europe(1), . . .}, {male(0), female(1)}):

fp(i ∈ I) �→ g ∈ P,
where P is a partition of items I. The subset Sg of one specific group

g ∈ P is defined as Sg =
{
i| fp(i) = g

}
. A partitioned block can be

viewed as a grouping of items without any associated data. The group-
ing can be the output of a clustering algorithm, derived from a cate-
gorical data attribute, or a quantization of a numerical block.

A numerical block is defined by the function fn that maps items to
numerical values (population, # of studio albums, or retail value):

fn(i ∈ I) �→ v ∈ R

Fig. 2: The three block types in Domino: partitioned (red), numerical
(blue), and matrix blocks (green). The border style indicates the type
of the items contained in the subset. While partitioned and numerical
blocks are defined by one item type, matrix blocks have two, one in
each direction. Only blocks with matching item types can be combined.

A matrix block is defined by the function fm that maps the product
set of two subsets of items to numerical values:

fm((i, j) ∈ I1 × I2)) �→ v ∈ R

In contrast to partitioned and numerical blocks, in which all items
are part of the same item set, a matrix block consists of two item sets
(I1 and I2). The item sets can be identical (e.g., in a city distance ma-
trix) or different (number-one hits for countries or gene expression of
cancer patients). However, the item sets themselves need to be homo-
geneous with respect to the item type. According to our definition of
blocks, the prominent cars dataset [12], for example, is not a single
matrix block, but a collection of individual numerical and partitioned
blocks for each variable (horse power, year of construction, etc.)

Figure 2 illustrates the three block types. The border style of the
blocks encodes the different item types (e.g., country and artist). The
sorting of items within blocks is essential for users to see patterns,
for instance, in a clustered tabular dataset, or to see the distribution
of items. For our technique, the sorting is also relevant because it de-
termines the relationship representations that connect the blocks, as
described in Section 3.2.2. From a mathematical point of view, sets
do not define an order on the items that are contained in them. In
Domino, items in blocks are sorted according to the functions defined
above. In numerical blocks, items are sorted according to the asso-
ciated data value. In partitioned blocks, the groups themselves are
sorted according to the assigned natural number, while the individual
items inside the group have no order. In matrix blocks, the two di-
mensions (horizontal and vertical) are sorted independently according
to the mean value of the items. Sorting within blocks is illustrated by
varying levels of brightness, as shown in Figure 2.

3.1.1 Multiform Visualization

An essential characteristic of blocks in Domino is that they can be used
to visualize subsets using multiform visualization, i.e., that users can
switch between various visualization techniques.

Fig. 3: Block visualization techniques categorized by block type (parti-
tioned, numerical, and matrix) including 1D and 2D heatmaps, mosaic
and bar charts, 1D scatterplots, histograms, pie charts, and boxplots.
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Fig. 4: Example sequence demonstrating the creation of a combined block. The user starts by attaching a partitioned block to a numerical
block, which inherits the partitioning. Then the user adds a matrix block that is also partitioned accordingly. In the final step, the matrix column
items are partitioned based on a partitioned block matching the column item type.

Domino is not bound to a predefined set of visualization techniques.
Throughout the paper, however, we use a set of standard techniques,
which can be seen in Figure 3, from which the analyst can freely
choose. Depending on the type of the data represented by the block,
only certain visualization types are suitable to encode data. While
a heatmap representation can be applied to all three block types, 1D
scatterplots and bar charts are available for partitioned and numerical
blocks. Histograms and box plots are provided to represent numerical
subsets, and pie charts can only be used to encode partitioned blocks.
Although our current implementation is focused on these visualization
types, the set of multiform techniques supported can be extended arbi-
trarily, depending on use case and application context. For the cancer
genomics use case described in Section 6.2, for instance, we added
Kaplan-Meier plots [26] to encode patient survival data.

3.1.2 Combined Blocks
Blocks that share the same item type, as indicated by the same border
style in the illustrations, can be attached to each other, to form a com-
bined block. The resulting combined block contains the union of the
two item subsets. Figure 4 demonstrates by means of the music charts
example how the stitching of blocks works. The analyst starts with
the partitioned block career status, which separates active from inac-
tive artists. In a second step, the analyst adds the numerical block # of
studio albums, whose items are automatically partitioned according to
the artists’ career status. The two blocks are then combined with the
matrix block that holds the absolute # of number-one hits for 12 coun-
tries. Again, as only one partitioning can drive the grouping of items
in a combined block, the matrix block also inherits the career status
partitioning. Finally, the analyst attaches the partitioned block conti-
nent, which splits the countries into three groups (Australia, Europe,
and North America).

As described in Section 3.1, items within blocks are sorted. In the
case of a combined block, the item order is determined by a hierarchi-
cal sorting strategy. For instance, if the user defines a primary and a
secondary sorting criterion, the latter is only used if the order cannot
be resolved using the former.

3.2 Block Relationships
In addition to blocks, the second class of visual elements in Domino
are explicit representations of relationships between blocks. We con-
sider blocks to be related to each other if their subsets contain items
of the same type. In the previous section, we discussed that a par-
titioned block can only be subdivided into groups according to one
primary partition, and a numerical block can only be sorted according
to one primary sorting criterion. In the case of matrix blocks, these
properties apply equally to each dimension. Consequently, the ability
to create combined blocks by attaching multiple separate blocks re-
quires re-sorting and/or re-distributing of the items in one or multiple
blocks. Applying multiple sorting criteria hierarchically does not solve
the issue, as only one can be the primary sorting criterion. However,
in many analysis scenarios, users want to investigate the relationships
between multiple blocks without giving up their designated sorting or
partitioning. To address this issue, we introduce four degrees of rela-
tionships.

