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Abstract
Collaborative slide image viewing systems are becoming increasingly important in pathology applications such
as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital
pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or
mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports
collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients.
Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange
image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages
real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated color space
to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of
our compression method and the performance of our system for diagnosis with an in-depth user study.

1. Introduction

Traditional anatomic or surgical pathology involves the re-
view of thin tissue sections mounted on glass slides using
a conventional light microscope. An experienced surgical
pathologist views a large number of slides each working
day, generated from a variety of different tissue and speci-
men types. Small biopsy-type specimens are generally rep-
resented on only a few slides (less than 10), whilst larger,
complex multi-part excisions may generate tens to a hun-
dred or more slides. In general, assigned cases are prioritized
("rush", biopsy or excision) and reviewed as they become
available through the day. Additional slides or special stains
are ordered as necessary, the findings integrated with those
on the initial slides and a diagnosis rendered. In this way a
large number of diagnostic decisions can be made quickly
and efficiently enabling the pathologist to handle a large and
varied caseload.

Typically, the majority of the case review is "solo", how-

ever, there are several common situations that require collab-
orative review. A general pathologist may need the opinion
of a more experienced colleague or an expert opinion from
a subspecialist. If both are at the same geographic location,
the pathologists can view the slides simultaneously by using
a double-headed microscope. One pathologist "drives" the
slide on the microscope while the other views it, an intrin-
sically more passive experience. Consensus review of diffi-
cult cases by a pathology group, or group of subspecialists
utilizes a multi-headed microscope for collaborative review.
Finally, solo review followed by collaborative review with
the attending pathologist is crucial for training of pathology
residents and fellows.

Digital pathology has many potential advantages over the
current manual processing, archiving and retrieval of of glass
slides. For example, slide delivery and subsequent archiv-
ing can be fast and simple and much less labor intensive.
Slide images can be incorporated into the electronic medi-
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Figure 1: Our collaborative digital pathology system. Mobile and desktop clients are connected through networks for collab-
orative remote diagnosis. Our client systems provide a multi-touch user interface for fast and intuitive view manipulation that
mimics the viewing glass slides on a real microscope. Our novel image compression method leverages hardware decompression
to allow fast switching of focal planes and zoom levels on mobile devices.

cal records for easy referencing. Removing geographic con-
straints allows greater access to subspecialty pathologists
and a more efficient distribution of cases. Despite the ap-
parent benefits, many pathologists are reluctant to transition
to use of digital methods. To gain widespread acceptance, a
digital pathology system needs to be as fast and efficient as
the glass slide approach. Although whole slide images can
be generated quickly (approximately 1 min per slide) using
automated scanners from companies such as Aperio, Hama-
matsu and Olympus, existing software solutions for viewing
whole slide images have three significant drawbacks. First,
reliable and fast access of the data for subsequent viewing
and analysis is difficult, especially if the desire is to ac-
cess the data from a remote site. Current systems are not
optimized for remote collaborative viewing. Second, mod-
ern tools for visualization (e.g., rapid advance through focal
planes or successive slide images) and measurement (e.g.,
length or area) cannot be brought to bear on the diagnosis
challenge. Finally, annotations as a record of diagnosis or
for the purposes of education cannot be affixed directly to
the data, for example, to circle, highlight or indicate points
of interest in the image. The overall goal of the work pro-
posed here is to address these challenges.

Our approach has been to develop a server responsible for
data and parameter storage and exchange while a client han-
dles necessary computation locally using only a small subset
of the data. The server manages large image data efficiently
using a database and quickly provides small subsets of the
data requested by the client. The server also stores all the
non-image meta-data that are generated during the diagnosis
process, including session and user identifiers, image opera-

tors, and annotations, and coordinates clients to share this in-
formation with each other. We used a standard HTTP-based
server and a MySQL database to implement a scalable sys-
tem while reducing development effort. The client has a ded-
icated image viewer that can display extremely large image
data efficiently. The core idea is to reduce the data transfer
overhead by using a novel data compression method and to
achieve interactive performance by processing only visible
data using on-the-fly hardware decompression. Our system
supports multi-touch enabled mobile client devices, namely
the iPad and the iPhone, and high-performance workstations
equipped with fast graphics processors (GPUs) (Figure 1).

