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Abstract. Recent advances in segmentation methods for connectomics
and biomedical imaging produce very large datasets with labels that
assign object classes to image pixels. The resulting label volumes are
bigger than the raw image data and need compression for efficient stor-
age and transfer. General-purpose compression methods are less effective
because the label data consists of large low-frequency regions with struc-
tured boundaries unlike natural image data. We present Compresso, a
new compression scheme for label data that outperforms existing ap-
proaches by using a sliding window to exploit redundancy across border
regions in 2D and 3D. We compare our method to existing compression
schemes and provide a detailed evaluation on eleven biomedical and im-
age segmentation datasets. Our method provides a factor of 600-2200x
compression for label volumes, with running times suitable for practice.
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1 Introduction

Connectomics—reconstructing the wiring diagram of a mammalian brain at
nanometer resolution—results in datasets at the scale of petabytes [21,8]. Ma-
chine learning methods find cell membranes and create cell body labelings for
every neuron [18,12,14] (Fig. 1). These segmentations are stored as label volumes
that are typically encoded in 32 bits or 64 bits per voxel to support labeling of
millions of different nerve cells (neurons). Storing such data is expensive and
transferring the data is slow. To cut costs and delays, we need compression
methods to reduce data sizes.

The literature currently lacks efficient compression of label volumes. General-
purpose compression schemes [3,24,11,15,23,19,16,22,6,2] are not optimized for
this data. In this paper, we exploit the typical characteristics of label volumes
such as large invariant regions without natural relationship between label values.
These properties render 2D image compression schemes inadequate since they
rely on frequency reduction (using e.g., wavelet or discrete cosine transform) and
value prediction of pixels based on local context (differential pulse-code modu-
lation) [17,20]. Color space optimization strategies in video codecs [1] also have
no effect on label volumes, even though the spatial properties of a segmenta-
tion stack (z -axis) are similar to the temporal properties of video data (time-
axis). A compression scheme designed specifically for label volumes is part of
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Fig. 1. Examples of connectomics segmentation data with a different color per cell.

the visualization software Neuroglancer [7]. This method exploits segmentation
homogeneity by creating small blocks with N labels and reducing local entropy
to log2N per pixel. Lookup tables then decode the values [0, N) to the original
64-bit labels. We compare the Neuroglancer scheme with our method.

We explore the lossless compression of gigavoxel neuron segmentation vol-
umes with high bit-encodings. We study and evaluate the performance of existing
lossless compression methods, and their combinations, on multiple connectomics,
magnetic resonance imaging (MRI) and general segmentation datasets. As our
main contribution, we present Compresso—a novel compression method designed
for label volumes using windowed feature extraction. Compresso yields compres-
sion ratios on label volumes 80% higher than the current best tools (Sec. 3). We
release an open-source C++ implementation of our method including a Python
interface.

2 The Compresso Scheme

2.1 Encoding

Overview. Segmentation datasets contain two important pieces of information
across the image stack: per-segment shape and per-pixel label. Decoupling these
two components allows for better compression on each.

Boundary Encoding. To encode the segment shapes, we consider the bound-
ary pixels between two segments. Removing the per-pixel labels, we produce a
boundary map for each slice where a pixel (x, y, z) is 1 if either pixel at (x+1, y, z)
or (x, y+ 1, z) belongs to a different segment. The boundary map is divided into
non-overlapping congruent 3D windows. If there are n pixels per window, each
window w is assigned an integer Vw ∈ [0, 2n) where Vw is defined as:

Vw =

n−1∑
i=0

I(i)2i, (1)
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and I(i) is 1 if pixel i is on a boundary and 0 otherwise. Figure 2 shows an
example segmentation with a window size of 4× 4× 1.

i

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 2. A 4 × 4 × 1 pixel window where three unique labels meet (left). The boundary
map for the same window, where dark pixels represent the boundary (center). This
window has an encoded value of 50,978 (21 +25 +28 +29 +210 +214 +215). A boundary
pixel i that is indeterminate and requires additional decoding information (right).

A priori, each window could take any of 2n distinct values, and therefore
require n bits to encode without further manipulation. However, boundaries in
segmentation images are not random, and many of these values never appear.
Indeed, we find that a small subset of high-frequency Vw values accounts for most
windows, allowing for significant compression. Figure 3 shows the 100 most com-
mon windows for a representative connectomics dataset. These 100 frequently
occurring windows account for approximately 82% of the over 1.2 million Vw
values in this dataset. Nearly all of these windows correspond to simple lines
traversing through the window. For contrast, we also provide 5 randomly gener-
ated windows that never occur in the dataset.

We define N as the number of distinct Vw representing all of the windows in
an image stack. We construct an invertible function f(Vw)→ [0, N) to transform
the window values into a smaller set of integers. For all real-world segmentations
N � 2n; however, we assume no constraint on N in order to guarantee lossless
compression. With this function, each Vw requires log2N bits of information to
encode. This is fewer than the initial number of bits so long as N ≤ 2n−1. We
create two arrays that store the per-segment shape encoding: WindowValues[]
contains the value f(Vw) for every window w and ValueMapping[] contains the
reverse mapping from [0, N)→ [0, 2n) based on the function f . Long sequences
of 0s in WindowValues[] are reduced using run-length encoding.