3.2.1 Relationship Degrees

A relationship degree defines the strength of the relationship be-
tween two blocks. We distinguish between four degrees: none, weak,
medium, and strong, as shown in Table 1. The stronger the relation-
ship, the more properties the blocks share. In Domino, the relationship
degree is reflected by the proximity of two blocks in the layout. Users
can freely switch between the four relationship degrees by moving
blocks in the layout using drag-and-drop operations.

Two blocks have no relationship if they do not share the same item
type (none). In the example used in Table 1, the artist’s career sta-
tus cannot be matched with the population of countries. If the blocks
contain items of the same type but retain their individual sorting or par-
titioning, their relationship is weak. For instance, the artists in the ca-
reer status block are assigned to the active/inactive group and are then
weakly connected to the corresponding bar in the # of studio albums
bar chart, which is sorted by the height of the bars. Blocks that have
a medium relationship degree have the same partitioning but do not
require the same sorting or visualization technique (see Section 3.1.1),
which means that items are aggregated on a per-group basis. In the
example, the same subsets are used as in the weak case, but this time
the # of studio albums block inherits the partitioning from the artists’
career status block. However, since both blocks can retain their indi-
vidual sortings, different visualization techniques can be used. Finally,
in the strong case both blocks also have to use the same sorting and
must therefore apply the same visualization technique. In the example,
the bars encoding the # of studio albums are sorted within the career
status group.

As blocks with a strong relationship are directly attached to each
other (see Section 3.1.2 on combined blocks), no explicit visual rep-
resentation of the relationship is needed. Consequently, the following
discussion on how to represent relationships only applies to medium
and weak relationship degrees.

3.2.2 Relationship Representation

We characterize the visual representation of relationships by two as-
pects: the direction of blocks—either parallel or orthogonal—and
the granularity of the relationship. Depending on the user’s task, we
differentiate between three levels of granularity: block, group, and
item relationships. Figure 5 illustrates the possible combinations us-
ing our graphical notation introduced in Figure 2.

At the finest granularity level for visualizing relationships between
items, we connect the items by drawing lines between parallel blocks
or by drawing points at the hypothetical intersection point of re-
lated items of orthogonal blocks. While the former results in parallel
coordinate-like setups, the latter results in scatterplots. The examples
in the bottom row of Figure 5 show the correlation between the nu-
merical 1D scatterplot # of studio albums and year of first album. The
positions of the points in the scatterplot as well as the starting and end
points of lines in the parallel coordinates plot depend on the currently
applied visualization technique in the two blocks involved. For his-
tograms, for example, the bin position is used.

To represent relationships at the coarser granularity levels, between
groups and whole blocks, we draw bands and rectangular regions, re-
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None Weak Medium Strong

Shared Item Type – • • •
Shared Partitioning – – • •

Shared Sorting – – – •
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Table 1: Properties of the possible block relationship degrees (none, weak, medium, and strong) along with both a schematic diagram and an
application example of each relationship degree. The stronger the relationship, the more properties two related blocks share.

spectively, depending on the arrangement of the blocks. The width of a
band or the size of a region is proportional to the overlap between the
subsets. In earlier work [19, 21, 22], we already made use of bands
to relate groups between partitioned datasets. In the parallel case,
blocks connected by bands produce the parallel sets technique [18].
The “parallel-group” example in Figure 5 shows the relationships be-
tween the groups of the partitioned blocks gender and career status,
which are arranged in parallel. In the orthogonal case, the size of the
regions is proportional to the number of shared items.

Fig. 5: Overview of possible relationship representations character-
ized by the granularity of the representation (block, group, and item)
and the orientation of the block arrangement (parallel, orthogonal).
All combinations are illustrated using the corresponding relationship
representation and an example from the music charts dataset.

Subsets that do not fully overlap result in unshared items S1 \ S2

and S2 \ S1. In the “block” examples in Figure 5, for instance, the
relationships of “all artists” (green) to a subset of ten selected artists
(gray) are shown. In the illustrations, unshared items are indicated in
red. In our implementation a fading band is used to represent them.

Note that since the positioning of blocks in Domino is not restricted
to perfect vertical or horizontal alignments, all relationship represen-
tations can be sheared.

3.3 Subset Extraction and Manipulation
Up to this point, we have focused our discussion on the exploration of
predefined subsets, relationships between these subsets, and the differ-
ent ways of visualizing them. Beyond predefined subsets, Domino also
supports users in the process of creating new subsets. Users can define
new subsets either by combining existing ones using logical operations
(union, intersection, set difference) or by extracting parts of subsets
based on selected items or groups. Depending on the visual repre-
sentation of a block or relationship, users can, for example, extract
items above a certain threshold in a numerical 1D scatterplot, items
aggregated in a single bin of a histogram, or a collection of points in a

scatterplot that is formed by orthogonally arranged numerical blocks.
In Figure 10, for instance, we selected the groupG-CIMP in the matrix
block and extracted all items to a separate block.

Enabling analysts to extract and manipulate subsets as needed dur-
ing the analysis is a powerful approach in many scenarios. Ensuring
that the user is always aware of the origin of the created subset is es-
sential. In general, this provenance information can be provided either
in a temporal or in a spatial manner. Domino offers both options.

