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UpSet: Visualization of Intersecting Sets

Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, and Hanspeter Pfister

Fig. 1. UpSet showing relationships of movie genres. The set view visualizes intersections and their aggregates, the number of
elements, and attribute statistics. The element view shows filtered elements and a scatterplot comparing two sets of filtered elements.

Abstract— Understanding relationships between sets is an important analysis task that has received widespread attention in the
visualization community. The major challenge in this context is the combinatorial explosion of the number of set intersections if the
number of sets exceeds a trivial threshold. In this paper we introduce UpSet, a novel visualization technique for the quantitative
analysis of sets, their intersections, and aggregates of intersections. UpSet is focused on creating task-driven aggregates, communi-
cating the size and properties of aggregates and intersections, and a duality between the visualization of the elements in a dataset
and their set membership. UpSet visualizes set intersections in a matrix layout and introduces aggregates based on groupings and
queries. The matrix layout enables the effective representation of associated data, such as the number of elements in the aggregates
and intersections, as well as additional summary statistics derived from subset or element attributes. Sorting according to various
measures enables a task-driven analysis of relevant intersections and aggregates. The elements represented in the sets and their
associated attributes are visualized in a separate view. Queries based on containment in specific intersections, aggregates or driven
by attribute filters are propagated between both views. We also introduce several advanced visual encodings and interaction methods
to overcome the problems of varying scales and to address scalability. UpSet is web-based and open source. We demonstrate its
general utility in multiple use cases from various domains.

Index Terms—Sets, set visualization, sets intersections, set attributes, set relationships, multidimensional data

1 INTRODUCTION

Understanding relationships between multiple sets is a fundamental
data analysis task. Figure 2 shows a simple example of a typical set-
typed dataset, describing characters of the television show The Simp-
sons. A set is a collection of distinct elements that typically describes a
common characteristic, or a shared meaning, over the elements it con-
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tains. Therefore, different sets encode different meanings for the col-
lection of elements they represent. It is the reasoning about how these
meaningful characteristics co-occur in a dataset that makes sets an in-
teresting topic for data analysis. Identifying co-occurrence or mutual
exclusion of mutations of genes in cancer patients, or understanding
which countries export the same products, are examples of problems
that can be solved using set visualization. Analysts can also create
sets based on an attribute, and study the set and its (other) attributes
in isolation, compare it to other sets, or investigate the intersection of
multiple sets. The benefit of sets, compared to other partitioning meth-
ods, is that they are highly interpretable. Extracting, for example, the
set of school children out of the Simpsons dataset is intuitive and lends
itself to easy interpretation. Analyzing and visualizing sets, however,
is challenging for more than a handful of sets. While the meaning of
an intersection of multiple sets remains intuitive, the visual depiction
of the intersections of more than three or four overlapping sets and
their interactions is not trivial.
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Fig. 2. Structure of the Simpsons dataset. The Name column contains
unique identifiers. The Age column describes an attribute. The Charac-
teristics column contains the information about the sets.

Given both the importance of the problem and the difficulty of solv-
ing it for non-trivial cases, it is not surprising that a large body of
literature on set visualization techniques exists, as a recent state of
the art report by Alsallakh et al. [3] demonstrates. However, while
there are sophisticated techniques for many set-related tasks, we found
that there is a lack of perceptually efficient, scalable, feature-rich tech-
niques with strong analytical capabilities. It is this space that UpSet
fills. Using a combination of consistent visual encodings, a clear, task-
driven approach to aggregation and sorting, and straightforward query
and interaction techniques, UpSet constitutes an efficient, easy to un-
derstand and easy to use set visualization technique. At the same time,
UpSet scales to a large number of sets, between 20 and 30 sets or more
depending on dataset properties, and with a few exceptions, supports
all set-related analysis tasks.

UpSet is unique because it exploits the duality between visual-
ization of attributes and visualization of sets. Selections, filters and
queries can be defined both in set space, i.e., based on selecting ele-
ments through their set associations, and in element space, i.e., based
on their attributes. By using attribute visualization either integrated in
set space, or, in more detail, in element space, UpSet makes it easy to
compare different partitions of the data. For example, when analyz-
ing characters from the Simpsons, we can consider sets of characters
that are evil, blue haired and are working at the power plant. Up-
Set enables analysts to simply select an intersection, e.g., all the evil
characters that work at a power plant, and explore the attributes of
all matching elements (characters). Alternatively, analysts can view
the distribution of attributes, such as age, across all combinations, and
investigate, for example, if evil power plant employees are older, on
average, than blue-haired characters.

We demonstrate the utility of UpSet for real-life data analysis with
two use cases from cancer biology and economics. Each case study
was conducted with experts from the respective fields. The experts
were also interviewed to elicit which set related tasks they encounter
in their work, how they previously solved them and how well Up-
Set solves their tasks. We use the Simpsons dataset to illustrate the
set-related concepts in this paper. For element and attribute-centric
tasks, we demonstrate UpSet using a movies dataset1, containing 3883
movies, 17 genres and multiple attributes such as release date and av-
erage rating. The source code of UpSet, the datasets, and an interactive
demo are available at http://vcglab.org/upset.

1.1 Set Visualization Tasks
There are several set-related task analysis in the literature [1, 2, 3].
Of these, the survey by Alsallakh et al. [3] contains a comprehensive
analysis, which we adopt. We also interviewed four domain experts
regarding their set-related analysis tasks, and found that their tasks
correspond those described by Alsallakh et al. They distinguish be-
tween tasks related to elements, tasks related to sets and set relations
and tasks related to element attributes, listing a total of 26 tasks. For
the sake of brevity, we only present a reduced list of tasks that our col-
laborators found particularly important and refer to Alsallakh et al. [3]
for the complete list.

Set-related tasks are concerned with the relationships between
sets, e.g., to find out about intersections (A∩B), the relative comple-
ment (A \B), or the unions (A∪B) between two sets. This class also
contains those related to cardinality: identifying sets, intersections, or
complements that contain many, few, or a disproportional amount of
elements.

1http://grouplens.org/datasets/movielens/

Element-related tasks describe tasks that focus on elements, e.g.,
to identify the elements of a set or intersection, or to identify the sets
and intersections of an element. Another task is finding out which
elements are contained in intersections of a certain degree, e.g., iden-
tifying all elements that are in exactly or at least k sets.