Per-Pixel Label Compression. So far we have focused exclusively on transform-
ing the boundary map of an image segmentation. However, the per-pixel labels
themselves are equally important. The boundary map divides each image slice
into different segments. By design, all pixels in the same segment have the same
label so we store only one label per segment for each slice. We use a connected-
component labeling algorithm to store one label per segment [9]. The algorithm
labels all pixels clustered within a component m from M section labels. We store
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the original label for a segment m in slice z in Labelsz[m]. We concatenate these
arrays for every image slice to create a variable Labels[].

Fig. 3. The 100 most frequent windows accounting for approximately 82% of the over
1.2 million Vw values on a representative connectomics dataset contrasted with 5 ran-
domly generated windows. Each box represents an 8 x 8 x 1 window where black pixels
are boundary and white pixels are non-boundary.

Exceptions. Thus far, we have assumed the boundaries described in Section 2.1
provide enough information to reconstruct the entire segmentation. Pixels not
on a segment boundary are easily relabeled using the Labels[] array. However,
more care is needed for pixels on the segment boundaries. Consider Figure 2,
which depicts a difficult boundary to decode. If a boundary pixel has a non-
boundary neighbor to the left or above, then that pixel merely takes on the
value of that neighbor. However, the pixel i requires more care since its relevant
neighbors are both boundary pixels. If a non-boundary neighbor pixel shares a
label with the undetermined pixel, we add the offset to that neighbor to an array
IndeterminateValues[]. Otherwise we add that per-pixel label.

Metadata. We construct a data structure containing the two per-segment shape
and two per-pixel label arrays. The last component of the data structure is the
Header, which contains the dimensions of the original data, the window size,
and the size of the arrays. Compresso could be improved by further compress-
ing the individual components of the encoding (e.g., Huffman encoding the Vw
values). We achieve strong overall compression by using a second-stage general
compression scheme such as LZMA (Sec. 3).

2.2 Decoding

The first step in decoding the data is to reconstruct the boundary map. We
iterate over every pixel, determine the corresponding window w, and retrieve
the encoded window value f(Vw) from the WindowValues[] array. These values
range from 0 to N − 1 and correspond to an index in ValueMapping[] that
contains the original Vw value. After decoding Vw, the value of pixel i in window
w equals Vw ∧ 2i.

After reproducing the boundary map, we execute the same deterministic
connected-components algorithm per slice as when encoding. Each component
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in the boundary map receives a label between 0 and M − 1. Using the Labels[]

array, we can easily translate these component labels into the original per-pixel
labels for every slice. To determine the per-pixel labels for every boundary pixel,
we iterate over the entire dataset in raster order. Any boundary pixel (x, y, z)
with a non-boundary neighbor at (x − 1, y, z) or (x, y − 1, z) shares the same
per-pixel label. If both relevant neighbors are boundaries we consider the next
unused value in the IndeterminateValues[] array and update this pixel’s label.

2.3 Complexity

In what follows, P is the number of input pixels; N is the number of distinct
window values; X, Y and Z are the size of the x, y, and z dimensions of the
input data; and α is the inverse Ackermann function [5].

Encoding. Extracting the boundaries from the segmentation, generating the Vw
values, and populating the IndeterminateValues[] array are all linear work in
P . The N unique window values are sorted to create the ValueMapping variable.
Generating the Labels[] array requires running a connected-component labeling
algorithm over each z slice; we use a union-find data structure with union by rank
and path compression optimizations. The overall complexity of the compression
scheme is therefore O (P (1 + α(XY )) +N logN).

Decoding. Decoding the window values, reconstructing the boundary map, and
applying the correct per-pixel labels for all boundary pixels using the array
IndeterminateValues[] are all linear work in P . Reconstructing the per-pixel
labels requires running the connected-component labeling algorithm over every
image slice. The overall complexity of the decompression scheme is therefore
O (P (1 + α(XY ))).

3 Evaluation and Results

We consider the following compression schemes: Compresso, Neuroglancer, Brotli,
BZip2, Zlib, LZ78, LZF, LZMA, LZO, LZW, Zopfli, Zstandard, PNG, JPEG2000,
and X.264. In addition to these stand-alone compression schemes we consider all
pairs with a first stage encoding using either Compresso or Neuroglancer and a
second stage using one of the general-purpose algorithms. Both Compresso and
Neuroglancer leave some redundancies that a general-purpose compressor can
easily reduce; such multi-stage schemes are common in image compression. Ta-
ble 1 presents six connectomics, three MRI, and two image segmentation datasets
used for evaluation. Compresso works for any arbitrary 2-D and 3-D window di-
mensions. We achieve the results in this section using an 8x8x1 window.