In order to be able to present the provenance information, the user’s
actions must be tracked. To understand what steps lead to the cur-
rent subset configuration, users can then navigate through the history
by using animation, or also replay the actions. Alternatively, prove-
nance information can be encoded directly in the visualization, which
we call spatial provenance representation. One example of such a spa-
tial provenance presentation is the technique by van Elzen and van
Wijk [33], where they present previous analysis steps in a linear fash-
ion, reminiscent of a filmstrip. Other examples are VisTrails [2], Ex-
Plates [16], and GraphTrail [8].

Instead of arranging the steps along a time line, the provenance in-
formation is contained implicitly in the design of the Domino tech-
nique. The relationship representation between subsets (blocks) and
the colors of blocks allow analysts to track from which original sub-
sets new subsets have been derived. In Figure 10, for instance, it can
be seen that we extracted all items in the G-CIMP group to a separate
block. Further, if a newly extracted subset turns out to be irrelevant,
users can go back to the original subset and follow a different path
in the analysis. In the use cases presented in Section 6, we demon-
strate how analysts make use of the temporal replay capabilities and
the implicit encoding for tracking the evolution of the current subset
configuration.

4 SPECTRUM OF SUPPORTED VISUALIZATIONS

The modular block concept of Domino enables analysts to create
sophisticated visualization setups. In addition to using the inher-
ent visualization techniques realized in multiform blocks (see Sec-
tion 3.1.1), analysts can easily assemble standard techniques such as
scatterplots, scatterplot matrices (SPLOMs) [4], parallel coordinate
plots [14], parallel sets [18], mosaic plots [11], Sankey diagrams [27],
GPLOMs [13], Flexible Linked Axis [6] (although our current im-
plementation does not support free rotation), ConnectedCharts (with
the exception of stacking and nesting) [35], Table Lens [25], and
scattering points in parallel coordinates [37]—to name but a few.
Our technique also conceptually subsumes our previously published
Matchmaker [21], VisBricks [19], StratomeX [22], and Furby [31]
techniques. Figure 6 shows a collection of techniques created with
Domino. Each figure contains a schematic illustration together with
an example generated with the music charts dataset.

However, in addition to the flexible composition of well-known
techniques, another strength of Domino is that these techniques can
be combined arbitrarily to form a wide spectrum of new hybrid visu-
alizations which the analyst can tailor specifically to the task at hand,
as demonstrated in the music charts visualization shown in Figure 1
and the example setup from our cancer genomics use case presented
in Figure 10.
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(a) Parallel Coordinate Plot [14] (b) Scatterplot

(c) Parallel Sets [18] (d) Mosaic Plot [11]

(e) Matchmaker [21] (f) Scatterplot Matrix (SPLOM) [4]

(g) StratomeX [22]

(h) GPLOM [13]

(i) Sankey-Diagrams [27]

(j) Flexible Linked Axis [6]

(k) ConnectedCharts [35]

Fig. 6: Examples of supported visualization techniques demonstrating the flexibility of the Domino approach.

5 INTERFACE AND INTERACTION DESIGN

The Domino technique opens up a wide range of possibilities for ex-
ploring, relating, and manipulating subsets. To ensure that users can
apply this generic approach efficiently, a well-designed user interface
combined with a specifically tailored interaction concept is essential.
To assist users in the process of adding new blocks to the setup and
combining existing blocks, we introduce placeholders that indicate the
various positions for placing a subset and live previews for showing
possible visualization outcomes (see Section 5.1). Various interaction
modes let users select and relate blocks, groups, or individual items
(see Section 5.2). Interactions for block scaling (see Section 5.3) en-
sure that users can effectively handle scenarios of different complexity
and scale—from small datasets like the music charts dataset with only
12 items to large scenarios including a multitude of datasets such as
that discussed in the cancer use case described in Section 6.2.

The Domino prototype implementation is part of Caleydo, an open-
source data visualization framework [20]. Caleydo is implemented
in Java and uses OpenGL/JOGL for rendering. A demo version of
Domino for Windows, Linux, and Mac OS X is freely available at
http://domino.caleydo.org. Interaction with the system is
demonstrated in the accompanying video.

As shown in Figure 7, the main user interface consists of two parts:
the Domino Board and the Block Browser. In addition to the two main
interfaces, support views provide information about the data and cur-
rent selections.

TheDomino Board is the central visualization and interaction space
of Domino, in which blocks can be arbitrarily positioned, manipulated,
and combined using drag and drop. To handle setups with many re-
lated subsets, the board is realized as an infinite canvas.

Fig. 7: Interface of the Domino prototype. The Block Browser presents
lists of possible subsets organized by type. Users can drag subsets to
arbitrary positions on the Domino Board, where they appear as a new
block. Support views on the left show selections and meta information.
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The Block Browser is a list-based interface for adding subsets to the
board. Users can switch between two different lists: the first presents
subsets that are associated with data (numerical and matrix subsets),
and the second holds the partitioned subsets. Depending on the type of
the subset, additional columns present metadata, such as size and item
type. Users can add blocks to the board by dragging entries from the
list to an arbitrary location on the board. The block browser is based
on the LineUp [9] implementation.

Block-specific and global toolbars allow the analyst to trigger ac-
tions (e.g., sort, transpose, remove), switch between interaction modes
(see Section 5.2), and provide access to a linear undo-history. In addi-
tion, item-type-specific supporting blocks are available, such as labels
and rulers (Section 5.3).

