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Figure 1: Top: Skeletal, facial, and hand motions are tracked by off-the-shelf sensors. From sparse user-defined examples, our method reliably
separates and extrapolates simultaneously-performed gestures to control characters in games or VR. Bottom left: Dog happy walk, neutral run,
shaking, and sitting. Bottom right: Caterpillar crawl variations, controlled by varying amplitude, phase, and frequency of input gestures.

Abstract

Motion-tracked real-time character control is important for games
and VR, but current solutions are limited: retargeting is hard for non-
human characters, with locomotion bound to the sensing volume;
and pose mappings are ambiguous with difficult dynamic motion
control. We robustly estimate wave properties — amplitude, fre-
quency, and phase — for a set of interactively-defined gestures by
mapping user motions to a low-dimensional independent representa-
tion. The mapping separates simultaneous or intersecting gestures,
and extrapolates gesture variations from single training examples.
For animations such as locomotion, wave properties map naturally
to stride length, step frequency, and progression, and allow smooth
transitions from standing, to walking, to running. Interpolating out-
of-phase locomotions is hard, e.g., quadruped legs between walks
and runs switch phase, so we introduce a new time-interpolation
scheme to reduce artifacts. These improvements to real-time motion-
tracked character control are important for common cyclic anima-
tions. We validate this in a user study, and show versatility to apply
to part- and full-body motions across a variety of sensors.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Animation;

Keywords: Virtual character control, motion mapping, dynamics.

1 Introduction

Real-time character control is important for games and virtual worlds.
Recent motion controllers using low-cost body and hand skeletal
trackers (Microsoft Kinect, Leap Motion) are particularly promising
for virtual reality (VR), where typical interfaces may be impractical
due to impaired real-world vision. The possible mappings between
human motion and character motion span a spectrum of control:
Retargeting motion controllers [Gleicher 1998] map human and
character bodies ‘one-to-one’ at the bone level. While expressive,
character motion is consequently restricted to the sensing volume

and to the ability of the user to perform complex motions, with map-
pings hard to generalize to non-human characters. At the other end
of the spectrum, gestural control-action pairs [Johnson et al. 1999;
Raptis et al. 2011] trigger character motions from a database, but
there is no control of motion style variation through extrapolation.

Recent techniques [Seol et al. 2013; Rhodin et al. 2014] lie in-
between, by mapping poses to character animations. This forfeits
retargeting, but expands control flexibility and expressivity over
gesture-action pairs, and is a good fit for games. However, there are
problems: pure pose mappings are under-constrained for complex
character motion, and so velocity and acceleration features add
constraints. These are sensitive to noise, and may result in jerky or
stilted animations. Further, a user moving his legs faster will induce
a faster playing walk animation, when the desire is for a progression
of dynamism from walking to running. While in principle this could
be accomplished with multiple maps, in practice this is difficult and
better extrapolation of control tempo is needed.

Inspired by Fourier domain representations [Unuma et al. 1995; Shi-
ratori and Hodgins 2008], we robustly estimate instantaneous wave
properties — amplitude, frequency, and phase (AFP) — of high-
dimensional user pose motions. Our versatile method allows interac-
tive part- or full-body control motion definition via diverse capture
sensors. Key to our approach is the separation of simultaneously-
performed control motions into independent low-dimensional waves.
We learn this mapping interactively from a single example per con-
trol motion, such that wave properties can be estimated by windowed
Fourier analysis and extrapolated to control motion variations. With
a mapping learned, instantaneous real-time estimates are still chal-
lenging as future user input is unknown. We overcome this by
exploiting the temporal dependence of phase and frequency.

Cyclic animations are common, and our wave gestures are often
well suited to cyclic control tasks, e.g., for walking locomotion, fre-
quency maps to number of steps per second, amplitude to step size,
and phase to walk progression. This allows control over variations
in style which would be complex for existing pose mapping ap-
proaches, such as a slow wide steps or fast narrow steps. Non-cyclic
linear motions are also needed, e.g., sitting down or raising an arm.
Seol et al. [2013] classify input motions and blend different pose
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mappings to improve cyclic motion control. We extend this idea
by allowing superpositions of both linear pose mappings and cyclic
motion mappings, all within a motion graph. Further, our approach
extends to additional input modes with shared parameter spaces, e.g.,
a face tracker measuring users mood to control character emotion.

We generate new animations by interpolating wave properties within
parametric animation database spaces. Our general interpolation
scheme operates on meshes, is independent of a character rig or
skeleton, supports arbitrary character shapes and topologies, and
enables foot sliding prevention. For locomotion, often quadrupeds
switch the phase of individual limbs between walks to runs. We
propose to reduce classical artifacts by aligning limbs individually
by time warping, and interpolating limb timing differences sepa-
rately from limb positions. This minimizes the size of the character
animation database needed for smooth dynamic state changes.

We show that wave gestures are more robust to noise and operate
over a larger temporal domain than commonly-used velocity and
acceleration features [Seol et al. 2013; Rhodin et al. 2014], and that
they successfully decorrelate ambiguous control motions, which is
not possible with existing approaches [Shiratori and Hodgins 2008].
Further, with ten participants in three game-like quantitative tasks
and in qualitative questionnaires, we discover that our wave gesture
control is more intuitive and more accurate for animation tempo
control than a gamepad, but is more physically demanding. For
applications, we interviewed three animation professionals, who
found potential as a ‘blocking’ tool for early-stage content creation,
for live performance, and for games.

At a system level, we provide key features when compared to existing
methods (Tab. 1). Our contributions to the literature are:

• A technique to robustly and accurately estimate amplitude,
frequency, and phase of simultaneous gestures in real time,
generalized from a single user-defined reference motion.

• An interpolation method for motions with out-of-phase sub-
motions that cannot be aligned by traditional time-warping.

• A live animation system, which couples wave gesture to para-
metric motion graphs and layers different input modalities.

2 Related work

Direct puppetry. The transfer of user performance onto virtual
characters via motion tracking control has been used successfully
in animation for many years. Sturman [1998] reviews early work
in character control, describing pedals, gloves, joysticks, and body
suits to empower multiple users to orchestrate control of an animated
character, similar to classical puppetry [Oore et al. 2002]. Layering
time-sequential performances allows for rich animations even from
mouse and keyboard input [Dontcheva et al. 2003; Neff et al. 2007;
Martin and Neff 2012]. Acting out animations proves useful for
animation timing [Terra and Metoyer 2004], but control becomes
difficult for complex characters and motions.

Physical simulation. Direct manipulation of selected character de-
grees of freedom (DOF) can be eased by adding physical simulation.
Coros et al. [2012] couple mouse input via rest state adaptation
in an elastic physical simulation, and Laszlo et al. [2000] couple
mouse and keyboard input with physical simulation of bipedal mo-
tion through proportional derivative controllers. These works can be
more broadly applied with a system for robust input generalization
from a single reference control motion, which is our focus.