Attribute-related tasks are concerned with the attributes of the el-
ements, such as reading the attribute value of an element, or analyzing
the distribution of attribute values in a set or intersection, or compar-
ing attribute values between multiple sets. It is important to note that
there is a strong duality between attributes and set membership. Sets
membership is interpretable as an attribute of an element, and many
attributes can be converted into set assignments.

UpSet was designed to address these tasks and supports 23 out of
26 tasks identified by Alsallakh et al [3]. The remaining three pertain
to interactive set creation (A7 and C5) and comparing sets according
to a similarity measure (B11). Conceptually, UpSet can support these
tasks as well.

2 RELATED WORK

The most common visualization method for sets and their intersections
are Euler and Venn diagrams. Euler diagrams represent each set as a
geometric shape, often a circle, and show the intersections by overlap-
ping the shapes. Venn diagrams are a special form of Euler diagrams
that show all intersections, including those that are empty. Venn and
Euler diagrams are intuitive for communicating the concepts of sets
and intersections. Both are either employed as area-proportional tech-
niques, i.e., where the area represents the size of the sets and intersec-
tions, or just to illustrate and label the intersections. Euler diagrams
are, for example, extensively used in molecular biology [29]. They
are, however, often used for numbers of sets far greater than can be
represented efficiently. Recent examples include depictions of five-
and six-set Euler diagrams of the pine [19] and banana [9] genomes
(see Figure 3). These diagrams include all intersections (64 in the case
of the banana genome), where the overlap encodes genes or genomic
regions shared between multiple species. A considerable effort is re-
quired to identify which sets are participating in an intersection, and
since they only label the number of shared genes (the cardinality), it is
hard to spot the largest or smallest overlaps. In both cases, very small
segments represent some of the largest values, while very large areas
represent small numbers.

We distinguish between two types of set visualization techniques:
techniques that visually represent each element (element-centric tech-
niques), and techniques that abstract elements and only represent their
frequency in the sets and their intersections (set-centric techniques).
The former techniques often use sets as a secondary classification of
entries in an existing visualization, while the latter focuses on ana-
lyzing properties of intersections. Set visualization is also related to
multi-dimensional data visualization, as sets can be interpreted as at-
tributes and attributes can often be transformed into sets, but we focus
on dedicated set visualization techniques here, since many of the dis-
cussed tasks are specific to sets.
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Element-Centric Techniques
Bubble Sets [7], Visual Links [27], LineSets [1], and Kelp Diagrams [8]
are examples of recent visualization techniques that can be used to vi-
sualize set membership on top of an existing scene by using various
forms of hyperedges to connect the items in a set. While all of them
are well suited for the purpose of encoding set relationships on top of a
given scene and can address several of the set visualization tasks, they
are not ideal for certain tasks pertaining to set intersections (e.g., find-
ing the non-empty intersections of k sets), cardinality quantification
(e.g., finding the largest set intersection) or attribute related tasks (e.g.,
characterizing sets according to attribute values). Since the goal of
these visualization techniques is to adapt to the underlying visualiza-
tion, they cannot freely define the layout. Inherently, this limits their
scalability, especially for highly overlapping sets. Untangled Euler
Diagrams [23] display the label of each element, but, in contrast to the
techniques discussed above, also control the position of the elements.
The Euler diagrams either use irregular shapes, or allow duplicates,
which are resolved through connection lines. Other element-centric
techniques that can be used to visualize sets are bipartite graphs and
hypergraphs, which are discussed in detail by Alsallakh et al. [3].

Itemsets are an important topic in data mining to identify items that
frequently co-occur, i.e., that are in set intersections of a high degree.
Bothorel et al. [5] introduce a circular layout to visualize itemsets,
where concentric circles represent different degrees of intersections.
On the out-most, largest circle, each set is assigned to a unique point,
the second circle contains all pairwise intersections, etc., while the
center of the concentric circles represents the intersection of all sets.
Splines connecting the sets between the concentric circles indicate the
elements that are in a given intersection, providing a good overview of
the overall structure of intersections.

The intended use case of UpSet is quite different from element-
centric techniques: UpSet is focused on the relationships between sets
and on the general properties of a set while it is putting less emphasis
on the individual elements. Consequently, UpSet and element-centric
techniques are complementary techniques for different use cases.

Set-Centric Techniques
Considerable efforts have been made to produce algorithms for size-
proportional Euler diagrams [29, 25], as also demonstrated by a survey
on Euler diagrams [24]. Yet, if the task is to judge the cardinalities of
intersections, Euler and Venn diagrams are not a good choice, since
they use area to encode quantitative values, which is shown to be infe-
rior to, e.g., position [17, 13].

Matrix-based set visualization approaches either directly visual-
ize relationships between sets and elements (e.g., sets in columns, el-
ements in rows) or visualize relationships between sets in a similarity
matrix. An example of the former class is ConSet [16], which supports
re-ordering of rows and columns and aggregation of sets. UpSet uses a
matrix in a very different way: instead of showing sets vs. sets or sets
vs. elements, UpSet shows sets in the columns and set intersections in
the rows. The matrix cells in UpSet only encode which sets contribute
to which intersection.

Related to matrix-based set visualization is the work by Sadana et
al. [26], which explicitly visualizes set containment or absence for
each element of a dataset in a matrix. Multiple sets can be juxtaposed
or overlaid, highlighting elements shared in many overlaid sets. In
contrast to UpSet, their approach does not visualize element attributes,
but focuses on precise comparison of elements in the sets.

Set O’Grams [10] is an example of an aggregation-based tech-
nique [3]. Aggregation-based techniques address scalability by not
showing each element. Set O’Grams visualize each set as a bar that
is divided into segments. The segments, from bottom to top, corre-
spond to the elements of increasing degree, i.e., elements that are only
in one set are represented by the first, elements that are in two sets
are represented in the second, etc. While this shows the distribution
of elements by degree, identifying overlaps between sets requires in-
teraction. Hofmann et al. [15] use a Doubledecker plot, which is a
specialization of a mosaic plot [11], to visualize combinations of asso-
ciation rules which can be interpreted as sets. The sets are encoded in

a combination plot. Above the combinations, the associated frequency
is shown in a bar chart. This is conceptually similar to UpSet, but lim-
ited to a small number of sets, since the Doubledecker plot does not
provide aggregation or interactive features such as collapsing groups,
querying, filtering or sorting.