5.1 Placeholders and Live Previews
When adding a new block to the Domino Board, the user needs to de-
cide where to place it and how to represent it. To support this process,
we make use of placeholders and live previews, as illustrated in Fig-
ure 8. Placeholders assist analysts in the process of combining blocks
by indicating the various potential positions for placing a subset in the
current Domino setup. When a user hovers over the placeholder, live
previews [33] of the possible visualization outcomes are presented to
help the user choose the appropriate technique for the subset.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Fig. 8: Usage of placeholders and live previews to add new blocks
to Domino. When a block is dragged, placeholders (hatched areas)
indicate possible drop locations. Live previews help users to choose a
visualization technique.

While a block is dragged, all possible drop locations with a strong
or weak block relationship are highlighted, as shown in Step 1 of Fig-
ure 8. The proximity of the placeholder to the block indicates the rela-
tionship degree, as introduced in Section 3.2.1. When the user drags a
block or subset onto a placeholder, the applicable multiform visualiza-
tion techniques are presented (Step 2). Hovering over one of the icons
representing the techniques renders a live preview of the resulting vi-
sualization (Step 3). Dropping the block onto a specific icon confirms
the selection and removes all other placeholders (Step 4).

5.2 Interaction Modes
In our implementation of the Domino technique, analysts can switch
between three different interaction modes by using the toolbar, as indi-
cated in Figure 7. The changing background color of the toolbar area
emphasizes the active interaction mode.

As blocks and their relationships are the primary visual elements in
Domino, the block interaction mode is designed for adding, moving,
combining, and removing blocks.

In the item interaction mode, users can select and explore individ-
ual items within the blocks and within block relationships. Depending
on the visualization technique employed, the analyst can directly select
items, such as columns or rows in a heatmap, an aggregation of items
represented by a bin in a histogram or bar chart, or parts of relationship
representations. Selected items are highlighted in all matching blocks
and block relationships. While item block relationships highlight the
whole matching line or point, the coarser granularities highlight only
a portion, depending on the represented subset. In Figure 1, for exam-
ple, we selected the artist Whitney Houston, highlighted in all blocks
and block relationships.

Weak block relationships are shown for all blocks with matching
item types. However, by default, a block relationship is culled auto-
matically if it intersects with any other block or an artificially intro-
duced separator. On the one hand, this avoids clutter and can be help-
ful to create independent sections on the board. On the other hand,

(a) Block Mode (b) Relationship Mode

Fig. 9: Relationship interaction mode. (a) To reduce visual clutter, re-
lationships between blocks that intersect with another block are culled.
(b) By actively selecting blocks, users can reveal the otherwise hidden
relationships. Relationships to unselected blocks are faded out.

this also prevents analysts from investigating block relationships of
non-neighboring blocks. Therefore, the purpose of the relationship
interaction mode is to let users explore these hidden relationships be-
tween blocks. In this mode, all block relationships between selected
blocks are shown, regardless of whether they intersect with any other
blocks. To reduce clutter, all unselected blocks are faded, as illustrated
in Figure 9.

5.3 Scaling and Ruler

Accommodating a range of dataset sizes on various screen resolutions
is challenging. Domino addresses scalability by its flexible zoom ca-
pabilities and initial scaling heuristics, which make blocks with vari-
ous sizes fit on the board. In our implementation, blocks can be scaled
freely in the horizontal or the vertical direction. When the user hov-
ers over a block while performing a scaling operation, only this block
and strongly related blocks are affected by the operation; otherwise,
all blocks on the board are scaled.

While the scaling approach ensures flexibility to deal with datasets
of various sizes, it hampers the user’s ability to compare the sizes of
multiple independent blocks, since they may have different scaling
factors. To address this problem, we provide rulers that illustrate how
much space on the board corresponds to how many items. They also
serve as global scaling factors for a specific item type. In Figure 1,
rulers for artists and countries are shown in the bottom left corner.
When a scaling operation is applied to a ruler, all 1D and 2D heatmap
and bar chart blocks are scaled simultaneously.

5.4 Subset Manipulation

Subsets can be created and manipulated in several ways. Set opera-
tions between blocks can be triggered by dragging a block onto an-
other one. The desired operation (union, intersection, or set differ-
ence) is determined by dropping the block on an icon, similarly to
choosing the visualization type as described in Section 5.1. Since re-
lationships at the group and block granularity levels already encode set
operations between two blocks, they can also be extracted into a new
block by dragging the relationship representation to an open area on
the board [17]. In a similar fashion, individual groups of a partitioned
block can be extracted into a new block. Finally, we use a small wid-
get for extracting selected items as new blocks, as shown in the bottom
left corner of Figure 1. The selected items of the corresponding item
type are represented by a bar whose size corresponds to the number
of selected items. By dragging the bar to an arbitrary position on the
board, the selected items are added as a new block.

As introduced in Section 3.3, Domino distinguishes between tem-
poral and spatial provenance. While spatial provenance is encoded
directly by the Domino visualization, temporal provenance is imple-
mented by storing all operations in a linear history. Users can undo
and redo operations, revert all operations at once, and replay them as
an animation.