Retargeting. Gleicher [1998] showed that user motion can be retar-
geted onto new bipedal characters with different body proportions
through a set of position objectives and motion frequency constraints.
Shin et al. [2001] added importance sampling through the proximity

of end effectors to the environment. Retargeting can generalize
to characters of different topology by duplicating and mirroring
[Hecker et al. 2008]. Ishigaki et al. [2009] applied retargeting to
games: user motion is blended in real time with example anima-
tions, depending on user intention, and environmental and physical
constraints. These works rely on expensive optical motion capture.

For low-cost systems, Chai et al. [2005] tracked sparse 2D marker
positions in stereo video, and achieved 3D pose reconstruction by
constraining motion to a local linear model. Lee et al. [2002] tran-
sition a motion graph by performance according to silhouette fea-
tures from video. Microsoft Kinect brought real-time control of
virtual characters to casual users through retargeting skeletal motion
[Vögele et al. 2012], facial expression transfer [Weise et al. 2011],
skeleton-based deformations of objects [Chen et al. 2012], and map-
ping rigid object motions into virtual worlds [Held et al. 2012]. As
these methods afford direct control, they do not apply to non-human
topologies, and cannot control existing dissimilar animations — for
retargeting, input and output motions are similar by construction.

Data driven. We can remove the similarity requirement with pre-
authored character animations, and create indirect mappings be-
tween user and character by learning their dependency from exam-
ples. Most common are pose mappings, which map the tracked
user pose, frame-by-frame, to a corresponding character pose. Pose
mappings have been constructed through linear transfer of interpola-
tions weights [Bregler et al. 2002], non-linear interpolation through
a hierarchical mesh shape space [Baran et al. 2009], Gaussian pro-
cess latent variable model (GPLVM) [Lawrence 2004; Yamane et al.
2010], and linear maps to rigged characters [Dontcheva et al. 2003;
Seol et al. 2013] and mesh characters [Rhodin et al. 2014; Celikcan
et al. 2014]. Example input motions are usually performed by the
user, which is simple with automatic guidance [Rhodin et al. 2014].
Example character animations are artist created.

To improve control of arbitrary characters, Seol et al. [2013] classify
user input poses in two: ‘simple’ motions, where character features
map to human features directly and a linear map is applied, and
‘complex’ motions, where features does not (e.g., many pairs of legs)
and so a nearest-neighbor lookup (NN) finds the closest animation
frame from a pre-defined coupling. Both outputs are then blended.
This setup generalizes via the linear map from the authored character
animations as new live motions are performed. However, the NN
map does not generalize, which leads to stilted animation when
given new live motion variations, with no extrapolation to provide
control over motion style variations.

Pose mapping techniques allow real-time control of characters of
non-human shape and topology, as example-driven mappings decou-
ple input and output motion style. However, the output animation
quality and detail is limited by the ambiguity of pose mappings. Our
goal is to overcome these ambiguities by generalizing properties of
motions from sparse examples.

Action control. These methods trigger (non-human) character ac-
tions by detecting user intention. Actions are commonly detected by
dynamic time warping and classification of predefined motions [Rap-
tis et al. 2011] and by similarity of inferred dynamical movement
primitives [Ijspeert et al. 2013]. Such high-level control enables
sympathetic interfaces, e.g., animation through a sensor equipped
plush doll [Johnson et al. 1999], and automatic maintenance of the
emotional character state to stay in character [Tomlinson et al. 2002].
While our approach considers user intention, we focus on estimating,
generalizing, and mapping properties of motion, which provides a
much finer level of control.

Fourier representations. These capture motion properties in fre-
quency bands and have been used to create animation variations
[Pullen and Bregler 2000], to blend animations, and to alter motion

2



To appear in ACM TOG 34(6).

Feature G
le

ic
he

r
[1

99
8]

Sh
ir

at
or

ie
ta

l.
[2

00
8]

R
ho

di
n

et
al

.[
20

14
]

Se
ol

et
al

.[
20

13
]

Is
hi

ga
ki

et
al

.[
20

09
]

O
or

e
et

al
.[

20
02

]

O
ur

s

Easy to use AFP #  # # # #  
Control of motion dynamics #  # #  #  
Extensible motion graph / intentions # H# # H#  #  
Control of fast and slow motions   # #    
Superposition control  #      
Direct control of skeleton DOF  # #    #

Interactive user-defined control motions # #   # #  
No body part or DOF assignment required H# #  # H# #  
Independent of rig #   # # #  
Non-biped topology # H#   #   
Robust to user size and shape   H# #    
No database or predefined controller required  # # # #  #

Diverse and multiple tracker capable # #  H# #   
Robust to low quality input device #    # #  
High dimensional tracking input  #    #  
Real time        
Low control delay  #  H#   H#

Non-bipedal complex motion transitions # # # # #   
Foot-sliding prevention (biped & quadruped) H# H# # # H# #  
Physical realism #  # #  # #

Live animation (game, performance) #     #  
Prototyping / blocking animation   H# H# H#   
Professional ‘final’ animation  # # # H#  #

Table 1:  / H# / # : full / partial / no support; Feature table
comparison to state of the art real-time character control methods.
For our task of versatile character control with application to games,
our method is often a better fit than existing methods, though the
system does require a pre-existing animation database.

style [Unuma et al. 1995]. Akhter et al. [2012] propose a bilinear
spatio-temporal basis that describes oscillations around a set of ex-
ample shapes. Our work could be viewed as a particular form of
Fourier decomposition of high-dimensional input motions.

An inspiring step in this direction is the method of Shiratori and
Hodgins [2008], where amplitude, phase, and frequency of low-
dimensional accelerometer sensors are mapped to a physically-
simulated character. The method of Lockwood and Singh [2012]
classifies finger walking motions from touchpad input by contact
features, e.g., frequency, into gross motion classes.

We generalize this idea to handle high-dimensional input motions,
continuous output (e.g., speed vs. classification into slow or fast),
user-defined control motions with arbitrary periodic trajectories, and
simultaneously-performed motions.

For output, we synthesize animations from a parametric motion
graph [Rose et al. 1998; Heck and Gleicher 2007; Casas et al. 2012].
Table 1 relates the most relevant real-time character control methods.

3 Method overview

Our goal is to generalize wave properties of motions from sparse
examples for real-time character control. Three steps are required:
authoring, control definition, and live control (Fig. 2). Pseudocodes
for our approach are included in a supplemental document.

