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(a) Input video (b) Intrinsic decomposition (c) Editing the reflectance

Figure 1: An input video sequence (a) is decomposed into a component representing textures (b) (top) and a component for the incoming
illumination (b) (bottom) in an interactive fashion with real-time feedback, and in a temporally consistent way. This allows, for example, for
the editing of textures with consistent shading(c). Note the changes to the brick pattern, the roof, and the pathway leading up to the building.
Please refer to the accompanying supplementary video to get a sense for the temporal consistency of our result.

Abstract

Object illumination and color are critical characteristics of a scene
and being able to edit them allows artists to achieve powerful ef-
fects. Intrinsic image decomposition is the ideal component for
this kind of tasks. By separating the illumination from the scene
reflectance, it enables key operations such as recoloring and relight-
ing. Significant progress has been done recently for decomposing
static images. However, these algorithms rely on sophisticated op-
timization schemes that are computationally expensive and orders
of magnitude too slow to be applied to video sequences. So much
that even an optimized implementation would remain unpractical.
In this paper, we introduce a user-guided algorithm that runs fast
enough to be used in an interactive setting. Our strategy is to rely
on an efficient sparse formulation – we also exploit the same kind
of information as successful static methods but use it in ways that
only have a minor impact on running time. The core of our approach
is a gradient-domain `2-`p energy that models a sparse prior on
reflectance gradients and a smooth prior on illumination. We show
that the produced set of nonlinear equations can be solved very effi-
ciently using look-up tables. Then, we provide scribbles to users to
refine the decomposition. Our scribbles introduce local constraints
in our optimization that add only a minimal overhead. Further, we
extend these constraints to other similar image regions, thereby effec-
tively enabling users to affect large regions with minimal effort. We
also leverage multi-threading to precompute solutions a few frames
ahead of the current one at a minimal cost. Coupled with the ability
of our solver to use an initial guess to speed up convergence, this
effectively shortens the computation time and offer a fast feedback
to users. We demonstrate our approach on real sequences and show
that we can obtain satisfying results with a reasonable amount of
user interaction. We illustrate the benefits of our decomposition on
video recoloring and shadow compositing.

1 Introduction

Manipulating illumination in a scene is the key element of a wide
range of applications, such as relighting, white balancing, or texture

editing, e.g., [Bousseau et al. 2009; Laffont et al. 2012; Barron
and Malik 2013]. A versatile way to do is to separate the image
data into a product of illumination and reflectance layers. This
problem is often referred to as the intrinsic decomposition of an
image, and allows to manipulate independently these layers without
the need of a global understanding of the three-dimensional geometry
of the scene or the light transport within it. This decomposition
is particularly challenging because the effects of illumination and
reflectance are conflated into a single observation, thereby making
the problem severely ill-posed. Nonetheless, significant progress
has been made recently and usable decompositions of real-world
scenes can be obtained. The main elements to this recent advance
are additional data such as depth maps [Lee et al. 2012; Barron and
Malik 2013; Chen and Koltun 2013], several views of the same static
scene [Laffont et al. 2012], or user guidance [Bousseau et al. 2009;
Shen et al. 2011], as well as sophisticated priors such as reflectance
sparsity [Omer and Werman 2004; Hsu et al. 2008] and non-local
cues [Shen et al. 2008; Garces et al. 2012; Laffont et al. 2012; Zhao
et al. 2012; Chen and Koltun 2013].