6 USE CASES

We demonstrate the utility of Domino in two use cases. In the first
scenario, we utilize our technique to explore the music charts dataset
introduced at the beginning of the paper (see Figure 1). In the second
use case, we use Domino to characterize tumor subtypes.
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Fig. 10: Key findings on subtypes in glioblastoma multiforme. Orange highlighting indicates patients with the G-CIMP subtype. (1) The mRNA
gene expression matrix. In this heatmap, red and blue indicate expression levels higher and lower than the cohort average, respectively. Gray
represents the average. (2) Partitioning block representing the tumor subtypes defined by Brennan et al. [3]. (3) The mutation status of the
IDH1 gene. Purple represents mutations; orange represents patients without mutation, and gray represents missing data. (4) Patient survival
illustrated by Kaplan-Meier plots. (5) Patient age as boxplots. (6) Copy number for each patient and gene sorted by genomic location. Blue
and red hues represent copy number losses and amplifications, respectively. Gray represents the normal state of two copies per gene. (7) Block
extracted from the copy number heatmap to highlight uncommon copy number patterns observed in the G-CIMP subtype. (8) Copy number and
gene expression levels for CDKN2A and EGFR. (9) Scatterplot showing the relationship between patient age and overall survival time.

6.1 Music Charts
At the beginning of the analysis, we want to know whether there are
any exceptional correlations between the count of number-one hits in
a country and the artists’ country of origin. We therefore begin by
adding the number-one hits matrix block and partition the artists by
their country of origin while partitioning the countries by continent.
To inspect individual items, we switch to the item interaction mode.
Looking at the partitioned matrix block, we observe that the band U2
has the most number-one hits in their home country Ireland, while
ABBA, for instance, is far more popular in Germany than in their home
country Sweden. To understand the relevance of a number-one hit in
a specific market, we add the sold albums numerical blocks as a bar
chart below the matrix block and observe that the US leads by a wide
margin. However, we assume that the absolute number of albums sold
depends on the population size of a country. To confirm this, we add
the population of the countries as an additional 1D scatterplot.

Another interesting question we seek to answer is how the count of
number-one hits depends on the count of published studio albums. By
adding the corresponding numerical blocks, we find that Elton John
has released an impressive 33 albums. When looking at this number
in the context of the years of his first album and his start of career, it
becomes obvious that he has been successful in the industry for a long
time. By looking at the other artists, we see that only Elvis Presley
published an album earlier than Elton John. However, as Elvis Presley
(presumably) passed away, we continue to look for additional artists
that are no longer active. According to the career status block, five out
of twelve are inactive. To examine the inactive artists more closely, we
correlate the status with the artists’ gender. We further investigate the
distribution of the gender in the inactive group by performing a logical
intersection operation, which shows us that only a single female artist
is no longer active: Whitney Houston. Figure 1 presents a screenshot of
our analysis, in which Whitney Houston as well as the US are selected
and highlighted across all blocks.

6.2 Cancer Subtype Analysis
A second dataset we studied using Domino is the glioblastoma multi-
forme (GBM) dataset generated by The Cancer Genome Atlas (TCGA,
http://cancergenome.nih.gov) project and described in

several publications by that consortium [3, 32, 34]. Glioblastomas
are aggressive brain tumors, and patients with this type of cancer have
a median expected survival time of around 12 months after diagno-
sis [32]. There are, however, different subtypes of GBM, which are
driven by different molecular changes and associated with different
patient survival times.

Our goal for this case study is to recapitulate some of the findings
of the most recent TCGA study on GBM [3], which are presented in
Figure 10. We start by adding the gene expression matrix (mRNA) to
the board as a heatmap (1). This matrix contains data for over 12,000
genes and 528 patients, and each cell of the matrix corresponds to
the activity of a given gene in the tumor sample from a given patient.
Without clustering or sorting, the heatmap does not reveal any partic-
ular patterns. Using the gene expression subtypes published by Bren-
nan et al. [3], we partition the heatmap into five groups: Classical,
G-CIMP, Mesenchymal, Neural, and Proneural (2). We further com-
bine the mutation status of the IDH1 gene with the expression subtype
block (3). Mutations in IDH1 are known to play a role in GBM and for
their association with the G-CIMP subtype. As Figure 10 illustrates,
this relationship becomes immediately evident in Domino.

In order to compare patient survival times in the five gene expres-
sion subtypes, we drag the overall survival variable (OS (days)) from
the block browser onto the Domino board and create a medium rela-
tionship between this and the partitioned gene expression matrix so
that the survival times are partitioned by expression subtype (4). We
select the Kaplan-Meier survival plot as the block visualization, which
shows that the overall survival times for the G-CIMP group seem to
be better than for the other groups. This is a known characteristic of
both the G-CIMP subtype and the IDH1 mutation [3]. Another find-
ing related to this subtype is that the patients in this group tend to be
younger. We confirm this by visualizing the age of the patients in each
expression subtype as a box plot next to the Kaplan-Meier plots, and
observe a notable difference between the G-CIMP group and the four
other groups (5).

Next, we study the copy number changes of genes in the patient
genomes. We drag the copy number matrix for 560 patients and over
24,000 genes onto the board, creating a strong relationship between
this block and the existing gene expression matrix block (6). Sort-
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ing the genes by their location within the genome reveals a number of
common large scale copy number losses and amplifications in GBM
tumor genomes. As the copy number matrix is partitioned by gene ex-
pression subtypes, it also reveals that the copy number pattern for the
G-CIMP is remarkably different from the other groups. We study these
patterns more closely by extracting and enlarging the corresponding
block of all genes andG-CIMP patients, noting what appears to be two
different types of copy number patterns in this patient group (7). Two
genes that are known to be affected by copy number changes in GBM
are the tumor suppressor gene CDNK2A and the oncogene EGFR. We
extract these genes from both the copy number and the gene expression
matrix and create a combined block for each gene (8). We find that the
copy number of EGFR is in fact highly amplified in close to 50% of
the patients, and that this copy number change has an impact on the
corresponding gene expression levels. For CDKN2A we observe that
frequently either one copy is deleted (heterozygous deletion) or both
copies are deleted (homozygous deletion), with the expected effect on
the gene expression levels.