First, in the authoring step (§4), example character animations are
arranged to form parametric motion classes as nodes in a motion
graph, as would be typical for a game. Second, in a control def-
inition step (§5), a reference control motion is specified for each
motion class, from which we learn a mapping per node (§6). These
motions would typically be predefined by a game designer, but as

Figure 2: Pipeline: 1) An animation database is created by an artist.
2) Control definition: the user interactively performs one reference
motion for each parametric motion class. 3) Live character control:
the virtual character is controlled by estimateing AFP parameters
from independent intermediate representations, with animations
synthesized by a new time-shift interpolation.

this is computationally fast it also allows for interactive end-user
definition. Third, the user performs live motions for real-time char-
acter control (§7). Simultaneously-performed motions are separated,
and variations in motion AFP (amplitude, frequency, and phase) are
extrapolated to generate new motion style variations. Animations are
synthesized by database interpolation; for quadrupeds, we introduce
a separate time and pose interpolation of individual limbs which
improves animation quality and reduces foot-skating artifacts (§7.2).

4 Parametrized character representation

To create a semantic connection between user control motion varia-
tion and character animation, we arrange example animations into
a vector space of parameters [Rose et al. 1998; Heck and Gleicher
2007]. We use AFP parameters to generate live animations by inter-
polating the estimated and annotated AFP parameters. For instance,
the user varying their leg height in a mimicking walk could be trans-
ferred to a dog character’s stride length by annotating the database
animations of standing and walking with amplitude 0 and 1, respec-
tively. In a different application, amplitude could map to step height,
for instance, for a horse dressage game character. The frequency
parameter could trigger a transition from walk to run by the user
speeding up the control motion, or could parametrize a shaking an-
imation with varying centrifugal force. Depending on the tracker,
these user motions can range from single finger movements, to facial
expressions, up to full body motions. Additional annotation dimen-
sions such as emotion (e.g., happy, sad) and heading rate (e.g., left,
right) are also possible depending on the tracker.

Formally, an animation Y of frame length T is a sequence of indi-
vidual meshes yt, so Y = [y1, · · · ,yT ]. Each yt is a list of mesh
vertex positions, i.e., no rig is required and any animation creation
system can be used. T is an animation-specific variable, as differ-
ent Y have different lengths. To build a vector space, each Y in a
database Y is assigned parameters θY = (a, f) to represent varia-
tions in frequency f (e.g., fast, slow) and amplitude a (e.g., large,
small). As we focus on cyclic animations, the time index that spec-
ifies the current frame t of the example animation is parametrized
in the cyclical domain [0, 2π), invariant to the animation length T ,
by phase ϕ := 2πt/T . Y then exists in a two-dimensional vector
space, with one dimension per parameter. These annotated database
animations form parametric motion classes, which we combine into
a motion graph (Fig. 3).
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Figure 3: Parametrized motion graph for the dog character. Each
node represents a parametrized motion class that synthesizes charac-
ter animation from gesture AFP parameters. Edges mark transitions
which are initiated by gesture activation. We also support superpo-
sition of secondary actions such as head motion which are additive.

5 Reference control motion definition

Each parametric motion class requires one reference control motion
X as a sequence X = [x1, · · · ,xT ] of poses as point positions.
This could come from any tracking system. Each motion is defined
by performance at an arbitrary steady speed for one period at maxi-
mum amplitude, which provides a kind of ‘physical normalization’
of amplitude to [0, 1]. For instance, one cycle of a mimicking walk,
where the legs are raised as high as possible. Practically, the start
frame x1 is marked by pressing a remote control. The end frame is
automatically detected for cyclic motions by finding the pose most
similar to the start pose which is at least 2/3 periods away from the
start. For non-cyclic motion classes, i.e., a dog sitting down, we
require rest and extreme poses to be marked with a remote press,
e.g., lowering the arm from horizontal to vertical position.

Although we require only a single control motion example, we are
able to generalize or extrapolate to variations in the live animation
step by analyzing the input motion for differences in AFP. Further,
no manual mapping (e.g., [Shiratori and Hodgins 2008]) or degree-
of-freedom tagging (e.g., [Seol et al. 2013, §4.1]) is needed as it is
automatically inferred by the regression method below, which makes
it possible to define reference control motions in seconds.

6 User-to-character motion mapping

The goal of the live step is to map the stream V of user poses xt to
the parametrized character representation according to the defined
set of reference control motions X . The live step accomplishes
two tasks: separation (disambiguation) of simultaneously performed
control motions for each reference motion X (§6.1), and estimation
of AFP motion parameters θX for character animation (§6.2).

6.1 Separation of simultaneous gestures

Simultaneous input motions primarily occur in two situations: 1)
For superposition effects, e.g., dog shaking while walking, with two
or more simultaneous control motions; 2) At transitions between
graph nodes like walking and jumping, future control motions may
be started while current motions are gradually stopped, which we
refer to as intersecting motions. Direct estimation of input AFP
leads to interference between motions (Fig. 11).

Instead, we separate high-dimensional input V into independent
intermediate representations ZX = [z1, ..., zT ] for each reference
control motion X by linear pose mappings ΦX : x→ z. Inspired
by previous work in low dimensional circular embeddings [Lee and
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Figure 4: Left: Our intermediate representation as time-varying
signal. Right: A polar plot with the intermediate representation as
phase and amplitude. The frequency of sequence Z, and the current
instantaneous sample zt, are represented by the dotted line.

Elgammal 2004] and frequency band decompositions [Akhter et al.
2010], we design ZX as a complex sine wave (Fig. 4):

zt = at

(
cos(ϕt)
sin(ϕt)

)
. (1)

ZX forms a curve in polar coordinates which evolves counter-
clockwise as t increases. It is a low dimensional abstraction of
input pose xt which encodes phase as angle ϕt, amplitude as pointer
magnitude at, and frequency ft as change of phase over time.

Mappings ΦX are learned by pairingX to one period of the complex
sine wave ZX = [z1, · · · , zT ], with ϕt = ϕt−1 + 2π/T , where T
is set by x1 and xT . This matches the performance of one period
of motion at maximum amplitude during control definition, at = 1,
which sets the range of available amplitudes in the live motion
control to [0, 1]. The initial phase ϕ1 is set to the frame that is
farthest from the mean.

To separate simultaneous control motions, we enforce zero output for
the remaining control motions by using them as negative examples
and setting zt = 0. This forces Φ to depend on properties of the
input that are unique to the reference. For instance, the two motions
of bending a single finger and of bending all fingers at once can be
distinguished and mapped to different motion classes without any
labeling of body parts (Fig. 11).

Each map ΦX is inferred by linear Gaussian process regression [Ras-
mussen and Williams 2006] and is parametrized by a matrix M that
is given as the mode of the posterior distribution:

p(M |X,ZX) ∝ exp
(
−||MX − ZX ||2F − σn||M ||2F

)
, (2)

where ||.||F is the Frobenius norm and σn is a regularization param-
eter. The linearity of ΦX offers good extrapolation from the training
sequence in that an amplified input motion leads to a proportionally
larger amplitude of ZX , and an increase in motion speed leads to an
increase of the frequency. This makes these parameters intuitively
controllable. While, in general, more flexible non-linear maps can
be adopted if necessary, the linear map proved to be sufficient in our
experiments and was preferred over non-linear alternatives, as it is
fast and it does not require tuning of additional hyperparameters.