Bringing lighting editing tools into the realm of video processing
is far from straightforward. The recent approaches for estimating
intrinsic decompositions are successful on static images but their
computation cost is prohibitively high if one is interested in videos.
The complex solvers involved in these decompositions require min-
utes of computation per image, which is several orders of magnitude
slower than video frame rates that are on the order of 30Hz, i.e., one
frame every 33ms. This issue is even more acute since depth data
and other viewpoints are not available for videos in general, which
leaves only user guidance among the key elements recently proposed
to achieve accurate decompositions of real-world scenes. However,
user interaction requires interactive feedback and existing techniques
are too slow. We argue that the needed acceleration is so large that
even an optimized implementation on graphics hardware would not
be sufficient. This is why we introduce a new algorithm dedicated
to fast processing of videos. The centerpiece of our approach is a
hybrid `2-`p solver that models priors on reflectance sparsity and
illumination smoothness using only small image stencils. A small
image footprint generates more efficient memory accesses and lends
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itself better to optimization thanks to limited dependencies between
pixels [Ragan-Kelley et al. 2012]. Further, we leverage parallel
processing to precompute a few frames ahead of time, thereby en-
abling smooth forward navigation. Moreover, our solver can exploit
this information as an initial guess to speed up convergence and
react faster to user edits compared to a naive initialization of the
solver. We also provide a set of scribbles to the users so that they
can control the produced decompositions with indications such as
achromatic regions and smooth illumination areas. To maximize the
effectiveness of this user guidance, we infer additional constraints
by searching for pixels with a similar appearance to those selected
by users and treating them similarly. Put together, our approach
provides interactive feedback and enables users to produce usable in-
trinsic decompositions of video sequences with a reasonable amount
of interaction.

We first demonstrate our approach on a real-world footage with
applications such as recoloring / retexturing, lighting editing, and
shadow composting.

Contributions This paper makes the following contributions:

– We enable complex video editing applications at interactive rate,
including recoloring, lighting editing, and shadow compositing.

– We introduce a fast algorithm to estimate intrinsic decompositions
of videos. Our approach is based on a hybrid `2-`p optimization that
can be solved very efficiently using precomputed look-up tables.

– We describe a set of scribbles that let users control the results and
a technique to propagate this input in space and time to limit the
amount of interaction that users need to do.

1.1 Related Work

Illumination Editing in Videos Our approach relies on intrinsic
decompositions of videos similarly to Lee et al. [2012] but does not
require a depth channel. We instead rely on user guidance. It is
also related to the intrinsic decomposition developed by Matsushita
et al. [2004] for video-surveillance footage but we do not assume
a fixed viewpoint. Other applications manipulate illumination in
videos without actually decomposing the data. For instance, Farb-
man and Lischinski [2011] stabilize the white balance of consumer-
grade sequences, and Bonneel et al. [2013] transfer the color grading
of movies onto other videos. While these applications are success-
ful, they aim for a specific effect. In comparison, we seek a more
versatile intrinsic decomposition that enables several applications
such as recoloring and lighting editing.

Generic Video and Image Editing Our approach also shares
technical similarities with methods that target other applications.
For instance, we follow the same temporal metaphor as the filtering
technique of Paris [2008] and the selection tool of Bai et al. [2009]
and propagate information only forward in time. This allows users
to edit the video in chronological order and be sure that the results
at previous frames are not altered by subsequent edits. When we
propagate information in time, we take the optical flow into account
akin to Bai et al. [2009] and Lang et al. [2012] We also extend the
range of our scribbles similarly to Boyadzhiev et al. [2012] in the
context of white balancing static images. While we had to adapt
most of these technical points to our specific scenario, we do not
claim this as a major contribution of our work.

Intrinsic Images Barrow and Tenenbaum [1978] introduced the
notion of intrinsic images to separate the contributions of illumi-
nation and reflectance. Since then, many techniques have been

proposed to solve this problem. We refer to the survey of Grosse et
al. [2009] for a general overview of the topic.