The primary contributions of our work are twofold. First
we introduce a novel digital pathology system based on a
client-server model that supports remote viewing of three-
dimensional whole slide images at interactive rates on mo-
bile client platforms. To the best of our knowledge this sys-
tem has the highest performance available and is the only
one designed for remote collaborative viewing on touch-
enabled mobile computing devices. Second we propose a
novel image compression method that leverages hardware
decompression on mobile devices for faster decoding while
achieving bit rates as low as 0.833 bits per pixel (bpp)
with minimal loss of image quality. We evaluate our digi-
tal pathology system and image compression method with a
user study to demonstrate their effectiveness.

2. Related Work

The success of any digital pathology system crucially de-
pends on two factors: a database able to serve requests within
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Figure 2: Common practice for collaborative diagnosis us-
ing a dual view microscope. In this workflow, one per-
son drives the microscope while the other simultaneously
watches through separate microscope oculars. Other ver-
sions of multiheaded microscopes have three or more ocu-
lars.

short time and a client to provide domain experts with a
fast visual stream of information. Especially the client de-
termines power and flexibility of the entire system. The
use of web-based clients [NYU, NDP] has the advantage
of working in any web browser (and therefore on any re-
cent mobile device), but the viewer’s function is limited
to simple image display. For instance, advanced functions
are not generally supported, such as tracking another user’s
view in real-time or fast switching of focal planes and zoom
levels. A competing approach is to utilize a locally stored
database [NDP, Sco] to offer high performance, but chang-
ing focal and zoom levels rapidly still results in large band-
width requirements and memory footprints. It is therefore
not fully solved satisfactorily. Jeong et al. [JST∗10] address
this problem by compressing multiple image slices jointly.
Using GPU-based decoding, their system allows fast switch-
ing of focal planes and adjustment of zoom levels. However,
the latter method does not support efficient remote collabo-
ration using mobile devices nor does it provide multitouch
user interface for easier navigation.

Remote visualization systems [Bet00] can be roughly
classified into render-local (the server transfers raw data to a
client for rendering and display) and render-remote systems
(the server forms the final image and sends it to the client for
display). Since render-local systems are prone to becoming
infeasible in case of data so large that it exceeds both band-
width and local hardware limitations, render-remote sys-
tems (e.g., [EE99, MC00, SME02]) have been more popu-
lar. However, render-remote systems typically require sig-
nificant investments in terms of server hardware while the
hardware of the client remains largely idle. Therefore, a
third class of systems uses a shared rendering approach (the
server renders an intermediary format and sends this to the
client for final compositing). Shared rendering systems typ-
ically utilize graphics hardware acceleration on the client to
ensure interactive performance [BSL∗00, EEHT00, LP03].

While commercial and open source systems [IBM05, App,
Gol, HRC∗06, Par] implementing these paradigms are read-
ily available, the size and complexity of these systems is a
barrier to entry for new users and pathologists. Furthermore,
these systems are not optimized for interactive visualization,
they do not fully support mobile clients, and they are com-
pletely agnostic of the particular task at hand (i.e., whole
slide digital pathology image stacks).

Our system classifies as a render-local system, but we
overcome bandwidth limitations using a domain-dependent
data compression scheme which can be decoded by mo-
bile client GPUs. The use of domain-specific knowledge
about the optical microscopy data used in digital histopathol-
ogy has received comparably little attention. The preva-
lent approach is to encode images separately using JPEG
or vector quantization [NH92, GG91] on Laplace pyra-
mids [BA83, GY95]. Avinash [Avi95] uses JPEG compres-
sion on 8 bpp images with an adaptive quality heuristic to
achieve compression ratios between 2:1 to 11:1 at an PSNR
of 21.14dB to 48.13dB. Schneider et al. [SW03] use a vec-
tor quantizer to compress a 3-level Laplace pyramid encod-
ing 3D volumes. As one application, they compress RGBA
confocal microscopy stacks at a ratio of 31.2:1, but the dis-
tortion is not reported. Similarly, Cockshott et al. [CTG∗03]
use four to five levels of a Laplace pyramid and vector quan-
tization to encode the residuals, resulting in PSNRs of 30dB
to 44dB at a compression ratio between 15:1 and 20:1. Jeong
et al. [JST∗10] use a hierarchical vector quantization scheme
with a linear predictor between slices. They report an SNR
of 24.98dB at 0.88bpp and of 26.50dB at a compression ra-
tio of 20:1; the PSNR is not reported. In their approach, the
compression ratio is varied per image stack based on a qual-
ity threshold, and the format can be decoded on the GPU.