Non-cyclic linear motions. These have no notion of frequency,
amplitude, and phase. Instead, we form a separate one-dimensional
space z that represents the progression by ϕ = 2πz, z ∈ [0, 1].
During learning, the reference intermediate representation is defined
as zt = t/T to map progression in the control motion linearly to ϕ.
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Figure 5: AFP parameter estimation on a synthetic sequence with
ground truth: a) User input motion, displayed as trajectories over
time, b) mapped onto the intermediate wave representation, c–e)
Resulting amplitude, frequency, and phase estimates. Shiratori
and Hodgins [2008] use cross-correlation (gray) for phase, which is
generally noisier, and auto-correlation (orange) for frequency, which
has delay of one period. Also direct estimates (green) of amplitude
by ‖z‖ and phase by atan2([z]2, [z]1) are erroneous (first half of
the motion). f) Our phase fusion compensates phase discontinuities
(first 15 frames) and preserves the signal otherwise (frames > 60).

6.2 Live estimate of motion properties

For notation ease, we explain how AFP motion properties are es-
timated for a single reference motion, and so we drop subscript
X . We apply Gabor filtering, a variant of windowed Fourier anal-
ysis which has optimal time-frequency resolution [Feichtinger and
Strohmer 1998]. Gabor functions are sinusoids modulated by Gaus-
sians N(x;µ, σ), where x is time, and µ and σ are the Gaussian
center and standard deviation, respectively:

g(x;µ, f)⇐
(

cos(2πfx)
sin(2πfx)

)
N(x;µ, λ/f). (3)

We find the Gabor function that best fits (maximum response), and
we adopt its phase, amplitude, and frequency as the instantaneous
estimates ât, f̂t, and ϕ̂t. The Gabor response is the complex inner
product rf = 〈[g(t− τ ;µ, f), . . . , g(t;µ, f)], [zt−τ , . . . , zt]〉. We
filter a history of τ = 150 frames (5 seconds) of Z with a series of
50 Gabor functions with wavelengths 1/f ∈ [5, 150] and mean µ
fixed to the most recent frame t.

Cross-correlation is one natural alternative (e.g., [Shiratori and Hod-
gins 2008]); however, we chose Gabor filtering as phase has an
analytic form ϕ̂t = atan2([rf ]2, [rf ]1) which led to higher accu-

racy in our experiments (Fig. 5; §8) vs. the required discrete phase
sampling for cross-correlation.

Previous methods smooth the input signal temporally to overcome
tracking noise and errors from user imprecision, which is essential
for estimating velocity and acceleration. However, deciding smooth-
ing window width is difficult: a large window strongly damps es-
timates, but small windows preserve high frequency noise. In our
case, the Gabor window size adapts to the input motion speed: For
slow motions, the window is large and high frequency noise is ef-
fectively ignored; for fast motions, a small window preserves rapid
changes. The robustness-response trade-off is exposed by λ. We
choose λ = 2/3, which smooths the response over most of one pe-
riod (Fig. 5, c & d). This is not a hard delay: response is immediate
but small, increasing in magnitude over time.

Noise detection. In preliminary experiments, the estimated ampli-
tude was undesirably high for low signal-to-noise ratios, leading to
unintended character actions. To reduce the amplitude in these cases,
we exploit that noise corrupts the sinusoidal form of Z. Intuitively,
given the best fit Gabor function, if Z is still not close to this perfect
sinusoid shape, then the input is likely to be dominated by noise.

A good measure for how close Z is to a perfect sinusoid is the
quotient of maximum Gabor response, rf , and the total energy,
nf , apparent over the corresponding Gaussian window, with energy
nf = 〈[N(t−τ ;µ, λ/f), . . . , N(t;µ, λ/f)], [|zt−τ |, . . . , |zt|]〉. If
Z is not sinusoidal, i.e., rf/nf < 5/6, then the estimated amplitude,
â, is linearly damped to a = â2(s−1/3). We show in our experi-
ments (see video) that this scaling effectively reduces the amplitude
if the signal cannot be uniquely assigned to the control motion.

Discontinuity compensation. As future input is unknown in our
live setting, the Gabor function (and its Gaussian window) is one
sided: it is not smooth as it has a sharp edge. Hence, strong noise
from partial tracking failure is possible, as are multiple local maxima
within the filter response due to fast input motion frequency switches.
These can lead to strong discontinuities in the estimated phase and
frequency. To compensate for drastic changes, discovered frequency
f̂t and amplitude ât parameters are smoothed over time to ft and at
by a small Gaussian of σ = 200ms, respectively. This is different
from smoothing the input poses as high frequencies are preserved,
and is closer in spirit to ease-in and ease-out effects.

To stabilize phase, we exploit the temporal dependency of frequency
and phase. The instantaneous phase estimate ϕ̂t is fused with its
previous estimate ϕt−1 and phase speed 2πft:

ϕt =
ϕ̂t + γ(2πft + ϕt−1)

1 + γ
, (4)

where γ = 10 was empirically set to balance integrated and esti-
mated phase, and computation is in the circular domain ϕt mod 2π.
One could integrate ϕt directly from ft and ϕt−1 (i.e., γ = ∞),
but this decouples the phase of the user control motion from the
character animation, and so leads to less control. The fusion effect
is visualized in Fig. 5 e–f.

Under-constrained input. For very simple input motions which
show variation in a single dimension, such as raising and lowering an
arm periodically, the mapping to the two-dimensional intermediate
representation is under-constrained. We adopt a heuristic on the
uncertainty of the prediction: The predictive variance ϑt correspond-
ing to the input xt is estimated as the average pair-wise distance of
the n = 10 reference intermediate representation frames that were
assigned to the n nearest neighbors of xt in the control definition
step. This is a good estimator when the given input xt is close to the
training data [Kwon et al. 2015], as in our reference/live setup.
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The estimated variance reduces the influence of the potential unreli-
able component: we average variances over the Gabor filter window
and weight the influence of the real and imaginary component of Z
by their reciprocal, respectively. For complex motions both dimen-
sions have full weight, as their variances are similarly low, which
increases robustness to noise.

7 Live character animation

Given a user motion stream V = [. . . ,xt−1,xt] observed until
t, parameters θX :=(a, f, ϕ) are estimated for all control motions
X ∈ X as described in Section 6.2. Here, we explain how θX is used
to initiate transitions in the motion graph (§7.1) and to synthesize
the actual animation of the character (§7.2).

7.1 Motion graph and motion transitions

We connect multiple parametrized classes into a motion graph, with
edges as transitions between classes (Fig. 3, §7.1). By graph con-
struction, nodes with an edge distance greater than two are inde-
pendent, which increases gesture scalability. We trigger transitions
along an edge by varying the activation of simultaneously-performed
control motions (cf. Ishigaki et al. [2009] with sequential but not
simultaneous distinction). As simultaneous gestures are made in-
dependent by mapping to separate intermediate representations, we
simply use the estimated amplitude a of θX to activate gesture X .