We are particularly interested in the patients with the G-CIMP sub-
type of GBM. In order to see their copy number status and gene ex-
pression levels for CDKN2A and EGFR, we select this patient group in
the partitioned gene expression matrix (mRNA). Due to the highlight-
ing of the patients in all blocks and bands, it is evident that overall the
G-CIMP patients tend to have no or low-level copy number changes
in the two genes. This indicates that the tumors of these patients are
most likely driven by a mechanism that does not involve molecular
alterations of EGFR or CDKN2A.

Finally, due to our earlier observation that patients in the G-CIMP
group tend to be younger and have longer survival times, we are in-
terested in whether there is an overall correlation between these two
variables. We drag both the overall survival and patient age variables
from the block browser onto the board. By visualizing them as axis
plots with an orthogonal alignment, we create a scatterplot of the two
variables (9). The scatterplot indicates that there might be a weak cor-
relation between younger age and longer survival times. The selected
G-CIMP patients are highlighted in orange, emphasizing the distinct
age distribution in that group.

7 DISCUSSION

Visualization Grammar and Templates Domino provides a
comprehensive toolset to assemble both established visualization tech-
niques and novel combinations. The concept could be generalized to a
visualization grammar [36] for the exploration of tabular datasets. The
grammar could be utilized to define templates that serve as a blueprint
for the creation of sophisticated visualizations. This would make it
possible to customize a specific implementation of the Domino con-
cept according to the template. In this approach, the feature set of
Domino could be restricted to certain operations in order to allow users
to create only specific kinds of composite visualizations, such as par-
allel coordinates or parallel sets, or more complex ones, depending on
the task. Furthermore, a visual editor could be created that enables
users to interactively define templates for specialized visualizations.

Use of colors Assigning unique colors to partitioned blocks is a
challenging task. By default, we automatically assign colors by using
predefined color schemes provided by ColorBrewer [10]. However,
users can manually override the chosen colors if desired. The auto-
matic color selection guarantees that groups belonging to the same par-
titioned block have different colors. However, depending on the num-
ber of partitioned blocks and contained groups, it might not be possible
to choose different colors for all groups in all partitions. Assignment
of the same color to semantically unrelated groups can cause confu-
sion. A compromise would be to at least ensure that colors within a
combined block are unique. However, this could result in situations
where the color assignment to blocks needs to be adapted after the
user interactively changes the configuration of combined blocks. As
this change of colors would destroy the user’s mental map, we opted
to allow duplicate colors instead.

Crossing lines and bands As defined at the end of Section 3.1
on blocks, the item order within a partitioned block is undefined.
When visualizing relationships between blocks, this can lead to un-
necessary line crossings between two weakly related blocks that use
the parallel item block relationship granularity. In the current imple-
mentation, one has to strongly relate a copy of the opposite block and
apply it as secondary sorting criterion. This will reduce line crossings,
since the item order within a group will match the item order of the
opposite block. To remedy this issue, more sophisticated reordering
operations could be applied [24, 23]. Relationships at the group gran-
ularity level can also suffer from a similar ordering problem, resulting
in crossing of bands. Again, reordering strategies need to be applied
to minimize the crossings.

Partitioned matrix blocks The presented technique introduces
three different block types: partitioned, numerical, and matrix blocks.
Matrix blocks can be treated as the two-dimensional version of a nu-
merical block. Therefore, a logical consequence would be to also
introduce an analogous two-dimensional block type for a partitioned
block. However, a partitioned matrix block is currently not supported
in Domino, as the mapping of an item pair ( f ((i, j)∈ I1× I2) �→ g∈ P)
to a group would result in a biclustering [5] in which one item of I1 can
be mapped to multiple groups. This prohibits splitting up the block
horizontally or vertically, which is needed for propagating the parti-
tioning to strongly related neighboring blocks. However, in Domino
such scenarios can be handled by representing every group as a sin-
gle block in the layout, where overlapping items between blocks are
visualized using lines or bands [31].

Scalability and Performance We ensure visual scalability
through the flexible zooming concept described in Section 5.3. Re-
garding data scalability, the size of matrix blocks is the critical issue.
In the cancer subtype analysis case study presented here, matrix blocks
have up to 560×24,000 items, demonstrating Domino’s applicability
to larger datasets. Item relationships for large subsets are, however,
a performance issue, since individual lines for each data item need to
be drawn. This issue can be addressed by using a higher relationship
granularity.

8 CONCLUSION AND FUTURE WORK

We have presented Domino, a novel technique that visualizes sub-
sets together with associated data, and relationships between them.
Domino allows users to explore, extract, and manipulate subsets of
multiple item types at various levels of granularity. Analysts can not
only rapidly assemble common visualization techniques, but also cre-
ate new combinations tailored to specific tasks and datasets. The pro-
totype implementation uses live previews and placeholders to support
users in managing the wide range of possibilities that the technique
offers.