3. System Design

3.1. Design Goals

The main design goal of our system is to build a scalable re-
mote visualization system that can host large-scale datasets
on a central server and handle multiple clients’ request for
random access to the data in parallel. We offload the compu-
tational burden from the server and let each client perform
necessary computation locally to create the final image on
the screen. In addition, the system should be able to run in-
teractively so that it mimics the experience of driving a real
microscope. Our client viewer can quickly decompress the
multiple image planes of a three-dimensional tile allowing
rapid change in the image plane without noticeable lag. The
speed with which users can advance through image planes is
comparable to that of changing focus on a microscope. This
feature is one of the major differences between our system
and existing digital pathology systems that treat each focal
plane as a separate image.

In order to achieve these goals, we designed the system
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Figure 3: Overview of our collaborative client-server digital pathology system. Input focal stacks are diced into fixed-size tiles,
and each tile is compressed independently using our domain-specific compression method. The server stores compressed image
data and meta data. The client requests tiles for visible regions from the server along with meta data. The final image on the
client is generated by decoding compressed tiles on-the-fly. Image data communication (red arrow) is unidirectional, i.e., from
the server to a client, whereas meta data communication (blue arrow) is bidirectional.

so that the single compressed data format can be seamlessly
shared across heterogeneous devices over the network, such
as mobile devices and high-end desktop PCs. Our approach
is using an existing hardware compression format that can
be quickly decoded on any client platforms. However, a
naive application of an existing hardware texture compres-
sion method does not sufficiently reduce the large data size
of the pathology image stacks. Therefore, we developed a
novel domain-specific compression scheme based on an ex-
isting hardware texture compression format so that the com-
pression ratio is higher than that of a native hardware tex-
ture compression format while the decoding can be done ef-
ficiently using the hardware. By doing this, we can minimize
the network latency while achieving the interactive render-
local visualization performance and providing compatibility
of the data format across heterogeneous client systems.

Another design goal is to provide a mechanism for multi-
ple users to collaborate easily. Traditional multiheaded mi-
croscopes, telepathology video systems and even many dis-
tributed whole slide image visualization systems only allow
one person to drive the slide or image navigation at a time.
The current driver’s view is passively received by the others
(Figure 2). To provide a more flexible synchronous and dis-
tributed collaborative visualization system [?], we designed
our system to allow each user to follow any other’s cur-
rent view and vice versa. In addition a user can add anno-
tation to any image they are driving (i.e., but not one they
are following). The annotation becomes immediately visible
to all followers. For each client the meta data for annota-
tions and the current visualization state are exchanged with

other clients concurrently. With different users being able
to drive the same image but in separate views, the potential
for conflict with respect to who is driving any one image
is eliminated. The technical challenges in our system are to
maintain an interactive frame rate for driving and following
image navigation while allowing sharing of multiple views
and annotation concurrently across various client systems.
Our hardware-accelerated render-local collaborative visual-
ization system elegantly manages these issues.

3.2. System Overview

Figure 3 shows an overview of our system. We start with
a set of images that covers the area of the tissue sample to
examine. A conventional microscope equipped with a mo-
torized stage can produce multiple overlapping images from
a glass slide, which can be directly used as the input to our
system. Instead, we use an Olympus Nanozoomer, which is
an automated slide scanning device that produces a single
stitched image per a glass slide. We dice each image from the
Nanozoomer into fixed-sized subimages of 16384× 16384
pixels for easier storage and processing. We scan 15 im-
ages per glass slide at different focal depths, with a dis-
tance between adjacent focal planes of 0.75 microns. We
call this group of 15 images a focal stack. Each focal stack
is then processed and stored independently. An image pyra-
mid is built per focal stack, and each level in the pyramid is
diced into 512×512×15 fixed-sized tiles, similar to Jeong
et al. [JST∗10]. Finally, each tile is compressed individu-
ally (Section 4), and the tiles from the same focal stack are
grouped and stored together in a single file for faster access.

c© 2013 The Author(s)
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Figure 4: Desktop client showing (left, top to bottom) client list, annotation operators, and chat session. An image region has
been marked using annotation operators: a yellow arrow, red text, green ruler, and blue segmentation curve.