Transitions are initiated by increasing the amplitude α of the target
node beyond 0.2 (maximum is 1). A transition is successful if the
amplitude of the source node control motion is reduced to below
0.2. We abort the transition if the target activation sinks below 0.1.
During the transition, we blend linearly over a fixed time window
of half a second between the source and target. For non-cyclical
motions, the progression parameter ϕ of θX is used instead of a
as it measures the distance to the rest state. If desired, unrealistic
transitions such as stopping during a jump could be prevented by re-
stricting transitions to specific points [Kovar et al. 2002] or windows
[Heck and Gleicher 2007].

7.2 Time-shift animation interpolation

Transitions and superpositions of multiple motion classes are syn-
thesized by motion blending. To synthesize animations within a
single motion class X with parameters equal to the most recent
estimates θX , we build upon the radial basis function method of
Rose et al. [1998] and interpolate the nearest database animations
with interpolation weights wY for each animation sequence Y set in-
versely proportional to the parameter distance ‖θX − θY ‖W , where
W normalizes each dimension to [0, 1]. The timing of the animation,
i.e., the time index into Y = [y1, . . . ,yT ], is given by the inferred
phase ϕ of θX .

We use linear derivative time warping [Keogh and Pazzani 2001] to
temporally align database animations during authoring. Even after
temporal alignment, the naive interpolation of different quadruped
locomotion states can cause strong artifacts, such as a leg stuck half-
way during a transition between walks and runs. This is because the
leg actually switches phase: it moves in the opposite direction in the
run than in the walk (Fig. 6). This cannot be solved by improving
global alignment methods, nor by using different character repre-
sentation such as skeletons, because the problem is inherent to the
motion. While rarer, this issue is still possible in bipeds if arms and
legs move synchronously and then asynchronously across motions.

This problem is related to the timing and interpolation of upper and
lower body motions [Ashraf and Wong 2000; Ha and Han 2008],
and to asynchronous time warping for horse gait transitions, where

Figure 6: The quadruped leg interpolation problem. Interpolating
between walk and run animations is difficult for many quadrupeds.
Left: While the back legs align well spatially between the walk and
run frames, the front legs switch phase. Right: Global linear time-
warping cannot fix this temporal alignment problem as the order of
foot placements switches (here, on the left-hand side).

legs are blended separately and timing differences are compensated
gradually [Huang et al. 2013; Sung 2013]. However, these methods
only work for transitions between two motions of boned characters,
and not our more general mesh character case where transition length
is unknown, and where we may interpolate between more than two
animations (our most sophisticated example blends seven animations
in a 4D space). We also experimented with dynamic time-warping
of segments instead of linear time-warping. However, this led to
unrealistic changes in the dynamics of the motion.

We solve the problem with separate timelines for individual limbs
that can shift for alignment, and by separating time and shape (mesh)
interpolation. During database construction, the character mesh is
segmented into torso and limb segments. The longest animation
sequence is selected as reference and all other sequences are aligned
by linear time warping, individually for each limb segment. This
provides a phase offset ∇ϕY,i for each motion Y and limb index
i. During runtime, the time offsets (phase offsets) are interpolated
separately for each i according to weightswY in the circular domain:

ϕi = ϕ+
∑
Y ∈Y

wY∇ϕY,i. (5)

As each example motion Y has the same weight wY across all
segments, the temporal dependencies between limbs are maintained
implicitly if possible and are interpolated if they contradict (e.g.,
the order of foot plants). Only after this temporal interpolation is
the mesh interpolation performed at phases ϕi, with a differential
coordinate reconstruction method which prevents seams between
segments and includes global motion. Additional details on the time
and mesh interpolation are explained in the supplemental document.

7.3 Extensions

Secondary animation. Secondary control motions are superim-
posed onto the primary character animation via mesh deformations.
The deformation is computed as the difference between the mesh an-
imation controlled by the secondary control motion and the character
rest pose. One example of this is lifting the torso of the dinosaur
by raising the user’s head, superimposed onto a simultaneously-
controlled walk, or bending of the caterpillar body during turns
caused by the user physically turning. Superimposing AFP map-
pings is also possible, e.g., shaking the dog’s torso while walking.
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Figure 7: Overlay of three frames, spaced 10 frames apart, of the
dinosaur’s paw during a live-controlled walk. Left: The application
of the foot-plant constraint effectively prevents foot-sliding. Right:
In the unconstrained case, the foot slides back and forth.

Table 2: Evaluation character databases, numerating the motion
classes with characteristics and number of example animations.
Parameter annotations are listed in the supplemental document.

Character Dog Caterpillar

Features Transition, superposition, complex motion Transition
Params. Emotions, amplitude, frequency Amplitude
Motion classes Walk, sit, shake, look, wave, scratch, jaw Walk, crawl, look, jump
# Animations 7 + 1 + 2 + 1 + 1 + 1 + 1 4 + 1 + 1 + 1
# DB frames 130 626

Character Horse Humanoid Dinosaur

Features Rich class control Smooth locomotion Transition, superposition
Params. Emotions, frequency Amplitude, frequency Amplitude
Motion classes Walk Walk Walk, jump, bend, stretch
# Animations 7 6 4
# DB frames 160 165 91

Foot-sliding cleanup. At coarsely sampled regions of the parame-
ter space, the mesh interpolation can deviate from the global charac-
ter motion, leading to foot sliding or no foot-ground contact. To cor-
rect this, we label database animation frames that show ground con-
tact; then, during synthesis, we use the approach of Lee et al. [2010]
and perform a weighted vote (contact=1, no contact=0) between all
database motions with weights wY and per foot time indices from
the time-shift interpolation (§7.2). The activation threshold is set to
0.9 in our experiments. During reconstruction, the constrained feet
are pinned to the ground by additional vertex position constraints in
our differential coordinate solver (see supplemental). This procedure
is simple compared to more complex methods like MeshIK [Sumner
et al. 2005], and effectively prevents sliding (Fig. 7). Importantly,
the foot constraint interpolation benefits significantly from our time
shift solution to the quadruped leg interpolation problem.

Emotion and direction control. We estimate user emotion with
a face tracker, which is an additional parameter dimension e for
character control. Further, the body orientation of the user with
respect to the input device is transferred to control the character rate
of turn β. This second additional parameter dimension improves the
quality of animations such as the long body of a caterpillar turning.

8 Experiments

Our results are best observed in our supplemental video, with a sec-
ond video providing additional comparisons to existing techniques.
We test our method on 5 characters (Table 2): dog, caterpillar, horse,
human, and the dinosaur of Seol et al. [2013]. Please see the supple-
mental document for more details on the experimental setup. The
experiments were performed on a Xeon CPU E5-1620-3.6GHz at
30 FPS for models of 10k faces.