Intrinsic image decomposition typically attempt to separate image
gradients into reflectance and shading gradients. The classic Retinex
algorithm [Land et al. 1971] does this by simply thresholding the
image gradients. Subsequent work has expanded on this idea by
accounting for color variations [Grosse et al. 2009] and by learning
a classifier to do the separation [Tappen et al. 2005]. All these ap-
proaches are local in the sense that they make decisions about the
reflectance and the shading at the pixel, from the observed intensity
at (or in the neighborhood of) that pixel. While that makes these
techniques very fast, the quality of the results is still limited. The
quality of the decompositions can be improved by imposing non-
local priors on the reflectance [Shen et al. 2008; Gehler et al. 2011;
Shen et al. 2011; Zhao et al. 2012], the underlying scene geometry
and illumination [Barron and Malik 2012]. Alternatively, the con-
ditioning of the problem can be improved by leveraging multiple
images captured under varying illumination [Weiss 2001; Laffont
et al. 2012] or by making use of depth information captured with
RGBD cameras [Lee et al. 2012; Barron and Malik 2013; Chen and
Koltun 2013]. While all these techniques produce higher-quality
results, they do so at a very high computational cost, making them
impractical for video sequences. In addition, most typical video
sequences do not exhibit illumination changes and one cannot as-
sume a depth channel is available in general. Bousseau et al. [2009]
allow users to guide the decomposition using scribbles. However,
because their underlying solver uses medium-size image stencils, it
takes more than 10s to decompose a half-megapixel image which
is too slow for interactive video editing and does not address the
temporal consistency issue. In contrast, our technique can process
images of the same resolution in less than half a second. Nonethe-
less, the strategy of relying on user guidance is effective and we
follow the same approach in our work. Our work combines a local
gradient-based intrinsic decomposition with refinements based on
user-defined scribbles. We show that our approach can be seen of an
extension of the Retinex algorithm and that it allows us to solve for
the reflectance and shading at interactive rates, while allowing the
user to control the quality of the decomposition.

2 Efficient Intrinsic Decomposition

In this section, we describe our algorithm to decompose efficiently
an input video I into a illumination layer S and a reflectance layer
R. We assume a simple image formation model:

I = S ⇥R (1)

where the multiplication is done per channel in the RGB color space.
The core of our algorithm is a hybrid `2-`p energy formulation in the
gradient domain that represents a sparsity prior on reflectance values
and a smoothness prior on illumination. We achieve temporal con-
sistency using a causal smoothness prior along the time dimension.
We enable user control via a set of scribbles that add constraints into
our energy. We automatically extend the scope of these constraints
to reduce the amount of user interaction required. The rest of this
section presents the details of each step.

2.1 Hybrid `2-`p Gradient Separation

Our decomposition processes each RGB channel independently so
for now on, we will consider only one channel. First, we work
in the log domain to transform the image formation into a sum:
log I = logS + logR. Then, we formulate our approach in the
gradient domain. For this, we introduce lowercase variables to
represent logarithmic gradients, e.g., i = r log I . With this notation
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Figure 2: Behavior of the look-up table lut�s,�r,p(r̃k) (Eq. 10);
r̃k varies along the x-axis. The p variable controls the smoothness
of the separation – at values closer to 1 it starts approximating a
clipping function that removes smaller gradients (a). The weights
�s and �r pull the function in different directions, with a higher �r

making it more like a clipping function, and a larger value of �s

making the function smoother.

and the image formation model, we can write: i = s+r and express
this constraint as a least-squares energy term: ki� s� rk2.

This term alone is highly ambiguous since only i is known, and
both s and r are unknown. To address this issue, we add priors
on s and r and provide scribbles to users to add constraints to the
system. We first describe the priors. We assume that reflectance
values are sparse [Omer and Werman 2004; Hsu et al. 2008], i.e.,
that scenes are mostly made by objects of constant colors separated
by hard boundaries. This is typically modeled using a `p term on
the gradients with p < 2, that is, with our notation: krkp. We also
assume that illumination exhibits smoother variations due to shading
on curved surfaces and soft shadows for instance [Land et al. 1971].
We model this prior with a `2 term on illumination gradients to favor
a denser distribution of gradient values, i.e.: ksk2. We put all the
terms together to form the energy E. We use a continuous notation
so that we can apply variational tools later; we will discretize at the
end to act upon pixels. With x and y being the image coordinates,
this gives us:

E(s, r) =

ZZ
ki� s� rk2 + �sksk2 + �rkrkp dx dy (2)

where �s and �r control the influence of the priors on s and r. First,
we assume constant values for these two parameters. Then we show
that it is beneficial to use spatially varying weights and explain how
to extend our solver to still be efficient in this case.

Minimizing the Energy Solving mixed-norm optimization prob-
lems as Equation 2 requires time-consuming combinatorial ap-
proaches in general. However, we can do significantly better in
our specific case. We will show that we minimize Equation 2 using
a simple look-up table.