Radial Sets [2] visualizes sets by arranging them in a radial lay-
out, where (straightened) circle segments correspond to the individual
sets. The segments can be scaled to correspond to set size. Within the
segments, the elements are visualized in a histogram, binned by their
degree. Overlaps between sets can be visualized in multiple ways, de-
pending on the degree of the intersections. For degree two, Radial Sets
uses edges connecting overlapping sets. For higher degrees, bubbles,
optionally combined with hyper-edges are used. The bubble size in-
dicates the overlap size. Aggregates of numerical attribute values and
measures of disproportionality can be color-coded onto the histogram
bars, links or bubbles. Radial Sets aims to address similar tasks as
UpSet, and UpSet employs similar metrics and focuses on the same
aspects of set visualization. The main difference between Radial Sets
and UpSet is that UpSet uses a simplified visual encoding and em-
ploys a task-driven aggregation approach. See Section 6 for a more
comprehensive comparison of the two approaches.

3 THE UPSET TECHNIQUE

UpSet uses two separate but interlinked views to represent the data:
the set view and the element view, which are shown in Figure 1. The
set view addresses the tasks related to set operations (intersections,
unions, etc.) and cardinality. Figure 4 shows, for example, all possible
intersections of the sets school, evil and power plant in the combina-
tion matrix. The columns of this matrix correspond to the sets while
the rows correspond to intersections. Each row is equivalent to an area
in a Venn diagram, as shown on the right. If a set is participating in
an intersection, the corresponding matrix cell is filled. In the first row
of the combination matrix in Figure 4 no cell is filled (���), as it
represents those elements of the dataset that are not included in any of
the sets. Rows two to four correspond to the characters that are only
in one set, for example, those who are evil but neither in school nor in
power plant (��� e.g., Fat Tony). The last four rows represent the
remaining intersections of the three sets.

The cardinality of an intersection (the number of elements it con-
tains) is encoded by the length of the bars to the right of the matrix.
The highlighted row in Figure 4 shows that there are two characters
that are evil and work in the power plant. Other properties of the el-
ements in the rows are shown in additional columns (see Figure 1).
These columns can also show summaries of element attributes, ad-
dressing several of the attribute-related tasks described by Alsallakh
et al. [3]. In Figure 1, for example, we can see that action movies are
being watched more often than comedies.
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Fig. 4. UpSet and an equivalent Venn diagram showing the Simpsons
dataset. The combination matrix identifies the intersections, while the
bars next to it encode the size of each intersection (cardinality). Among
the 24 Simpsons characters in the dataset, two work at the power plant,
are evil, and are not in school (highlighted in orange).
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Further attribute- and element-related tasks are addressed by the
element view, which shows a table of the selected elements and pro-
vides visualizations of the attributes. Figure 1, for example, shows the
movies with a rating of four or higher in green.

3.1 Concept
Set intersections are the basic building blocks of UpSet. We first de-
compose the sets into all possible set intersections, and then allow
the user to analyze these intersections individually or as aggregates.
The purpose of this divide and conquer approach is to support the set-
related tasks discussed in Section 1.1, and to answer questions such
as: Which is the biggest intersection of degree 3? or Which two-set
intersection has the highest average attribute value?

Slicing it Up

UpSet divides a dataset of k sets into all possible 2k intersections.
These intersections correspond to the atomic areas of a Venn diagram,
as illustrated in Figure 5. We call these basic building blocks exclusive
intersections. Colloquially, exclusive intersections can be expressed
as only in A (���) or only in the intersection of A and B (���), or
by explicitly defining each membership of the exclusive intersection,
such as in A, but not in B and not in C (���). Formally, exclusive
intersections can be defined as complements. A\(B∪C), for example,
defines the only in A exclusive intersection (���). The number of
elements in an exclusive intersection determines its size or cardinal-
ity. For example, the cardinality of the exclusive intersection of the
two sets evil and power plant in Figure 4 is two, as it contains two
elements (Mr. Burns and Smithers). Through their elements the exclu-
sive intersections are also associated with attribute values. The degree
of an exclusive intersection specifies how many sets are participating
in the intersection. For example, the exclusive intersection in the last
row of Figure 4 is the intersection of the three sets school, evil, power
plant, hence its degree is three.

UpSet allows analysts to choose which sets, out of all the sets in
a dataset, to include in an analysis. The dataset shown in Figure 4,
for example, contains six sets, out of which three (male, duff fan, blue
hair) are not selected. Our definition of exclusive intersections is rela-
tive to the sets included in the analysis and does not take the other sets
into account. This has two benefits: it enables users to focus on the
sets relevant to their analysis, and it addresses scalability.

The universal set U is the (implicit) set that contains all elements in
a dataset. That means that all sets in the datasets are subsets of the uni-
versal set. A special case is the exclusive universal set, which contains
all elements that are not in any of the selected sets. The exclusive uni-
versal set corresponds to the complement of the universal set U and the
union of all selected sets. For the example in Figure 4 this corresponds
to U \(school∪evil∪ powerplant) (���). In this case, the exclusive
universal set is shown in the first row and has a cardinality of nine. We
treat the exclusive universal set like the exclusive intersections.

In UpSet, exclusive intersections play a central role and address sev-
eral visualization tasks. If sorted by descending cardinality, for exam-
ple, it is possible to identify large intersections. If sorted by ascending
degree, it is straightforward to find the elements and their attributes
that are exclusive to a particular set. Figure 4, for example, is sorted
by degree.

Putting it Back Together
Using the exclusive intersections as basic building blocks, UpSet en-
ables analysts to create aggregates. Aggregates are collections of ex-
clusive intersections that are defined using a task driven approach. In-
tersections can be aggregated either collectively, according to some
aggregation semantic, or through a query.