Stand Walk Run

Close-up
views:

Figure 8: Frames from a dog animation generated by mimicking a
walk. The close-up views highlight that temporally and spatially lo-
calized details and dynamics of the original animation are preserved
by our system, such as an eye blink and flapping of the ear.

8.1 Character animation quality

Versatile input devices. Characters are animated with different
user body, hand, and face control motions, captured by non-intrusive
sensors that are suitable for VR applications (Fig. 1). The body is
tracked as 20 3D joint positions by Microsoft’s Kinect and the hand
as 9 3D fingertip and palm positions by Leap Motion. We classify
facial expressions by Intraface [Xiong and De la Torre 2013] as a
continuous value e between sad −1, neutral 0, and happy +1.

Intuitive control. Our mapping is able to generalize and distin-
guish between various user-defined control motions. Our users
preferred human mimicking motions (swinging arms synchronously
and asynchronously for walking and jumping, Fig. 10) and abstract
mimicking of character style (arm undulation for crawling, Fig. 10).

Generalizing control. Figure 8 shows control of the dog locomo-
tion class (Fig. 3). From a single user-defined reference control
motion of an on-the-spot run, and from three character animations,
we can generalize to variations in frequency and amplitude affecting
character stride length and step speed, and dynamics style changes
from stand, to walk, and to run. Details such as eye blinks and speed-
dependent ear wiggles are preserved from the artist animation. The
parallel coordinates graph in Figure 9 also shows that our mapping
is able to reach the majority of a four-dimensional parameter space,
including character emotion.

Robust instantaneous estimates. For the same dog sequence, the
importance of each filtering component is shown in our video. In
addition, the quality of estimates is compared to ground truth on a
synthetic arm waving input motion with additive white Gaussian
noise (SNR = 93.8). Our method quickly estimates changes in
control speed and amplitude, gracefully smooths over discontinuities,
and is more accurate compared to baseline methods (Fig. 5).

One key advantage of our method is that it is reliable for a very
large range of input motion speeds. We show this with the human
character, which has database animations of slow, medium and fast
walks, as well as medium and fast runs. Our method smoothly cycles
through slow walks of one quarter steps per second, up to a fast run
of two steps per second.

Parametrized time-shift interpolation. With our time-shift ap-
proach, the artifacts with interpolating out-of-phase limb motions
are significantly reduced, allowing effective foot-sliding prevention
for bipeds and quadrupeds when varying between motion styles such
as walk and run and different step sizes (Fig. 7). This is visible in all
our quadruped locomotion examples and in a specific side-by-side
comparison in the video.
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Figure 9: Parallel coordinate plot of the parameter space covered
during the horse animation, where each line from left to right cor-
responds to one parameter configuration. Amplitude ranges from
0 almost to 1; frequency shows clusters around walk (0.025) and
gallop (0.04) with transitions; emotion covers the full range from -1
(sad) to +1 (happy). Phase cycles between −π and π. This demon-
strates that our control scheme reaches wide parameter spaces.

Motion graph and control superposition. Interpolating within a
parametric motion class (stand to walk to run, Fig. 1) is caused by
changing motion speed and amplitude. Transitions across classes
(crawl to jump, Fig. 10) are caused by change of control motion.
Secondary actions such as head motion and body bending are super-
imposed. The final dog example in our video combines everything:
hand and face trackers for both cyclic and non-cyclic motions with
wave-based and linear control. We extrapolate control within a
shared locomotion and emotion space, plus linear control over head
rotation, pawing at the dirt, shaking, mouth motion, begging, and
sitting. This control example shows many of our advantages, most
notably the independence of control motions, e.g., bending of the
first finger is used in three separate control motions without interfer-
ence from combinations with other fingers.

8.2 Comparison to related work

Table 1 compares the most related character control methods.

AFP estimation (Shiratori et al. [2008]). A natural baseline for
AFP estimation is auto- and cross-correlation as proposed by Shira-
tori et al. [2008]. In our experiments, normalized cross-correlation
between the reference control motion and input motion performs
similarly in terms of delay and estimated values to Gabor filtering
on our intermediate representation for either an independent con-
trol motion or for simultaneously-performed control motions which
are spatially separated (e.g., left and right arm motion, Fig. 5c–e).
However, frequency and phase estimates were less reliable as the
signal needs to be convolved for a discrete set of phase-frequency
combinations. In contrast, the Gabor filter gives phase analytically
and only requires to sample the frequency dimension. Shiratori et
al. [2008] use auto-correlation to measure the periodicity of a signal.
It requires two motion periods for comparison, hence, introduces a
lag of one period compared to cross-correlation and our approach.
Moreover, it was less reliable in our experiments (Fig. 5c-d). Over-
all, cross-correlation is an alternative to Gabor filtering, but was
discarded due to its drawbacks.

Our main contribution to the AFP estimation problem is the sepa-
ration of simultaneously-performed motions into independent inter-
mediate representations. We demonstrate its importance with the
hand-controlled dog, where talking, shaking and scratching the paw
are controlled by rotating the thumb and shaking the whole hand.
Direct frequency decomposition methods (e.g., [Unuma et al. 1995])
do not consider prior knowledge of a particular reference control
motion, and would lead to permanent undesired control and super-
position. Directly applying cross-correlation to the input motion
(e.g., [Shiratori and Hodgins 2008]) activates all character motions
simultaneously when only one of the corresponding input motions
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Figure 11: Analysis of control independence. Our Gabor filtering
of independent wave representations separates rotation of the whole
hand (top) from thumb rotation (bottom), with high amplitude in
true motion areas and low otherwise. Cross-correlation (e.g., [Shi-
ratori and Hodgins 2008]) suffers from strong interference with high
amplitude in all areas of motion. SVM classification (averaged over
30 frames as per [Seol et al. 2013]) falsely detects no hand motion,
and also detects thumb motion during hand motion.

is performed, as all involve motion of the thumb (Fig. 11). This is
effectively prevented by our separation method, as only very subtle
interference is visible. We shown this in the supplemental video for
simultaneous and intersecting control motions.

Gesture activation classification (Seol et al. [2013]). We com-
pare our method to SVM classification on the task of detecting the
active control gesture. We train a Gaussian-kernel SVM on position,
velocity, and acceleration features and average the activation of each
gesture over 30 frames, as proposed by Seol et al. [2013]. For con-
trol motions which are spatially separated (e.g., left and right arm
control of caterpillar), SVM and our method are equally robust, with
a slightly lower delay for SVM. However, for hand input where the
same finger is used during multiple gestures, SVM falsely detects
thumb motion instead of hand rotation, and also fails to detect the
hand rotation at all, because instantaneous velocity and acceleration
features do not distinguish the performed quick hand motions reli-
ably (Fig. 11). In contrast, our method separates control motions
correctly in this challenging case with very little interference.