First, we remark that the x and y components of the energy are
independent and separable. In what follows, we concentrate of the
x component, its y counterpart being treated similarly. Then, we
express s as a function of r, that is, we assume r known and equal
to r̄, and derive a closed-form solution for s. Since s is a function,
we apply a variational approach that is standard in such case. We
add a perturbation ⌘ of magnitude ✏ applied to s and consider the
energy E(s+ ✏⌘, r̄). For the optimal s, the derivative with respect
to ✏ should be 0 at ✏ = 0. We start with the derivative:

@

@✏

Z
ki� s� ✏⌘ � r̄k2 + �sks+ ✏⌘k2 + �rkr̄kp dx (3)

then switch the integral and the derivative, and cancel the sparse

term that does not depend on ✏:
Z

@

@✏

⇣
ki� s� ✏⌘ � r̄k2 + �sks+ ✏⌘k2

⌘
dx (4a)

=

Z
2⌘ (s+ ✏⌘ + r̄ � i) + 2�s⌘ (s+ ✏⌘) dx (4b)

When ✏ = 0, this quantity is equal to 0. By removing the ✏⌘ terms,
the factor 2, and regrouping the s variables, we get:

Z
⌘

�
(1 + �s)s+ r̄ � i

�
dx = 0 (5)

Since this holds for all ⌘ functions, we have (1 + �s)s+ r̄� i = 0,
which gives us the expression that we sought:

s =

i� r̄

1 + �s
(6)

The next step is to solve for r. We first rewrite Equation 2 with the
new expression of s (Eq. 6):

Z
ki� i� r

1 + �s
� rk2 + �sk i� r

1 + �s
k2 + �rkrkp dx (7)

Factoring (i� r) in the first term, taking the weights out of the first
and second terms, and regrouping the ki� rk2 terms, we get:

Z
�s

1 + �s
ki� rk2 + �rkrkp dx (8)

To minimize this expression, we use Iterative Re-weighted Least
Squares to cope with the `p term [Björck 1996, § 4.5]. This amounts
to constructing a series r̃k that progressively gets closer to the so-
lution r?. At each iteration, the estimate at k + 1 is obtained by
minimizing the following least-squares problem:

Z
�s

1 + �s
ki� r̃k+1k2 + �rwk+1kr̃k+1k2 dx (9a)

with wk+1 =

p

2

|r̃k|p�2 (9b)

Using the same variational reasoning as before, we get a closed-form
expression of r̃k+1 as a function of r̃k:

r̃k+1 =

2�si

2�s + �r(1 + �s)p|r̃k|p�2
(10)

Iterating this formula converges to a minimizer of mixed-norm en-
ergy (Eq. 8) and we use r̃K with a large enough K as an approxi-
mation of the solution r?. That is, in practice, given i, �s, and �r ,
we evaluate r̃K by iterating K times Equation 10. We observed that
K = 100 was sufficient in all our experiments. Further, given �s

and �r , the output r value depends only on i. When �s and �r are
fixed, we use this property to precompute the function lut�s,�r (r̃k)

for varying values of r̃k and store it in a look-up table that can be
accessed very efficiently at run time. We can also build a higher-
dimensional table to enable varying parameters as we do next.

Taking Chrominance Variations into Account The energy func-
tion in Equation 2 encourages sparse but large reflectance gradients
and dense but smaller shading gradients. This does not account
for illumination effects like shadows that can lead to large gradi-
ents. However, shadows typically do not give rise to large variations
in chrominance values; these are more likely to be caused due to
changes in reflectance [Grosse et al. 2009]. We leverage this by
spatially modulating �s in Equation 2 as:

�s = �s||i�
X

k

ik/3||, (11)
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(a) Input video frame (b) �s = 10, �r = 0.5, p = 1.05 (c) �s = 2, �r = 0.5, p = 1.05 (d) �s = 10, �r = 1.5, p = 1.75

Figure 3: This figure demonstrates the effect of the different parameters in Equation 10 on the resulting reflectance (top) and shading (bottom).
A high weight on the shading gradient term leads to a blurry shading, but the reflectance is not sparse (b). Tilting the weights in favor of the
reflectance term makes the reflectance gradients sparse leading to a result that captures the piece-wise constant nature of the reflectance more
accurately (c). Finally, changing the norm of the reflectance term from a sparse p = 1.05 to a dense p = 2 makes both the reflectance and the
shading look simply like contrast-enhanced (or diminished) versions of the image (d).

where k denotes the three color channels. �s(x, y) is thresholded to
avoid degeneracies. At pixels where the variation in the chrominance
is small, the weight of the `2 error term in Equation 2 is reduced,
encouraging the the image gradient to be attributed to the shading. A
large variation in the chrominance has the opposite effect, and leads
to the image gradient being assigned to the reflectance.