Collective aggregations use a general rule to create multiple aggre-
gations at the same time; the various rules are illustrated in Figure 5.
An example for such a rule is the aggregation of the exclusive intersec-
tions by their degree. This creates, for example, a group of elements
that are exactly in one set (no matter which one). Collective aggre-
gations are crucial to support set related tasks, such as identifying all
elements in the overlap of two sets (Who are the characters that are

by degree by pairwise
overlap

by set

aggregation

exclusive 
intersections

1
2 3

Fig. 5. Slicing of a three-set dataset and aggregation examples. Each
color represents an independent aggregation.

evil and work in a power plant? ����), as well as for element related
tasks, such as identifying all elements that are exactly in two sets.

Collective aggregations can be nested, making the aggregation hier-
archical. An aggregation by set on the first level, for example, collects
all exclusive intersections of each set in aggregates. In a next step, the
aggregated exclusive intersections can be aggregated by degree, for
example, so that it is easy to identify all, e.g., two-set intersections of
the set evil.

Queries collect intersections based on a user-defined query. In a
query, an analyst specifies the rules to create an aggregation. Queries
for UpSet are created by specifying clauses that define for each set
whether it must �, may ��, or must not � participate in the exclu-
sive intersections that match the query. By defining a query that must
contain school and evil but not power plant (���), for example, all
exclusive intersections that contain both, the school set and the evil
set are aggregated (which is only one intersection in this case). In
this example, the elements in the aggregation contain the bullies in the
school. By employing logical OR operations on multiple clauses, the
queries are fully expressive and can define every possible combination
of exclusive intersections.

Like exclusive intersections, aggregates define a collection of el-
ements and thus have a cardinality and associated attribute values,
which can be visualized in UpSet. They do not, however, in the gen-
eral case, have a degree, as they may contain exclusive intersections
with different degrees.

3.2 Set View
The set view primarily addresses the set-related tasks, such as analyz-
ing the sets, intersections, their cardinality, etc., but it also enables
certain element-related tasks, such as selecting the elements of an
intersection for a detailed exploration in the element view and vice
versa—to highlight selections from the element view in the context of
the relevant intersections. Finally, the set view also enables attribute-
related tasks by presenting summary visualizations of aggregate values
associated with the elements of an intersection.

Combination Matrix
As previously discussed, the columns in the combination matrix cor-
respond to the sets, while the rows correspond to the exclusive in-
tersections or aggregates. Representing both exclusive intersections
and aggregates as rows is advantageous as many tasks require their
close integration and since they share many properties: both represent
a collection of elements and both have a defined cardinality as well as
attribute properties.

As illustrated in Figure 6(a), we encode the sets contained in an ex-
clusive intersection with a filled dark circle �, while we encode sets
that do not participate in the exclusive intersection with a light-gray
circle �. For exclusive intersections, we also connect the filled circles
with a line, crossing over excluded sets and thus use the Gestalt-like
principle of connectedness [20]. This emphasizes that mainly hori-
zontal relationships are meaningful in the matrix and provides visual
guidelines, connecting sets that could be several columns apart.

As aggregates group exclusive intersections, they are visually set
apart by labels and a shaded and framed background. Figure 6(b) uses
aggregation by set, which groups all intersections of the sets A, B,
and C, respectively. This is symbolized by a filled circle � for the set
by which the group is aggregated (i.e., that set must participate in all
exclusive intersections in the aggregate). Light circles with a dark dot�� indicate that these sets may be part of the exclusive intersection, but
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(a)

C

(b)

Fig. 6. The combination matrix encoding the relationships between sets,
aggregates and exclusive intersections. (a) Each row corresponds to an
exclusive intersection that contains the elements of the sets represented
by the dark circles, but not of the others. The equivalent segment in a
Venn diagram is shown on the left. (b) Aggregates group exclusive inter-
sections meaningfully. The first aggregate shows its contained exclusive
intersections, while the second and the third aggregates are collapsed.

must not. Some aggregation semantics, such as aggregation by degree,
cannot be represented using these conventions. In such cases just the
label is shown. Aggregates can be collapsed to save space, hiding the
exclusive intersections contained in them, as shown for B and C in
Figure 6(b).

In a typical dataset many intersections are empty. While there are
tasks that require inspection of the empty intersections, many tasks
focus on non-empty intersections, and thus it is prudent to only show
the empty intersections on demand. Consequently, UpSet hides empty
intersections by default.

Sorting and Sorting Measures
As for all matrix-based techniques, sorting is crucial in UpSet to en-
sure an efficient representation of the data. Hence, we offer various
options to sort exclusive intersections that are designed to support spe-
cific tasks. Figure 7 shows two sorting measures, applied to the Simp-
sons dataset.

(a) By cardinality (b) By deviation

Fig. 7. An overview of selected sorting options in UpSet.

Figure 7(a) shows the intersections of three sets from the Simp-
sons dataset sorted by cardinality (highest to lowest), while Figure 7(b)
shows sorting by the deviation from the expected cardinality. We can
see that the cardinality of the combination of evil and power plant is
higher than expected. Our measure for the deviation from the expected
cardinality is similar to disproportionality as described by Alsallakh et
al. [2]. The impetus of the measure is to convey how “surprising” the
cardinality of an intersection is given the size of its constituting sets.
We calculate the deviation dI for each exclusive intersection as

dI =
|I|
n
− ∏

∀Si∈S∗+,I

|Si|
n

∗ ∏
∀S j∈S∗−,I

(
1− |S j|

n

)

where S∗+,I denotes all sets that are contained in the exclusive inter-

section, S∗−,I all the sets that are not contained in the intersection, |Sx|
specifies the cardinality of a set x, |I| the number of elements in the in-
tersection, and n denotes the size of the whole dataset. For the evil and
power plant combination (���) this measure tells us that the abso-
lute difference between observed probability and expected probability

is 4.4%. We determine dI ≈ 0.044 by using the formula with |I| = 2;
|SSchool | = 6; |SEvil | = 6; |SPower| = 5; n = 24; S∗−,I = {SSchool};

S∗+,I = {SEvil ,SPower}.

The example in Figure 4 is sorted by degree (lowest to highest).
This allows analysts to quickly gain an overview of the relationship
between degree, cardinality and attribute values. This example shows
that the sets with the lower degree towards the top have a higher cardi-
nality, as their bars are longer. For ties the sorting algorithm chooses
the intersection involving the leftmost set, to create a left-to-right ar-
rangement of sets.