Pose mappings. To see the effect of our motion mapping in
contrast to existing pose mappings, we compare against a shared
GPLVM with 15 latent dimensions (similar to Yamane et al. [2010]),
a latent volume nearest neighbor (NN) pose mapping with 15 neigh-
bors (similar to the mapping of Seol et al. [2013] for cyclic motions),
and a linear pose mapping (similar to Rhodin et al. [2014] and Seol et
al. [2013]). We train all systems with an arm swing control motion of
32 frames, corresponded to horse walk and horse stand animations.

Our method is able to reproduce all details of the horse animations
and extrapolates to smaller step lengths by reducing the control arm
swing extent. No other compared method is able to generalize this
change in control: The shared GPLVM method shows very strong
jitter. The NN lookup cannot reproduce the temporal evolution of
the original animation exactly due to input noise and user impreci-
sion, and also cannot generalize the transition from walk to stand.
The linear map suffers from less jitter, but the animation detail is
reduced. Moreover, at high control motion speed, it exhibits un-
natural exaggerated rotations in the hooves, as the mapping was
learned from a single example motion at fixed velocity and the used
velocity features do not generalize to significantly different input
speeds. None of these artifacts occur in our generated animation.
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Figure 10: Animation of the caterpillar character, controlled by the user (black skeleton): Column 1: Crawl by swinging the arms
asynchronously. Column 2: Bending by turning user body. Column 3-5: Separate walk styles with large style variations by waving the left arm
at different amplitudes. Column 6-7: Jump by swinging arms synchronously. Column 8: Rising the head by bending.

Figure 12: Comparison with [Rhodin et al. 2014]. Top: User body
and face pose, used for both techniques. Middle: Our animation
using the parametrized horse motion class; from left to right: stand,
trot, happy gallop, and sad gallop. Bottom: Rhodin et al. shows
distortions in the stand and is not able to generalize to a gallop
when speeding up (column 3) nor to different moods (column 4).

Pose mappings — Seol et al. [2013]. We directly compare to the
dinosaur animation presented by Seol et al. [2013]. Cyclical motions
are classified and mapped by NN maps, which are limited as they
do not generalize to motions of varying amplitudes. Our method
improves the control of cyclic motions as it is able to recover very
slow and very fast motions, with independent control of dinosaur
step length and step speed, all generalized from a single user motion
training example. Moreover, we provide more controls (jumping and
tail wiggle) within the same control sequence due to independence of
controls. Finally, our control is more robust, and so the synthesized
cyclic dinosaur walk contains less temporal jitter and no foot sliding.

Pose mappings — Rhodin et al. [2014]. Compared on horse
locomotion (Fig. 12), our method provides improved control over
motion style and emotion by mapping to a parametrized locomotion
class of stand, trot, and gallop animations in happy, neutral, and sad
emotion variations (seven animation examples). Neither the richness
of control nor the extrapolation from a single example control motion
is possible with the linear mapping used by Rhodin et al. [2014].

8.3 User evaluation

We studied wave gestures with 10 participants. For fair comparison,
we predefined control motions for all participants, as per a typical
game setting. In a pilot study, we rejected NN mapping (similar to
Seol et al. [2013]) as this did not generalize well to different user
body proportions nor to variations in user-specific control motion
characteristics. Direct pose mapping (similar to Rhodin et al. [2014])
worked well for control; but output animations look stilted, with
foot skating, floating, and temporal jitter. Specifically, very slow or
fast control motions that differ strongly from the reference control
motion lead to unpleasant artifacts (see video, model comparison
section). Thus, we chose the familiar gamepad as a baseline. Ampli-

tude and frequency map to left/right analog triggers, heading to left
thumb stick, and motion transitions to face buttons. Progression is
obtained by integrating frequency.

We tested three game-like tasks: 1) Follow a curved path, to test
world locomotion control; 2) Transition between motion classes at
specific world points, to tests action or event response; 3) Control
horse step length and frequency to match a reference, to test precise
control (see video, 03:38). The path has width 4× character width
and 10 turns with average maximum curvature 0.26× path width.
After training of one minute for each task, all subjects were able
to solve all tasks with both methods. Figure 13 shows box plots
with outlier rejection computed using ROUT at Q = 1%, P values
computed using paired Student’s t-test analysis, and significance
shown at the 95% confidence level.

In summary, wave gestures are a competent alternative to a gamepad
for our tasks. With the same control motions, all 10 participants were
able to complete all tasks. This shows robustness to different body
shapes and input motion variations, including to children (03:38–
04:03, bottom left). In detail, for task 1, our method is slightly worse
than the gamepad, straying from the path 0.6 times on average per
participant and taking on average 4 seconds to get back on track,
though this is somewhat expected as directional control is simple
with the familiar gamepad. That said, users found it easier to adapt
character speed to narrow or wide curves with wave gestures. Task
2 was comparable with both methods, but gamepad character anima-
tion looks less convincing with many abrupt changes in direction,
amplitude, and frequency (video, 03:32–03:47, bottom right). For
task 3, wave gestures were significantly more accurate (p-value =
3.95× 10−2), with frequency also showing improvements (p-value
= 5.18 × 10−2). We believe this is because frequency control is
intuitive if performed with cyclic motions, as is change in stride
length through amplitude control. We strengthened this belief in a
post-task questionnaire, with wave gestures rated significantly more
intuitive for stride length and step frequency control.

Users identified two significant limitations which apply broadly to
gesture control: greater control delay vs. gamepad, and higher phys-
ical demand. Should a motion be uncomfortable, one benefit of our
approach is that different control motions can be interactively de-
fined in just a few seconds, with no required limb or part association.
Our approach also allows different motion trackers to be swapped in
easily as, after character authoring, the only input we require is 2D
or 3D skeleton points. For example, we track the hand (see video),
which is more suitable for longer control sessions or desk work.

One aspect that is untested in this study is the superposition of
multiple motions, which is hard to map to a gamepad but is easily
solved with wave gestures. The lack of more negative significant
differences may be surprising given the familiarity of gamepads,
though it is clear that both schemes have strengths and weaknesses.
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8.4 Expert animation practitioners

We invited three professionals to asses our system: a live animator,
an offline animator, and a game animation middleware developer.

Live animator. Our trained performance animator was very enthusi-
astic about our system. They imagined a large potential for character
control on stage through the mixing of pre-authored animations.
However, the stage has demanding standards: while our approach
is robust, slight delays when transitioning can cause inexperienced
users to repeat actions, and the user must learn to trust this behavior
in performance. She requested additional database animations, such
as foot scratching and jumping; our system scales well to these
additional animations by the motion graph.

Offline animator. Our offline animator saw the largest potential for
our system at the prototyping stages of the animation pipeline, where
quick and easy generation of animations would help communicate
with the director. Further, they saw potential during content creation
as a blocking tool for creating an initial animation from a storyboard,
which is then later refined offline in the standard animation pipeline.