Because each tile is compressed independently, random ac-
cess to arbitrary locations in the image pyramid can be done
efficiently. When the visible region of the image is deter-
mined by the client, tiles overlapping that region are loaded
either from the server or from the local disk. Then the client
decompresses the tiles on-the-fly using the graphics hard-
ware accelerated decoder and displays them on the screen.

3.3. Server

The server’s main roles are twofold – to serve image data
and to exchange meta data with the clients. The server stores
all the image data and returns the compressed stream of data
for the requested tile. Meta data are all the non-image data
that is stored on the server and shared among the clients. We
distinguish between two categories: Server-generated meta
data is essential information to coordinate communication
between clients, such as session and user ID, data and header
names, etc. Client-generated meta data is additional infor-
mation created by each client during the session that will be
shared with the other clients, such as client view location,
annotations, text data from the chat sessions between remote
users, etc. Our experiment shows that our server can eas-
ily handle concurrent tile requests and effectively increases
the data transfer rate by hiding the network latency (see Ta-
ble 1 in Section 5). The server uses a MySQL database to
store meta data in three tables, and entries in the tables are
returned in XML format messages to clients.

3.4. Clients

The clients are built upon a demand-driven large-scale im-
age viewer framework [JST∗10] for efficient data manage-
ment and hiding disk/network latencies. Our client platforms
support OpenGL and GLSL shaders. Each client receives
the images compressed with the same format, and it de-
compresses the focal stacks using hardware acceleration. We
currently implemented clients for two widely available plat-
forms: a mobile client for the Apple iPad and iPhone/iPod
Touch, and a desktop client for Windows PCs with GPUs
and OpenGL acceleration.

Client Functions: The clients provide basic functions, such
as opening data files, selecting/creating sessions, and chang-
ing views. The user can either join an existing session or
create a new session. The client list shows currently active
clients for the current session, and the user can switch to
any other client’s view by selecting the client ID. Select-
ing the user ID in the list returns the client to the previous
view. This allows multi-way view manipulation by multiple
users, which is typically not possible in traditional collabo-
ration systems. To follow the other client’s view smoothly,
the client polls the server frequently, about once every 100
milliseconds, and refreshes the screen accordingly. For ease
of remote collaboration, a chat function is implemented so
that the users can exchange messages while using the sys-
tem (Figure 4 left).

The client system provides several annotation operators
that are essential for diagnosis. The text operator allows the
user to write text on the image. The arrow operator is used to
mark a specific location with an arrow-shaped marker. The
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ruler measures the length between two user-defined points
using the actual pixel-size information from the microscope.
The segmentation operator is used to draw closed curves to
mark the region for segmentation. Figure 4 shows an exam-
ple of each operator in a desktop client window.

Implementation: The iPad client is a native iOS application
written in Objective-C. It uses OpenGL ES 2.0 for render-
ing. The client has three threads: the main UI thread, the tile
loading thread, and the prefetching thread. The tile loading
thread downloads the tile if necessary and then loads it to
memory. The prefetch thread prefetches two rows/columns
around the current view area and one level up and down in
the focal stack pyramid. Once finished prefetching this re-
gion, it sleeps until the main thread signals that the view-
point has changed and prefetching continue. The tile loader
thread is signaled that there are new tiles to load and it be-
gins loading them, prioritizing tiles currently shown on the
screen over the tiles not visible but prefetched. The main
thread renders the scene and controls the UI.

The multi-touch interaction in the iPad and iPhone/iPod
Touch is well suited to support image navigation in digital
pathology. We employed a two-finger pinch-and-zoom ges-
ture for controlling image magnification (zoom), and a one-
finger swipe gesture for moving the slide (pan). Other tasks
are used less frequently and, so, are implemented using a
menu that is revealed or hidden by tapping the surface with
a single finger. This menu includes items for changing the
focal plane, starting or joining collaborative sessions (chang-
ing the displayed image), markup and annotation.