Collective Aggregation

la A key concept in UpSet is collective aggregation, as introduced in
Section 3.1 and illustrated in Figure 5. Aggregation enables funda-
mental analysis tasks, such as an overall comparison between two sets,
or the comparison of elements in intersections of specific degrees. Ag-
gregates are also important when dealing with a larger number of sets,
as they make it possible to hide exclusive intersections.

UpSet supports aggregation by degree, as shown in Figure 8(a).
Aggregation by degree groups all the intersections in which the same
number of sets participate. Figure 8(a) shows that the aggregate for de-
gree one contains only exclusive intersections with exactly one partic-
ipating set, the aggregate for degree two shows only those with exactly
two participating sets, and so on.

The second mode of aggregation that UpSet supports is aggregation
by set shown in Figure 8(b), which, for every set, collects all intersec-
tions in which that set participates. Figure 8(b), for example, shows an
aggregate for all intersections with the set school (�����). This makes
identification of sets that frequently co-occur with school efficient. In
contrast to grouping by degree, grouping by set produces duplicates of

(a) By degree (b) By setde

(c) By pairwise relationship (d) Nested aggregation

Fig. 8. Aggregation options in UpSet. Empty intersections and aggre-
gates are hidden. (a) Aggregation by degree (number of sets partici-
pating in the intersection). (b) Aggregation by sets. (c) Aggregation by
n-wise relationships for n= 2. All intersections with a degree of less than
two are not in any aggregate. (d) Nested aggregation, first by set, then
by pairwise relationship.



1988 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

the exclusive intersections. In Figure 8(b), for example, the intersec-
tion of school and evil (���) occurs in both respective aggregates.

The third mode is to aggregate all n-wise relationships. For n = 2,
for example, this method creates all pairwise relationships. Given
the sets school, evil, and power plant the aggregates are school, evil
(����); evil, power plant (����); and school, power-plant (����).
The first two are shown in Figure 8(c), the last is hidden since its inter-
sections are empty (no school children work at the power plant). Each
of these combinations aggregates all exclusive intersections that match
both sets, independent of the participation of other sets.

Figure 8(d) shows an example of nested aggregation where the pair-
wise relationship aggregates are nested within set-based aggregations.
The aggregate evil, for example, within the aggregate school, contains
all characters that are both, in school and are evil.

Sorting and grouping can be arbitrarily combined. Grouping is con-
sidered the primary criterion; within the groups the exclusive intersec-
tions are sorted by the sorting criterion.

Intersection Queries

evilblue

male(1) 

(2) 

Fig. 9. The intersection query interface, defining a query for Simpsons
characters that are either exclusively male or that have blue hair and
aren’t male. (1) The first logical OR clause requesting exclusive male
characters is collapsed. (2) The second OR clause is shown in edit
mode. The analysts can define whether a set must �, may �� or must
not � participate in the queried intersections.

When discussing requirements with various analysts, we observed
that they often have questions about specific set combinations. For
example, if an analyst is interested in identifying all characters that
are evil and male, she could first sort by male, and then look for
the overlaps with evil. However, specific interest of an analyst in-
volving complex concepts such as exclusion and union require for-
mulation of queries. Queries can also be more efficient than brows-
ing for answers. UpSet provides an intuitive interface using the fa-
miliar symbols to define Boolean queries. Complex queries are de-
fined as a series of OR clauses (unions) to allow full expressiveness.
Figure 9 shows a query which can be expressed in set notation as
(Smale \ (Sevil

⋃
Sbluehair))

⋃
((Sbluehair

⋃
Sevil) \ Smale). When adding

an OR clause it appears in edit mode (see (2) in Fig. 9) and all sets are
set to maybe��, i.e., they can be in the intersection but are not required
to. By choosing not � or must � for the respective set the query can
be defined. For reference, the current query clause is also presented in
natural language, and the number of elements that are contained in the
aggregate (its cardinality) is shown.

Encoding Data For Intersections
A core design principle of UpSet is to communicate the important data
with the most effective visual variables possible [6]. Resorting to less
effective visual variables can be avoided by designing the layout in
a way that enables independent encodings of multiple properties. To
achieve this, UpSet, like enRoute [21] and Pathline [18], presents a
complex dataset in a linear layout so that multiple measures can be
efficiently represented along the primary data.

Figure 1 shows an example of UpSet visualizing properties of the
movies dataset for a selection of ten genres. The intersections are ag-
gregated by set and then by pairwise relationship to the parent set.
All aggregates are collapsed, except for the one representing the com-
edy, drama relationship. The first set of bar chars on the right visual-
izes cardinalities for the aggregates and for the exclusive intersections,

Fig. 10. A flexible scale slider makes it possible to adjust the scale to the
current context. Horizon bars wrap around to show values larger than
the current scale.

while the second column of bars show the aforementioned deviation
measure. Figure 1 shows, for example, that while the drama, comedy
intersection is large, it is smaller than expected, given the size of the
participating sets.

A challenge when visualizing aggregates and their constituting in-
tersections at the same time are their often very diverging cardinalities.
Comparing the degree of the top-level set aggregates in Figure 1, to the
exclusive intersections of the comedy, drama relationship, for exam-
ple, on the same scale is not ideal, since the differences between the
exclusive intersections are hard to identify when using such a large
scale. Being able to see those differences clearly is an important pre-
requisite to answer, for example, the question Which are the largest
intersections in this relationship?

To address this task, we introduce a combination of an adjustable
scale and horizon bars, both shown in Figure 10. The adjustable scale
is composed of two axes. On the top is an axis with a scale from zero
to the number of elements in the dataset, below it is an axis showing
the scale used for the bars. The range of the lower scale can be dy-
namically adjusted using the diamond slider in the top axis. Above
the top axis, important values are labeled: the size of the largest ex-
clusive intersection (I) the largest set (S), the largest aggregate (A, not
shown) and the overall size (U). Clicking any of those labels auto-
matically adjusts the lower axis to the corresponding value. The top
axis automatically switches between a power scale and a linear scale,
depending on the size of the dataset.