Game animation middleware developer. Our developer sug-
gested that our approach fits many game requirements, notably
the user flexibility, speed, and robustness. Our authoring pipeline
is very similar, with games typically using animation blend trees
(synonymous with parametric motion classes) and state machines (a
simplified motion graph). Beyond real-time control, he saw a benefit
for games companies who buy off-the-shelf motion databases, where
our technique would allow animators to create new sequences in the
style of the original database but with expanded variety, particularly
for quadrupeds where existing data is rarer.

9 Limitations and discussion

Any system is a point in a design space with trade-offs. For real-time
character control system, these are typically expressiveness, learn-
ability, flexibility, and robustness. Our choices focus on improving
the last three of these attributes. However, we limit expressiveness,
in contrast to retargeted ‘one-to-one’ mapping approaches, with
a need for authored character animations. Having said that, our
approach is a good fit for games and virtual worlds. One way to
overcome the general expressiveness problem is to allow a gesture
to switch into a retargeted animation mode as a node in the motion
graph, e.g., when appropriate for direct interaction with an object.
For environmental context triggering, our activation variables work
similarly to Ishigaki et al. [2009], so moving in the world could
trigger motion control changes.

One might suspect that our 2D intermediate representation is too
drastic a reduction in dimensionality. However, the intrinsic dimen-
sionality of individual motions is low, and a drastic reduction is

actually desirable: 1) To combat ‘noise’, as user shape and coordina-
tion skills vary greatly (e.g., children), with tracking inaccuracy also
affecting the result; 2) Each parametric motion class has one refer-
ence control motion, and control through variations of this motion
are inherently similar. A drastic reduction is also sufficient: If we
attempt to reconstruct original control motions from our wave repre-
sentation by the inverse linear map Φ+, we measure reconstruction
error as ≈ 0.3× the standard deviation (over all dimensions) of the
original signal. Empirically, our examples show that we compete
with or exceed the flexibility, ease of control, and animation qual-
ity of alternative high-dimensional pose mapping approaches. In
principle, the intermediate representation and filtering could also
be extended to capture multiple harmonic frequency bands, which
would allow multiple frequency motion detection, but this compli-
cates user control and is harder to understand for novice users.

The applied Gabor filtering infers AFP from ≈one period of motion,
which limits the ability to control speed and amplitude of character
motions within a single period. Control can become difficult at very
abrupt changes such as quickly transitioning to high jumps. There
is a fundamental trade-off between robustness and responsiveness;
though different filtering techniques might adapt to this specific
case, e.g., cubature Kalman filter [Arasaratnam and Haykin 2009].
If desired, physical constraints could be incorporated to restrict
unrealistic motions, such as stopping during jumps or flight phases.

Our approach to distinguishing gestures is robust as competing
reference control motions are used as negative examples in training.
We show scalability to many different control motions in our video;
however, we have difficulty distinguishing gestures which are very
similar, e.g., hand waving in a straight line vs. on an arc. Any control
gestures which are more than two edges apart in a motion graph are
independent, so ‘scalability’ must also consider how many edges
are typically needed per node? For a game, this is governed by the
available control DOFs. A typical gamepad has 10-12 binary buttons,
two linear triggers, and two 2D linear thumbsticks. In our example
of the dog controlled by the hand and face, we show independent
linear or cyclic control of four locomotion, one emotion, and six
action parameters. Under this comparison, we fare comparably:
we have less binary states, but we offer more expression per DOF.
While the scalability problem is general to gestural approaches, we
somewhat relieve these restrictions through the graph design.

The question of intuitive gestures for arbitrary characters is open-
ended, involving issues such as learnability, comfort, and user pref-
erence. We demonstrate a flexible approach which allows interactive
mapping of different controls learned with a single reference control
motion from the user. Our user study shows that people of many
shapes and sizes could quickly adapt to using the system with good
accuracy.

Our approach is applicable to characters created by various ani-
mation tools because it is always possible to export any animation
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format to our mesh representation (e.g., rig or deformation cages),
but it is harder to take our synthesized mesh animation and recover
rig parameters to continue animation with traditional pipelines. In
principle, our core mapping is independent of character representa-
tion; however, demonstrating a mapping to rigged characters remains
future work.

Currently, we do not extrapolate outside the animation database.
However, this would be possible by embedding into a latent space
with extrapolation capabilities, e.g., non-linear Gaussian process
latent variable model (GPLVM) embeddings [Lee and Elgammal
2004; Levine et al. 2012] and multi-dimensional scaling [Shin and
Lee 2006; Cashman and Hormann 2012]. Our focus is instead on
robust input generalization — the output of our algorithm could be
used as input to these techniques to drive animation synthesis.

10 Conclusion

We present an approach to decompose robustly and in real-time
high-dimensional input motions into wave parameters of amplitude,
frequency, and phase for a set of control motions. We interactively
learn a mapping from single reference examples of a user defined
control motion to an intermediate 2D sinusoid representation, which
lets us generalize variations of wave parameters during live mo-
tion. This provides intuitive control variation, particularly for cycles,
and produces higher-quality character animation than competing
approaches. For instance, when interpolating within a parametrized
database, simply increasing the frequency of a gesture enables nat-
ural transitions from walking to running. Our approach applies to
arbitrary characters, and so for quadrupeds, we solve the locomotion
interpolation problem with a time-shifted approach that separates
temporal alignment from pose interpolation and partially decouples
character segments (e.g., limbs). In a user study, we verified that
our system was intuitive to learn and operate, and applies well to
different users, control motions, and motion trackers. As such, it had
the potential to be useful for situations where traditional controllers
are inappropriate, particularly for game and VR applications.

Acknowledgements

We thank Gabi Kussani, our professional Hohnsteiner puppeteer, our
animators Gottfried Mentor and Cynthia Collins, Yeongho Seol for
his correspondence and his dinosaur character, Gregorio Palmas and
Hendrik Strobert for visualization help, and Michael Neff, Takaaki
Shiratori, Kiran Varanasi, Simon Pilgrim, and all reviewers for their
valuable discussion and feedback. This research was partially funded
by the ERC Starting Grant project CapReal (335545). Kwang In
Kim thanks EPSRC EP/M00533X/1. James Tompkin and Hanspeter
Pfister thank NSF CGV-1110955.

References

AKHTER, I., SHEIKH, Y., KHAN, S., AND KANADE, T. 2010.
Trajectory space: a dual representation for nonrigid structure
from motion. IEEE TPAMI 33, 7, 1442–1456.

AKHTER, I., SIMON, T., KHAN, S., MATTHEWS, I., AND SHEIKH,
Y. 2012. Bilinear spatiotemporal basis models. ACM TOG 31, 2,
1–12.

ARASARATNAM, I., AND HAYKIN, S. 2009. Cubature Kalman
filters. IEEE Trans. Automatic Control 54, 6, 1254–1269.

ASHRAF, G., AND WONG, K. C. 2000. Generating Consistent
Motion Transition via Decoupled Framespace Interpolation. CGF
19, 3, 447–456.

BARAN, I., VLASIC, D., GRINSPUN, E., AND POPOVIĆ, J. 2009.
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