Discussion An important step of the above derivation is express-
ing s as a function of r (Eq. 6) using a variational study of the
energy. Another option could have been to enforce strictly the im-
age formation model and set s = i � r. In this case, the energy
becomes

RR
�ski � rk2 + �rkrkp dx dy. However, while this

formulation is simpler, this system is stiffer because it must ex-
actly adhere to the image formation model and is known to produce
lower-quality decompositions [Chen and Koltun 2013] . Enforcing
this as a soft constraint allows our optimization to handle devia-
tions resulting from more complex image formation. We carefully
compared the data produced by two approach, the exact model and
our softer approach, and found that the main improvement comes
from Equation 6 that favors a smooth illumination where the ob-
served chromaticity is smooth, even though it may violate the image
formation model.

Figure 3 illustrates the form the function lut�s,�r (r̃k) takes for
different values of �s, �r , and p. Note that for certain values of these
parameters, this functions approximates the thresholding function
that the Retinex algorithm uses to separate image gradients into
reflectance and shading gradients. This suggests that our look-up
table is in fact a generalization of the Retinex algorithm, albeit one
that is derived from the hybrid `2-`p energy formulation described
above. In addition, unlike the Retinex algorithm, our look-up table
is a softer function and allows for non-zero reflectance and shading
gradients at the same pixel.

2.2 Reconstructing the Layers

For a given values of �r , we precompute lut�r (�s, i). Then, for
each pixel, we estimate the x and y components of r by applying

lut�r twice, once for each axis. We use Equation 6 to recover s.
Then, we solve the Poisson equation to recover logS:

Ep =

ZZ
kr logSt(x, y)� st(x, y)k2 dx dy, (12)

and exponentiate to get the reflectance layer S. We estimate the
illumination layer R = I/S using the image formation model
(Eq. 1). This approach has two advantages. First, compared to
reconstructing S and R separately, we solve the Poisson equation
once instead of twice. Second, using the Poisson equation to retrieve
S produces better results than using it for R. Solving the Poisson
equation introduces low-frequency residuals when the gradient field
is not integrable. Such residual is more likely to be innocuous in the
illumination layer that contains already smooth shading variations
in general, but would be more conspicuous in the reflectance layer
that is expected to be piecewise constant, e.g., for man-made scenes
comprising only of a small set of materials.

2.3 Temporal Consistency

Applying the previous technique frame by frame would generate
unpleasant flickering. On the other end of the spectrum, we could
perform the decomposition on the entire space-time volume at once
and a temporal smoothness term in our formulation. However, such
an approach would not be practical either. First, the running times
and memory requirement would be prohibitively large because of
the sheer amount of data to process. Second, user interaction would
be challenging since adding a stroke in one frame could possibly
affect the entire video, include frames already treated by the user.
For our work, we opt for an intermediate approach, we propagate
information only forward in time. This is a user-friendly option
since treating frames in chronological order ensures that already
previously edited frames are not affected by subsequent strokes [Bai
et al. 2009]. Moreover, this can be implemented by considering
only two frames at a time and the achieved temporal consistency
is on par with a full space-time approach [Paris 2008]. Also, to
further speed up the process, we enforce temporal consistency only
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during the Poisson reconstruction stage and still perform the gradient
decomposition (§ 2.1) frame by frame.

We name
�
ut(x, y), vt(x, y)

�
the optical flow, i.e., the pixel at (x, y)

at frame t moves to
�
x + ut(x, y), y + vt(x, y)

�
at frame t + 1.