A consequence of flexibly adjusting scales is that bars can break the
scale. To mitigate this effect, we developed horizon bars, inspired by
horizon charts [14, 22]. As a bar breaks the scale, the tip is clipped
and attached to the left edge of the bar (i.e., it is “wrapped around”),
producing a nested bar. This can be seen in Figure 10. The width of
the bar is reduced and its color is darkened so that the underlying orig-
inal bar is still visible. The wrap around effect keeps bars exceeding
the scale comparable. Up to three wraps are supported, after which a
symbol indicates that the bar finally breaks the scale, as shown for the
top bar in Figure 10.

The last three columns in Figure 1 show summary statistics as box
plots for the attributes of each row. This encoding enables analysts
to address attribute-related tasks, such as identifying whether intersec-
tions are similar or different with respect to their attributes. Figure 1
shows, for example, that action movies are watched more often on
average than comedies, right below.

3.3 Element View

While the set view, discussed in the previous section, focuses on the
interactions between sets, the element view, shown on the right in Fig-
ure 1, enables tasks related to the analysis of elements and their at-
tributes. It complements the mapping of aggregated attribute values in
the set view by providing a more detailed view on the attribute data.

Element Queries

In UpSet, the set space and the element space are linked through el-
ement queries that use color to highlight the representations of the
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(a) Element query in set space (b) Element query in element space (c) Element visualization

Fig. 11. Element queries and element visualizations. (a) Element queries in set space, defined by clicking the cardinality bars for the action (cyan
bar) and horror (purple tick in the fourth row) exclusive intersections. The action query is active, as indicated by the cyan overlay on the cardinality
bar. The cardinalities of the horror query (purple) and a query defined in element space (orange) are indicated by triangles. (b) Active element
query defined in element space by querying for movies released before 1980. Two inactive queries (blue, purple) are indicated by the colored
triangles. (c) Element visualization showing the distribution of average ratings of movies released up to 1980 (orange) and after 1980 (blue),
respectively. The histogram indicates that movies released after 1980 overall are rated worse than movies released up to 1980.

elements in the respective views. Element queries can either be de-
fined in set space or in element space. In set space, element queries
are created by selecting the bars representing the cardinality, as shown
in Figure 11(a), where a single bar—the selection—is colored. The
result of an element query defined in element space can, in contrast,
match to multiple intersections partially, which are then only partially
highlighted, as shown in Figure 11(b). Since overlaying the intersec-
tion size bars with multiple colors at the same time does not work, we
always show one selected query as “active”, which is rendered using
colored bars, while the mapping of the “inactive” queries uses colored
triangles to indicate the size of the query, as shown in Figure 11(a).

Element queries created in element space are defined based on at-
tributes associated with the elements (e.g., title, average ratings or
release date of movies). To create an element query in element space,
the user defines filters that are applied to the whole dataset so that only
elements matching these conditions remain. Filters operate on indi-
vidual attributes of elements. For example, UpSet provides regular
expression filters for string attributes, as well as minimum, maximum
and range filters for numeric attributes, as shown in Figure 1. If multi-
ple filters are defined for one query, the overall result is the intersection
of the results of the individual filters. In the movie data set, examples
for queries defined in element space are those that only include movies
that were released before a given year, that have an average rating be-
tween three and five, or that contain particular words in their title.

Representation of Elements and Attributes

The element view contains a table, shown in Figure 1, which sup-
ports sorting by attributes. UpSet also includes a simple visualization
framework for heterogeneous multivariate data that provides common
statistical plots, such as scatter plots and histograms. Figure 11(c) il-
lustrates how element visualization can be used to study and compare
elements returned by multiple queries, here the distribution of average
ratings for movies released up to 1980 and after 1980, respectively.
Additionally, an API for element visualizations enables us to extend
UpSet with customized viewers tailored to specific data sets, as can be
seen in Figure 13.

Users create element visualizations by choosing a visualization
type, and the attributes that they would like to visualize in this vi-
sualization. For some visualizations parameters can be specified, e.g.,
turning on or off log-scale axes in scatter plots. Depending on the vi-
sualization type and user preferences, multiple queries can be shown
within the views. Multiple element visualizations can be created, and
the user can switch through these visualizations at any time to choose
a visualization appropriate for a specific question.

4 IMPLEMENTATION AND SCALABILITY

UpSet is implemented in JavaScript and uses the D3 library [4] for
visualization. The software is released under a permissive open source
license. A demonstration of UpSet (optimized for Google Chrome),
the source code, multiple datasets, as well as additional material is
available at http://vcglab.org/upset.

While UpSet is a highly scalable set visualization technique, its per-
formance depends on multiple factors, such as the number of sets, the
maximum non-empty degree of the intersections and the number of
elements in a dataset. To improve scalability, UpSet does not iterate
over or allocate memory for empty intersections beyond a certain de-

gree. Thus we avoid creating all 2k intersections, but instead create

only ∑d
i
(k

i
)

intersections, i.e., all intersections with a degree greater
than i and up to d. By default, i is set to 1 and d is set to the maximum
non-empty intersection degree observed in the dataset, but both values
can be adjusted interactively. Alternatively, empty intersections can be
disregarded completely, which is a reasonable approach for most tasks.
We use this option by default for more than 20 sets. The scalability of
UpSet primarily depends on the number of non-empty intersections,
which is typically small, compared to all possible intersections. In
this case the bottleneck shifts from compute power and memory to
the available display space. We observe a practical limitation at about
40-50 sets, as shown in Figure S1.

We have used UpSet with datasets of up to 50,000 elements and
found only a minimal negative impact on performance. To address
possible scalability issues when dealing with data in client memory,
we plan to add a server-side component to UpSet which only provides
the client with set information and summary statistics by default, while
element data is transferred on demand.

5 USE CASES

During the development of UpSet we interviewed multiple researchers
from various domains (macroeconomics, genetics, pharmacology and
social network analysis), to find out whether they encounter set-related
analysis problems in their research, which types of tasks they encoun-
tered and which tools they usually employ to solve these tasks. Our
goal was to inform our design decisions, to validate the tasks proposed
by Alsallakh et al. [3], and finally to validate UpSet based on these
real-life use cases.