The desktop client is implemented as an Win32 appli-
cation written in C++, OpenGL, and Qt. The basic design
for the viewer is similar to that of the mobile version, but
there are several differences. First, desktop GPUs do not na-
tively support PowerVR texture compression (PVRTC), so
we have emulated this functionality using our own shader-
based decoder (see Section 4.2). Second, the desktop client’s
GPU and main memory size are usually bigger than those
of mobile devices, so we can prefetch much larger neigh-
bor regions into the cache to hide network latency more ef-
fectively. Third, we implemented the multi-touch user inter-
face for our desktop client using a wireless touch device.
We tested several off-the-shelf touchpads for Windows, but
they did not fully meet our expectations. Instead, we devel-
oped an iPod touch/iPhone application that remotely con-
trols the desktop client using multitouch gestures. The ap-
plication uses the TCP/IP protocol and ad-hoc wireless net-
working to communicate with the client. We implemented
the same multitouch gestures used for our iOS clients so that
the user can use similar interactions for image navigation.

4. Compression

Our compression method is a novel combination of hard-
ware and software techniques. Focal stacks are compressed

based on the PowerVR texture compression (PVRTC)
method [Fen03], a block-based compression method na-
tively supported by the PowerVR GPU found in numerous
mobile devices. However, a naïve application of PVRTC
only gives 2bpp compression ratio at best, which is not suf-
ficient for our use. Therefore, we employ Karhunen-Loéve
Transform (KLT) [Kar47, Loé78] and adaptive encoding to
leverage domain-specific image properties, which results in
extremely low bit rate (0.8bpp) while providing a fast hard-
ware decoding option on mobile GPUs.

PVRTC overview: The underlying idea of PVRTC is to
store two downsampled images, each containing one color
sample per 8× 4 image block (see also Figure 5). The de-
coder first performs a bilinear upscaling of these two im-
ages followed by a per-pixel linear interpolation between
these intermediate image according to modulation weights.
Per block, 2bpp mode PVRTC stores two 15bit colors, 2bit
flag information, and 32bit modulation information (a 4bpp
mode is supported as well but not discussed here). One of
these flag selects one of two modulation encoding schemes.
The first scheme stores one of the values {0,1} per pixel,
while the second stores one of the values {0,0.375,0.625,1}
for every other pixel in a checkerboard pattern. Missing
modulation weights are averaged from their neighbors. This
second modulation mode offers a better control over the
modulation than the first mode, albeit at a lower spatial res-
olution. The other flag bit is not used in our work.

4.1. Encoding

The data we received from our domain experts exhibits a
close-to-planar color space, since it is stained using hema-
toxylin and eosin. While this need not be the case for other
data sets, we first describe the treatment of close-to-planar
color spaces for the sake of simplicity and generalize the
method to other spaces later in this section. From a bird’s
view, our encoding scheme consists of color space decorre-
lation, chroma downsampling, and joint-PVRTC-encoding
of adjacent focal planes.

Color Space Decorrelation. To exploit close-to-planar
color spaces, we use a KLT to automatically detect and
decorrelate this color space. The KLT is a linear and orthog-
onal transform that rotates RGB vectors into a new space,
referred to as KLT-space, with components αβγ . We start
by computing the KLT matrix for each stack. Let rgbi be the
ith color vector of the stack. We first compute the average
color and covariance matrix of the stack:

a =
1
N

N

∑
i=1

rgbi (1)

C =
N

∑
i=1

(rgbi−a)(rgbi−a)T . (2)

The covariance C is a symmetric real 3×3 matrix. We there-
fore proceed by computing the eigendecomposition using
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Figure 5: Conceptual overview of PVRTC. Two downscaled images Ia, Ib plus modulation weights are stored. Modulation
weights may be specified for each other pixel; missing weights are averaged from neighbors. The decoder first upscales Ia, Ib,
then averages missing weights. A linear interpolation between the upscaled Ia, Ib yields the output image.

the QL algorithm with implicit shifts [PTVF02]. Finally, we
order the eigenvalues λi by absolute magnitude to obtain:

C = R diag(λ1,λ2,λ3) RT , |λ1| ≤ |λ2| ≤ |λ3|. (3)

The eigenbasis R rotates RGB vectors to KLT-space. Since
we are dealing with discrete 8-bit color values [0, . . . ,255],
we scale the rows of R and find a bias-vector B such that
each component of the resulting αβγ vectors is in the range
[0, . . . ,255]. This is important to avoid excessive truncation
errors in subsequent steps. The full transform can then be
written as follows.