In the rest of the discussion, we omit the dependency on (x, y) for
clarity’s sake. To ensure the temporal coherence of the illumination
logarithm logS, we define a temporal smoothness term that moves
the solution of the current frame to the previous frame advected by
the optical flow:

Et+1 =

ZZ
klogSt+1(x, y)� logSt(x+ ut, y + vt)k2 dx dy.

(13)
This term is then added to the standard reconstruction energy so that,
when reconstructing the frame t, we exploit the information of the
previous frame t� 1:

E = Ep + �tEt, (14)

where �t is a parameter balancing the two objectives. The second
term can also be seen as a form of data attachment that prevents the
new frame from deviating too much from the previous frame. This
type of optimization problems has been well studied in the literature;
it leads to the Screened Poisson equation [Bhat et al. 2008] and we
solve it efficiently using a multigrid solver with Successive Over-
Relaxation (SOR) iterations [Nocedal and Wright 2006].

3 User-guided refinement

While our hybrid gradient separation algorithm produces reasonable
results, we provide scribbles to users so that they can refine the
results. Further, to minimize the need for user interaction, we extend
the scribbles to pixels with a similar appearance.

User Strokes We provide users with scribbles that let users spe-
cific constraints that satisfy two requirements: they are easy for a
user to specify in a video frame and they have a limited effect on
the computational complexity of the solver. To this end, we specify
the user constraints in the gradient domain, and eschew non-local
pairwise constraints [Shen et al. 2008; Zhao et al. 2012; Chen and
Koltun 2013] that lead to dependencies across many pixels. This
would degrade the performance on two fronts by augmenting the
amount of required computation and generating complex memory
access patterns challenging to optimize [Ragan-Kelley et al. 2012].

The first two strokes that we use are the constant reflectance and
the constant shading strokes that specify that the gradient of the
reflectance (and shading respectively) at those points is 0, i.e.:
r(x, y) = 0 and s(x, y) = 0. These constraints are straightfor-
ward to apply to s and r, and we do not need to solve again the main
optimization problem. We only need to solve the Poisson equation,
which is very efficient.

The second set of strokes are the gray-scale reflectance/shading
strokes that specify that the reflectance/shading at the stroke is the
same for all three color channels. The Poisson system that we solve
to reconstruct the reflectance and shading (Eq. 13) is accurate up to
a scale factor in each color channel and the gray-scale strokes help
us resolve this scale ambiguity. We implement this constraint as
follows. We solve Equation 13 to recover the shading in the green
color channel first. The gray-scale shading stroke then encourages
the solution in the red and blue channels to match the green solution
S

g by adding an additional term as follows:

E = Ep + �tEt + �cklogS{r|b}
t � logS

g
t k2, (15)

where the �c controls how strongly we enforce the grayscale
constraint, and S

{r|b}
t denotes the red or blue illumination chan-

nel. Similarly, the gray-scale reflectance stroke adds the term
k(log I{r|b}t � logS

{r|b}
t ) � (log I

g
t � logS

g
t )k2 to the energy.

This additional constraint essentially applies a Dirichlet boundary
condition to the Poisson system and the new energy can be solved
using a modified screened Poisson equation. The rationale for this
approach is that it avoids a two-way coupling between the channels
in which all the channels would depend on all the others akin to
Boyadzhiev et al. [2012] for instance. The two-way coupling would
make the solver significantly slower by requiring all three channels
to be solved together in single step. In comparison, our approach
adds only a minimal overhead. We picked the green channel because
its spectrum lies in the center of the visible light spectrum and covers
best the latter.

Propagating Strokes To speed up user interaction, we transfer
user strokes both spatially and temporally to similar pixels that are
found using coherency-sensitive hashing [Korman and Avidan 2011].
Unlike k-d tree-based nearest neighbor search data structures that are
expensive to precompute (especially for video data), the coherence-
sensitive hashing data structure for an n-frame video sequence is
constructed in O(n) time and retrieves matches in O(n) time. We
construct the feature vector for the matching by sampling 11⇥ 11

patches of RGB values and projecting them into a 16-dimensional
space that is derived from a Principal Component Analysis (PCA)
of these patches. To make the PCA tractable, we compute it from a
sub-sampling of all the patches in the video sequence.