We found a high overlap between the tasks put forward by Alsallakh
et al. and the analysis needs of all of our collaborators. For example,
all of our collaborator were interested in identifying elements of a high
or a specific degree, or logical combinations of sets. These are both
tasks which we initially considered of less practical relevance. They
also emphasized the importance of integrating element attributes.
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Fig. 12. Aggregating by degree reveals that the intersection of degree
8 (the maximum) is the largest non-empty intersection for countries ex-
porting men’s textile products.

When asked how she usually conducts such an analysis, one expert
replied that she would either limit her analysis to three or four sets and
use a Venn diagram, or, for larger cases, compute a specific score and
rank entries based on that score (e.g., which elements are in the largest
number of sets). She commented that this approach limits her in her
ability to explore the dataset and that she needs a better solution.

Each of our collaborators conducted an analysis on a dataset pro-
vided by them. The topics were protein-drug interactions, social net-
works, evaluation of variant calling algorithms for genetic mutations,
and macroeconomic product similarity analysis. Due to limited space,
we report only on the latter two here.

5.1 Macroeconomics Data

Our collaborators from the Harvard Kennedy School of Government
are interested in understanding economic complexity, i.e., to under-
stand how diversified and complex the exports of a country are. To
conduct such an analysis, our collaborators use an international trade
dataset [28, 12] that contains 1354 product families, which we call
products from here on. These products, which constitute the sets in
the analysis, were exported by 194 countries in the year 2010. We
enriched the dataset with meta-data, including, for example, popula-
tion sizes for the countries. We also added a measure of economic
complexity—the Economic Complexity Index (ECI) [12]—that cap-
tures the diversity of products that a country exports. The measure is
calculated based on the number of different products that a country
produces relative to the overall number of countries that are able to
make those products.

The goal of our expert was to identify product similarities, which,
from a macroeconomic point of view, are defined as the likelihood
of two products being exported together; as well as anomalies, such as
two products that one would expect to be exported together but that are
not. His usual workflow is to compare two products he chooses man-
ually, based on prior knowledge or discussion with colleagues. When
analyzing his data in UpSet, he found it valuable to select more than
two products and explore the characteristics of the group of products,
such as the number of countries exporting those products and their
attributes. After some exploration, he chose to focus on eight men’s
textiles products. He considered this selection as a baseline for which
he wanted to find anomalies. He referred to this group as a basket of
products since they share similar characteristics.

Finding anomalies in a basket of products is done by identifying
products which are not systematically exported together. A typical
cause for such an anomaly is that products may seem to be related
but require different production methods and skills. To address this
task, our expert used UpSet and sorted his selection by intersection
size (Figure S2). He saw that the two largest intersections are the ex-
clusive universal set and the one of maximum degree. This suggests
that countries either export all of these products or none of them. In
an anomaly our expert expects that all products but one or two are ex-
ported together. To explore intersections of a high degree with a few
missing products, the expert used the aggregation by degree feature in
UpSet. Upon seeing the result (see Figure 12), the expert immediately
determined that there were no anomalies, as no seven-set intersection
has a high cardinality compared to the maximum 8-set intersection. He
also used the table in the element view to explore whether the coun-

tries exporting many or all of the products are in fact textile producing
countries (e.g., Asian countries), as trade data sometimes contain er-
rors, but he did not find any.

A second objective was to compare his product basket to others
products, to investigate whether his basket is part of a larger group
(i.e., a superset). He structured his exploration with two goals in mind:
finding vertical and/or horizontal integration in the supply chain, and
finding anomalies in the superset. Regarding the vertical integration,
he selected other products related to cotton (eight products) and silk
(five products), as shown in Figure S3. He did not see a significant in-
tersection with the products from before and concluded that countries
that manufacture textile products are different from the ones that ex-
port the required raw materials. He anticipated horizontal integration
for men’s and women’s textiles and confirmed this by adding a bas-
ket of eight products of women’s textiles (Figure S4). He identified
twelve countries that export all men’s and women’s textiles. Look-
ing for anomalies, he found that a specific women’s product category
(“women’s night-dresses, negligees and similar articles, knitted or cro-
cheted”) is the only one exported by three countries, all of which have
a high economic index (Figure S4). He hypothesized that in this prod-
uct category there are some products that require specialized knowl-
edge, i.e., that they require know-how or techniques that only diversi-
fied countries with a high economic index possess.

Overall, the expert commented that he found UpSet a highly use-
ful tool for exploring a very sparse dataset containing many rows and
columns, with few relationships between them. He mentioned that he
appreciated the ability to select and deselect sets, which enabled him
to find groups of products with strong ties. The expert plans to con-
tinue using UpSet in the future, and commented that using additional
attributes on the countries, such as GDP and growth indicators, for
both, the analysis directly in the set view, as well as for selections in
the element view, would be very helpful.

5.2 Genomic Variation
In a second case study we worked with a collaborator at Harvard Med-
ical School, who is comparing the performance of several different
tools that are designed to identify single nucleotide variants (SNV)
in human genomes. SNVs occur when a single nucleic acid in the
genome sequence is replaced with one of the other three nucleic acids.
SNVs have been associated with many diseases.

Identification of SNVs based on high-throughput sequencing data
is a two-step process. Since genomes are sequenced in many short and
overlapping fragments, the fragments are first aligned to the reference
genome before they are scanned for mismatches relative to the refer-
ence genome to identify or call SNVs. The challenge in analyzing this
data is to distinguish the true SNVs from errors that are introduced
during the sequencing or the alignment step.

Our collaborator has tested a total of 15 algorithm and parameter
combinations2 using four different alignment tools (S, M, B, T), three
different variant calling tools (S, G, G3), as well as different parame-
ter settings for both types of tools. Each combination results in a set
of SNVs, which are associated with attributes such as reference allele
(the nucleic acid at the given position in the reference genome), alter-
native allele (the nucleic acid found in the analyzed genome), average
depth (number of sequence fragments overlapping at the given posi-
tion) and alternative allele depth (number of sequence fragments in
which the reported alternative allele was found).