In our implementation, placeholders support analysts in creating
combined blocks by indicating possible positions for placing a sub-
set in the current Domino setup. In the future, we plan to enrich the
placeholder interaction concept with further guidance capabilities that
suggest potentially interesting relationships. Depending on the task at
hand, possible drop positions could be ranked according to similarity
measures, such as the correlation between groups of two partitioned
blocks. Another approach to representing partitioned data is to inter-
leave or overlay partitioned data to create a single block, which would
complement the currently implemented approach of creating one block
per group.

ACKNOWLEDGMENTS

This work was supported in part by the Austrian Research Promo-
tion Agency (840232), the Austrian Science Fund (J 3437-N15), the
Air Force Research Laboratory and DARPA grant FA8750-12-C-0300,
and the United States NIH/National Human Genome Research Insti-
tute (K99 HG007583).



2032 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

REFERENCES

[1] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and

P. Rodgers. Visualizing sets and set-typed data: State-of-the-art and fu-

ture challenges. In Eurographics conference on Visualization (EuroVis)–
State of The Art Reports, pages 1–21. Eurographics, 2014.

[2] L. Bavoil, S. Callahan, C. Scheidegger, H. Vo, P. Crossno, C. Silva, and

J. Freire. VisTrails: enabling interactive multiple-view visualizations. In

Proceedings of the IEEE Conference on Visualization (VIS ’05), pages

135–142. IEEE, 2005.

[3] C. W. Brennan, R. G. W. Verhaak, A. McKenna, B. Campos, H. Noush-

mehr, S. R. Salama, S. Zheng, D. Chakravarty, J. Z. Sanborn, S. H.

Berman, R. Beroukhim, B. Bernard, C.-J. Wu, G. Genovese, I. Shmule-

vich, J. Barnholtz-Sloan, L. Zou, R. Vegesna, S. A. Shukla, G. Ciriello,

W. K. Yung, W. Zhang, C. Sougnez, T. Mikkelsen, K. Aldape, D. D.

Bigner, E. G. Van Meir, M. Prados, A. Sloan, K. L. Black, J. Eschbacher,

G. Finocchiaro, W. Friedman, D. W. Andrews, A. Guha, M. Iacocca, B. P.

O’Neill, G. Foltz, J. Myers, D. J. Weisenberger, R. Penny, R. Kucherlap-

ati, C. M. Perou, D. N. Hayes, R. Gibbs, M. Marra, G. B. Mills, E. Lander,

P. Spellman, R. Wilson, C. Sander, J. Weinstein, M. Meyerson, S. Gabriel,

P. W. Laird, D. Haussler, G. Getz, L. Chin, and TCGA Research Network.

The somatic genomic landscape of glioblastoma. Cell, 155(2):462–477,

2013.

[4] D. B. Carr, R. J. Littlefield, and W. L. Nichloson. Scatterplot matrix

techniques for large n. In Proceedings of the Symposium on the Inter-
face of Computer Sciences and Statistics, pages 297–306. Elsevier North-

Holland, 1986.

[5] Y. Cheng and G. M. Church. Biclustering of expression data. In Pro-
ceedings of the Conference on Intelligent Systems for Molecular Biology
(ISMB ’00), page 93–103. AAAI Press, 2000.

[6] J. H. Claessen and J. J. van Wijk. Flexible linked axes for multivariate

data visualization. IEEE Transactions on Visualization and Computer
Graphics (InfoVis ’11), 17(12):2310–2316, 2011.

[7] C. Collins and S. Carpendale. VisLink: revealing relationships amongst

visualizations. IEEE Transactions on Visualization and Computer Graph-
ics (InfoVis ’07), 13(6):1192–1199, 2007.

[8] C. Dunne, N. Henry Riche, B. Lee, R. Metoyer, and G. Robertson.

GraphTrail: analyzing large multivariate, heterogeneous networks while

supporting exploration history. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI ’12), page

1663–1672. ACM, 2012.

[9] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. LineUp:

visual analysis of multi-attribute rankings. IEEE Transactions on Visual-
ization and Computer Graphics (InfoVis ’13), 19(12):2277–2286, 2013.

[10] M. Harrower and C. A. Brewer. ColorBrewer.org: an online tool for

selecting colour schemes for maps. The Cartographic Journal, 40(1):27–

37, 2003.

[11] J. A. Hartigan and B. Kleiner. Mosaics for contingency tables. Proceed-
ings of the Symposium on the Interface, page 268–273, 1981.

[12] H. V. Henderson and P. F. Velleman. Building multiple regression models

interactively. Biometrics, 37(2):391–411, 1981.

[13] J.-F. Im, M. McGuffin, and R. Leung. GPLOM: the generalized plot ma-

trix for visualizing multidimensional multivariate data. IEEE Transac-
tions on Visualization and Computer Graphics, 19(12):2606–2614, 2013.

[14] A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing

multi-dimensional geometry. In Proceedings of the IEEE Conference on
Visualization (Vis ’90), pages 361–378, 1990.

[15] W. Javed and N. Elmqvist. Exploring the design space of composite vi-

sualization. In Proceedings of the IEEE Pacific Visualization Symposium
(PacificVis ’12), pages 1 –8. IEEE, 2012.

[16] W. Javed and N. Elmqvist. ExPlates: spatializing interactive analysis to

scaffold visual exploration. Computer Graphics Forum (EuroVis ’13),
32(3pt4):441–450, 2013.