Our user annotation interface is comprised of a brushing tool with a
user-specified radius. When the user paints a constraint, we use the
patch directly under the stroke as a query, and extend the constraint
to k matching pixels that lie within the radius. This approach allows
users to control how far strokes can be propagated, thereby adapt-
ing to the specificities of the scene. To propagate the constraints
temporally, we advect the strokes to subsequent frames using the
optical flow. In practice, to keep computation tractable, constraints
are propagated to 8 frames and a maximum of k = 3000 neighbors
per frame are retrieved.

4 Results and Discussion

In this section, we present our results on both static frames and
video sequences and demonstrate a number of applications. Methods
tailored for images are not designed for videos and, when applied to
each frame independently, often produce temporal inconsistencies.
Our technique, on the other hand produces temporally consistent
results that capture the reflectance-shading separation well. The
quality of our results is better evaluated on the accompanying video.

In our prototype implementation, we use a precomputed look-up
table with parameters p = 1.05, �r = 0.6, and �s = 1.0 to esti-
mate the reflectance and shading gradients (Eq. 10). The constant
reflectance/shading strokes are used to directly edit these gradients.
The computed shading gradients are then integrated using a fast and
parallel CPU-based multigrid Poisson solver with SOR iterations.
The gray-scale reflectance/shading strokes as well as the temporal
smoothness constraints lead to boundary conditions that are incor-
porated into the Poisson solver as soft constraints with weights
�t = 0.2 and �c = 0.5. To propagate the user strokes, we find
similar pixels in space and time using Locality Sensitivity Hashing
[Dong et al. 2008] that we implemented using an optimized version
of the LSHKIT library [Dong 2014]. Both the temporal advection
of the user strokes and the temporal smoothing term are driven by
optical flow based on Liu et al. [2009]. We precompute this optical
flow as a preprocessing step. Our prototype implementation solves
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(a) Input image with (b) Ground truth (c) Ground truth (d) Our reflectance (e) Our shading
user strokes reflectance shading

Figure 4: The result of our method on images from the MIT intrinsic decomposition dataset [Grosse et al. 2009]. A few strokes are able to
create a good intrinsic decomposition in real-time.

(a) Input image (b) Our reflectance (c) Our shading
with strokes

Figure 5: Our technique demonstrated on an image from [Bousseau
et al. 2009]. We are able to produce results that are qualitatively
similar to their technique at speeds that are an order of magnitude
faster.

for 8 frames in parallel, and does the gradient reconstruction serially
on a single thread. It takes 0.25-0.50s to process a 0.5 megapixel
video frame. This allows us to give the user interactive feedback
while they annotate the video with the constraints. Finally, we also
propagate the user constraints forward by 8 frames using background
threads.

Static images We compare the results of our technique to state-
of-the-art techniques for static images. Figure 4 shows the results
of our method on examples from the MIT database. A few strokes
are sufficient to create results comparable to other techniques, but at
interactive speeds. In Fig. 5, we decomposed an image presented in
[Bousseau et al. 2009].

Videos We also evaluate our technique on challenging real-world
video sequences as well as on a high-resolution realistic rendered an-
imation of a 3-d scene. For the latter, we used the San Miguel scene
(see Figure 6) to render 150 frames at 1280⇥ 960 resolution, using
Metropolis light transport with the PBRT rendering engine [Pharr
and Humphreys 2010]. This sequence features detailed geometry,
spatially-varying reflectances, complex outdoor illumination, and an
intricate camera path; as such, it is a good approximation for of a
real-world example, with the advantage of providing a ground-truth
decomposition. This comparison is shown in Figure 6).

Discussion In our experiments, we found that our approach is
fast enough for user interaction and accurate enough to be useful in
practice. That said, we believe that performance could be further im-
proved by implementing our algorithm on graphics hardware. And
because of the nearest-neighbor search, our algorithm slows down if
too many strokes are specified – that said, when we produced our
results, we never reach the point where this would become an issue.
Also, since we forwent nonlocal constraints to speed computation
up, our decomposition is locally accurate but may exhibit incon-
sistencies on distant objects, e.g., if two similar objects appear on
each side of the frame, their decompositions may not match. How-
ever, many editing operations as the ones shown in the rest of this
section are also local and thus only requires local consistency. Our
approach can handle colored lighting but sometimes underestimate
the colorfulness of the lighting in extreme cases. This can be seen
in the companion video when we seek to remove the colored light
on the walking woman. While the light is significant less colored
than the input, some colors remain visible. Finally, in our early
experiments, we also tested temporal propagation both forward and
backward in time. While we did not observe any significant accu-
racy gain, more user interaction was required because one needed to
consistently move forward and backward in time to check the results.
In comparison, propagating only forward in time yields a simpler
editing workflow in which one only needs to process the frames in
chronological order.