The first goal of our collaborator was to see how well the results of
different tool combinations overlap. Initially, she chose to look at the
results generated by the four different alignment tools with default set-
tings combined with the variant caller S.Q20. The intersections were
aggregated by their degree. She immediately observed that one of
the tool combinations (M/S.Q20) found almost as many variants that
were not reported by any other tool, as were found by all of the four
selected tool combinations together. She suspected that these addi-
tional variants called by M/S.Q20 are unlikely to be real variants. To

2Abbreviations are being used since the data has not been pub-

lished or independently reviewed. The naming pattern is aligner.aligner-
parameters/caller.caller-parameters.
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Fig. 13. Genomic variant case study. The set view shows an aggre-
gation by degree. The element view shows two queries corresponding
to the variants reported by all active tool combinations (degree 4) and
those only identified by M/S.Q20. The variant frequency plot with nu-
cleotide change matrix (blue query on the left, green query on the right)
and transition/transversion ratios indicate that the green query contains
mostly variant calls of low quality.

test this hypothesis, she explored the attributes of both intersections
in the element view. She used a custom variant frequency viewer in-
terfacing with the element viewer API to visualize the query results
(see Figure 13). This viewer can show both a matrix of the frequency
of all nucleotide changes—represented by the reference allele and al-
ternative allele attributes—as well as the transition/transversion ratio
computed based on those frequencies. The transition/transversion ra-
tio for real variants is around 2.7, which can be used as a basic quality
measure. This ratio is 0.784 for the variants called only by M/S.Q20,
a clear indication of low quality, as suspected by our collaborator. She
also noted that the variant frequency matrix for the variants called by
M/S.Q20 is asymmetric, indicating a systematic bias.

After making these observations, our collaborator was interested in
finding out more about the differences between the two sets of variants.
With the help of a scatterplot that showed the correlation between the
alternative allele depth and the average depth, she was able to explain
the differences between the variants called by all tool combinations
and the variants called by only M/S.Q20 (see Figure S5). The scatter-
plot indicated that the latter variants were identified primarily at sites
where far less than 50% of all overlapping sequence fragments con-
tain the mismatched nucleotide. For real variants, however, one would
expect to see the variant either in around 50% or in around 100% off
all sequence fragments, depending on whether the change occurred in
one or both copies of the genome that humans carry in their cells.

While she was studying the intersection sizes in the set view ag-
gregated by intersection degree, our collaborator observed that one
of the four intersections (all but S.default/S.Q20) in the 3-set aggre-
gate was notably larger than the other three. She launched element
queries by clicking on the bars in the set view and looked at the tran-
sition/transversion ratios for all four intersections. She found that the
one intersection in which the S.default/S.Q20 did not participate had a
transition/transversion ratio of 0.332 (see Figure S6). Based on this
observation, our collaborator hypothesized that the S.default/S.Q20
tool combination is only making conservative calls that are of high
quality. This was confirmed by using the aggregate by set feature,
which showed that S.default/S.Q20 reported the smallest number of
variants among the four tool combinations (see Figure S7).

Our collaborator was excited to work with UpSet and commented
that she would not have thought about looking at her data in the way
that UpSet enabled her to do, because she would have had to rely on
Venn diagrams. Even though the examples described here focus on
four of the fifteen sets, our collaborator also explored other combina-
tions of sets and positively commented on the capability of UpSet to
visualize all sets at once. She also made suggestions for additional fea-
tures that she would find useful for the kind of data that she is working

with, similar to the variant frequency plot that we had implemented for
this application. She intends to use UpSet in the future and also wants
to create figures for her planned publication with UpSet.

6 DISCUSSION AND CONCLUSION

In this paper we introduced UpSet, a visualization technique that en-
ables analysts to investigate set-based data. Through a divide and con-
quer approach based on slicing the dataset into the atomic intersections
of the sets and meaningfully reassembling them, we enable analysts to
investigate the interactions between sets with respect to their size, the
contained elements and their associated attributes. Task-driven aggre-
gation, queries, and sorting answer a wide spectrum of questions in set
analysis. We demonstrated our technique using various datasets, and
validated its fitness for use and its applicability across domains in four
use cases, two of which we described in this paper.

Radial Sets [2] aim to address similar tasks as UpSet. The main dif-
ference between Radial Sets and UpSet is the versatility of UpSet. Our
divide and conquer concept approach of breaking the set relationships
into their exclusive intersections and meaningfully reassembling them
makes it possible to create powerful, task-driven aggregates, while still
providing drill-down capabilities into every possible intersection. The
set-centric layout of segments in Radial Sets, for example, corresponds
to only one of multiple possible top-level arrangements in UpSet. This
approach, however, comes at a cost: UpSet requires analysts to choose
the aggregations and sortings best suited to their task. UpSet uses best
practices for its visual encoding regarding perception. In UpSet, all
data is encoded using position, which is the most accurate visual vari-
able [17]. Due to its linear layout, UpSet can encode multiple proper-
ties and attribute values at the same time, while Radial Sets are more
limited in this respect.

UpSet can address 23 out of 26 set-related tasks described by Al-
sallakh et al. [3]. The remaining three tasks that UpSet currently not
supports indicate areas of future work. Two of the tasks pertain to
set creation (create a new set that contains certain elements, create a
new set out of elements that have certain attribute values), which is an
area we plan to investigate, as it will strengthen the duality between
elements and sets that UpSet emphasizes. We envision an interface
where users, starting from a raw table, can define sets interactively,
e.g., by binning numerical values, and where new sets can be defined
from selections or queries.

The third task that UpSet currently does not support is analyzing
and comparing set similarities. While UpSet can show the proper-
ties of all sets in an overview, and thus sets can be compared based
on their properties, there is currently no interface to enable pairwise
comparisons according to, e.g., a similarity measure. We are currently
investigating this area and intend to extend this idea to intersections
and aggregates.

From a practical point of view, we plan to deploy UpSet for public
use. To this end, we intend to add a server-side component to UpSet,
to enable users to upload their datasets, and to make UpSet applicable
to larger datasets. We also plan to add additional aggregate visualiza-
tions to the set interface, such as spark-lines for time-oriented data, or
visualizations for categorical data.

Finally, we observed that some of our collaborators were interested
in analyzing very large combinations of sets, in excess of 100 sets.
While such datasets can currently be loaded into UpSet and various
set combinations can be explored sequentially, it will be worthwhile to
investigate how to integrate information about larger numbers of sets
dynamically into a visualization of a group of focus sets.
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