[17] J. Kolojejchick, S. F. Roth, and P. Lucas. Information appliances and

tools in visage. IEEE Computer Graphics and Applications, 17(4):32–

41, 1997.

[18] R. Kosara, F. Bendix, and H. Hauser. Parallel sets: Interactive exploration

and visual analysis of categorical data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 12(4):558–568, 2006.

[19] A. Lex, H.-J. Schulz, M. Streit, C. Partl, and D. Schmalstieg. Vis-

Bricks: multiform visualization of large, inhomogeneous data. IEEE
Transactions on Visualization and Computer Graphics (InfoVis ’11),
17(12):2291–2300, 2011.

[20] A. Lex, M. Streit, E. Kruijff, and D. Schmalstieg. Caleydo: Design and

evaluation of a visual analysis framework for gene expression data in its

biological context. In Proceeding of the IEEE Symposium on Pacific Vi-
sualization (PacificVis ’10), pages 57–64. IEEE, 2010.

[21] A. Lex, M. Streit, C. Partl, K. Kashofer, and D. Schmalstieg. Compara-

tive analysis of multidimensional, quantitative data. IEEE Transactions
on Visualization and Computer Graphics (InfoVis ’10), 16(6):1027–1035,

2010.

[22] A. Lex, M. Streit, H.-J. Schulz, C. Partl, D. Schmalstieg, P. J. Park, and

N. Gehlenborg. StratomeX: visual analysis of large-scale heterogeneous

genomics data for cancer subtype characterization. Computer Graphics
Forum (EuroVis ’12), 31(3):1175–1184, 2012.

[23] W. Peng, M. O. Ward, and E. A. Rundensteiner. Clutter reduction in

multi-dimensional data visualization using dimension reordering. In IN-
FOVIS ’04: Proceedings of the IEEE Symposium on Information Visual-
ization (INFOVIS’04), page 89–96, Washington, DC, USA, 2004. IEEE

Computer Society.

[24] A. Pilhofer, A. Gribov, and A. Unwin. Comparing clusterings using

bertin’s idea. IEEE Transactions on Visualization and Computer Graph-
ics (InfoVis ’12), 18(12):2506–2515, 2012.

[25] R. Rao and S. K. Card. The table lens: merging graphical and symbolic

representations in an interactive focus + context visualization for tabular

information. In Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI ’94), pages 318–322. ACM, 1994.

[26] J. T. Rich, J. G. Neely, R. C. Paniello, C. C. J. Voelker, B. Nussenbaum,

and E. W. Wang. A practical guide to understanding kaplan-meier curves.

Otolaryngology–Head and Neck Surgery, 143(3):331–336, 2010.

[27] P. Riehmann, M. Hanfler, and B. Froehlich. Interactive sankey diagrams.

In Proceedings of the IEEE Symposium on Information Visualization (In-
foVis ’05), pages 233–240. IEEE, 2005.

[28] J. C. Roberts. State of the art: Coordinated & multiple views in ex-

ploratory visualization. In Proceedings of the Conference on Coordinated
andMultiple Views in Exploratory Visualization (CMV ’07), pages 61–71.

IEEE, 2007.

[29] B. Shneiderman and A. Aris. Network visualization by semantic sub-

strates. IEEE Transactions on Visualization and Computer Graphics (In-
foVis ’06), 12(5):733–740, 2006.

[30] M. Steinberger, M. Waldner, M. Streit, A. Lex, and D. Schmalstieg.

Context-preserving visual links. IEEE Transactions on Visualization and
Computer Graphics (InfoVis ’11), 17(12):2249–2258, 2011.

[31] M. Streit, S. Gratzl, M. Gillhofer, A. Mayr, A. Mitterecker, and

S. Hochreiter. Furby: Fuzzy force-directed bicluster visualization. BMC
Bioinformatics, 15(Suppl 6):S4, 2014.

[32] The Cancer Genome Atlas Research Network. Comprehensive genomic

characterization defines human glioblastoma genes and core pathways.

Nature, 455(7216):1061–1068, 2008.

[33] S. van den Elzen and J. J. van Wijk. Small multiples, large singles: A

new approach for visual data exploration. Computer Graphics Forum,

32(3pt2):191–200, 2013.

[34] R. G. W. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi, M. D.

Wilkerson, C. R. Miller, L. Ding, T. Golub, J. P. Mesirov, G. Alexe,

M. Lawrence, M. O’Kelly, P. Tamayo, B. A. Weir, S. Gabriel, W. Winck-

ler, S. Gupta, L. Jakkula, H. S. Feiler, J. G. Hodgson, C. D. James,

J. N. Sarkaria, C. Brennan, A. Kahn, P. T. Spellman, R. K. Wilson, T. P.

Speed, J. W. Gray, M. Meyerson, G. Getz, C. M. Perou, D. N. Hayes, and

TCGA Research Network. Integrated genomic analysis identifies clini-

cally relevant subtypes of glioblastoma characterized by abnormalities in

PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17(1):98–110, 2010.

[35] C. Viau and M. J. McGuffin. ConnectedCharts: explicit visualization

of relationships between data graphics. Computer Graphics Forum,

31(3pt4):1285–1294, 2012.

[36] L. Wilkinson. The grammar of graphics. Springer, 2nd edition, 2005.

[37] X. Yuan, P. Guo, H. Xiao, H. Zhou, and H. Qu. Scattering points in

parallel coordinates. IEEE Transactions on Visualization and Computer
Graphics (Infovis ’09), 15(6):1001–1008, 2009.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