Applications

We demonstrate our method on various applications benefiting from
an editable and temporally consistent intrinsic decomposition. Our
main use of the intrinsic decomposition is to independently alter the
illumination layer and the reflectance layer.

Reflectance editing Editing the reflectance of an object in a video
is easy when the color is uniform; in such cases, a simple chromi-
nance change suffices. However, this becomes a painstaking when
the reflectance has high-frequencies that also appear in the lumi-
nance. One cannot simply paint over it since it would alter the
illumination. However, with our decomposition, painting in the
reflectance layer performs the desired operation since illumination
remains unchanged. We demonstrate this is Figures 1 and 7 (top); in
both these cases the reflectance has a high-frequency variations in
both luminance and chrominance. By using our decomposition, we
are able to paint over the original reflectance, while still preserving
the spatially-varying illumination in the presence of complex motion.
The luminance-chrominance separation also fails when the color of
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(a) Input video frame (b) Ground truth (c) Our reflectance / shading (d) Our reflectance / shading
(with/without strokes) reflectance / shading without strokes with strokes

Figure 6: Our technique demonstrated on one frame of a rendered video sequence (a). Our automatic hybrid `p-`2 decomposition technique is
able to produce a good result on this challenging example (b). Adding a few user strokes and propagating them to similar pixels helps us
improve this result further (c).

the illumination varies spatially. This is demonstrated in Figure 7
where our decomposition allows us to easily edit the reflectance,
while retaining the color casts in the original illumination. In all
these examples, we paint the reflectance in a single frame, and use
optical-flow tracking to advect the paint strokes in time.

Illumination editing Turning hard shadows into soft shadows is
a challenging operation if one only has access to raw data since
blurring the shadows ends up blurring the textures in the scene too.
In comparison, with our decomposition, this task becomes straight-
forward since one needs to blur the illumination layer (Fig. 8).

Removing local color cast due to colored illumination is already a
challenging task on static images that requires dedicated approaches,
e.g., [Boyadzhiev et al. 2012]. Applying the same technique to a
video is impractical due to processing time and the fact that temporal
coherence is not taken into account. In comparison, our approach
makes straightforward since it only requires converting the illumina-
tion layer into grayscale (Fig. 9).

Lighting-consistent video compositing Naively compositing
videos that contain shadows produces unsightly results in with the
shadows overlap instead of merging. Our decomposition enables the
proper merging: denoting S1 and S2 the shading layers of the two
videos to be composited, we compute min(S1, S2) as the new shad-
ing layer within a segmentation of the foreground video obtained
with Video Snapcut for instance [Bai et al. 2009] (Fig. 10).

5 Conclusion

We described a number of illumination and reflectance editing tools
that rely on a new intrinsic decomposition method that is fast, user-
assisted, temporally consistent, local in time, and handles color
lighting. In contrast with other intrinsic decomposition techniques,
our algorithm relies on a hybrid `p-`2 gradient separation formula-
tion that is extremely fast to optimize. This makes it possible for
the user to interact with the system to effectively and efficiently
decompose video sequences into their reflectance and shading com-

ponents. We show that this results in high-quality decompositions
on a wide variety of images and video sequences. Most importantly,
our decomposition enables a number of video editing tools that are
otherwise very difficult to implement; these include recoloring, re-
texturing, local illumination editing, and lighting-consistent video
compositing.
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(a) Input video sequences (b) Intrinsic (c) Video composite
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Figure 10: Our technique can be used for realistic video compositing. Here, we take two video sequences shot with different viewpoints (a)
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them allows us to create a video composite with realistic shadows and lighting.
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