The combination of Compresso and LZMA provides superior compression
on all connectomics datasets (Tab. 1). Figure 4 shows the compression ratios
for every compressor on segmentation data. For example, Compresso achieves a
compression ratio of over 950x on L.Cylinder reducing the 10 gigabyte volume to
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Table 1. For evaluation, we use the following publicly available datasets. Segmenta-
tions were obtained using a combination of U-net [18] and watershed, semi-automatic,
or manually. Compresso paired with LZMA yields the best compression ratio on all
datasets indicated by an asterisk (*). Neuroglancer paired with LZMA achieved the
best compression ratio only for the SPL Brain Atlas (724x).

Dataset Size Segmentation
Compresso + LZMA

Speed (Com./Dec.) Compression Ratio

AC3 Subvolume1

mouse cortex, EM
1024 × 1024 × 150 vx
(6 × 6 × 30 nm3/vx)

U-net 100 / 209 MB/s 814x *

AC4 Subvolume
mouse cortex, EM

1024 × 1024 × 100 vx
(6 × 6 × 30 nm3/vx)

U-net 105 / 218 MB/s 701x *

L. Cylinder2 [10]
mouse cortex, EM

2048 × 2048 × 300 vx
(3 × 3 × 30 nm3/vx)

U-net 103 / 180 MB/s 952x *

CREMI A, B, C3

drosophila brain, EM
1250 × 1250 × 125 vx
(4 × 4 × 40 nm3/vx)

U-net
110 / 218, 118 / 243,
110 / 219 MB/s

857x *, 1239x *
960x *

SPL Brain Atlas4

T1/T2-weighted MRIs
256 × 256 × 256 vx
(1 × 1 × 1 mm3/vx)

Semi-autom. 85 / 254 MB/s 636x

SPL Knee Atlas5

MRI
512 × 512 × 119 vx
(0.277 × 0.277 × 1 mm3/vx)

Semi-autom. 136 / 244 MB/s 1553x *

SPL Abdominal Atlas6

CT
256 × 256 × 113 vx
(0.9375 × 0.9375 × 1.5 mm3/vx)

Semi-autom. 91 / 254 MB/s 480x *

BSD5007

Segmentation Challenge
321 × 481, 2696 images Manual 110 / 187 MB/s 1188x *

PASCAL VOC8

2012 Challenge
Varying, 2913 images Manual 146 / 222 MB/s 2217x *

10.5 megabytes. LZMA performs very well by itself and paired with any encoding
strategy. X.264 performs surprisingly poorly on these datasets, in part because

of our requirement of lossless compression. It performs better when informa-
tion loss is tolerated, however, even then it does not surpass the more special-
ized encoding schemes. These observations also hold for JPEG2000 and PNG.
Compresso with LZMA outperforms all other existing methods on connectomics
datasets by 80%.

The fundamental principles guiding Compresso are valid for a diverse set of
segmentation datasets (Fig. 4, right). We evaluate the performance of our com-
pression scheme on three MRI and two image segmentation datasets to demon-
strate additional potential use cases. Compresso followed by LZMA compresses
the MRI datasets reasonably well, particularly on the SPL Knee Atlas which
contains highly redundant boundary segments. The Berkeley Segmentation and
PASCAL Visual Object Class datasets are two very common benchmarks in
image segmentation [13,4]. Currently these datasets use GZIP and PNG com-
pression but Compresso with LZMA can improve on them by a factor of over
10x and 5x respectively.

1
AC3+AC4 Subvolumes: http://openconnecto.me/catmaid/?dataview=13

2
L. Cylinder: https://software.rc.fas.harvard.edu/lichtman/vast/

3
CREMI A+B+C: http://www.cremi.org

4
SPL Brain Atlas: http://www.spl.harvard.edu/publications/item/view/2037

5
SPL Knee Atlas: http://www.spl.harvard.edu/publications/item/view/1953

6
SPL Abdominal Atlas: http://www.spl.harvard.edu/publications/item/view/1918

7
BSD500: https://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

8
VOC2012: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

http://openconnecto.me/catmaid/?dataview=13
https://software.rc.fas.harvard.edu/lichtman/vast/
http://www.cremi.org
http://www.spl.harvard.edu/publications/item/view/2037
http://www.spl.harvard.edu/publications/item/view/1953
http://www.spl.harvard.edu/publications/item/view/1918
https://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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Fig. 4. Compression ratios of general-purpose compression methods combined with
Compresso and Neuroglancer. Compresso paired with LZMA yields the best compres-
sion ratios for all connectomics datasets and in average (four out of five) for the others.

In terms of speed, Compresso is on par with Neuroglancer across all datasets
and achieves throughput of 112.16 megabytes per second (SD = 18.62 MB/s)
for compression and 222.85 megabytes per second (SD = 32.14 MB/s) for de-
compression. All experiments ran on a single core of a Intel Xeon 2.3GHz CPU.

4 Conclusions

We have introduced Compresso, an efficient compression tool for segmentation
data that outperforms existing solutions on connectomics, MRI, and other seg-
mentation data. In the future we plan to improve random access to lower memory
requirements for online viewers and enhance compression of the metadata. Also,
we will integrate Compresso into our analysis pipeline and various end-user ap-
plications. To encourage testing of our tool, replication of our experiments, and
adoption in the community, we release Compresso and our results as free and
open research at github.com/VCG/compresso.
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