αβγ i = R rgbi +B (4)

The KLT has optimal decorrelation properties [GZV00] but
requires R and B to be stored explicitly for each focal stack.
Decorrelation of the color space is achieved by maximizing
the variance of the α component and minimizing the
variance of the γ component. Since the color space in our
application (and as attested by our experiments) is close to
planar, the variance of γ will be close to zero. We therefore
proceed adaptive encoding by computing a single, average
γ value per stack and store only this value.

Chroma Downsampling. Similarly to the clost-to-constant
γ-value, the variance of the β component is sufficiently small
(and in our experiments also smooth enough) to store β at a
reduced resolution. This is akin to chroma subsampling in
image coding. Specifically, we use a variant of a centered
4:2:0 subsampling [Ker09], i.e. a 2 : 1 subsampling along
both the X and Y axes of the stack. This low resolution image
β is then bilinearly upsampled during decoding.

The quality of the decoded image will crucially depend
on the quality of the downsampling of the β channel. There-
fore, we devise a novel L2-optimal downsampling method

rather than using the box filter frequently used for mipmap-
ping (also refer to the Appendix). We formulate the down-
sampling operator as a least-squares pseudo-inverse of the
bilinear upscale operator. Solving this least-squares problem
yields the following (separable and symmetric) convolution
filter for the 1D case:

I′ =↓2 ?2
[
. . . ,0,

1
33 ,0,−

1
32 ,0,

1
3
,

1
3
,0,− 1

32 ,0,
1
33 ,0, . . .

]
? I. (5)

Here, I denotes the discrete input signal (a row or column
of pixels) and ↓2 denotes 2 : 1 subsampling (comb filter).
Observing that the left half of the filter operates only on odd
pixel positions while the right half operates on even pixel po-
sitions, this infinite impulse response (IIR) kernel can be im-
plemented efficiently by splitting it into the sum of two IIR-
convolutions, one from the left and one from the right. By
exploiting recurrence in the kernel—each filter coefficient is
obtained by scaling the previous non-zero coefficient with
− 1

3 , this downsampling scheme can be implemented with
linear complexity and only a single register.

At the image boundary, we implement clamp-to-edge
boundary conditions by summing over the filter coefficients
outside the image and using them as coefficients for the
boundary pixel. This results in a simple change; namely the
boundary pixel is weighted by 1

2 instead of 2
3 .

We acquire the 2D filter as the tensor product of two
1D filters. Our tests indicate that this novel L2-optimal
downsampling method improves the signal-to-noise ratio
between the low-resolution, bilinearly upsampled image
and the original by at least 1.4 dB and up to 2.3 dB. The
resulting sampling positions in the downsampled image
lie between the original pixel positions and agree with
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Figure 6: Overview of our encoding pipeline. We first perform the conversion to KLT-space, then group 3 full-resolution α-
and 3 half-resolution β -channels into 3D pixel vectors. These intermediate images are encoded using PVRTC and comprise,
together with the inverse KLT matrix, our binary output.

hardware-supported filtering.

Joint-PVRTC-Encoding. To exploit the high correlation
between slices in a focal stack (also see Figure 8), we en-
code three adjacent N ×N pixel slices in two 2 bpp PVR
textures: one N ×N texture for three α components, and
a (N/2)× (N/2) texture for three β components. Further-
more, we combine the average γ value and the bias vector B
in order to only store a single 3× 3 matrix for color-space
conversion (also see Figure 6).

Overall, we store 3×N ×N 24-bit RGB pixels in N ×
N × 2 bits (α image) plus (N ×N × 2)/4 bits (β image).
Neglecting the overhead for the 3×3 matrix, we thus obtain
a bit rate of

(
2.5×N2)/(3×N2)= 0.833 . . . bits per pixel.

Non-Planar Colorspaces. It is intuitively clear that for non-
planar colorspaces an additional third component γ has to
be stored. From the eigendecomposition of the covariance
matrix C, we use a planarity measure

p(C) = 1− 3|λ3|
|λ1|+ |λ2|+ |λ3|

(6)

to determine planarity. p(C) is normalized to be 1 for per-
fectly planar (or linear) colorspaces while it will be 0 for col-
orspaces that evenly comprise all three dimensions. If p(C)
is below a threshold (0.85 in our current implementation),
we add a spatially resolved third layer of textures downsam-
pled by a factor of 2 along each axis. In this case, our com-
pression rate increases to 1bpp and we need to store a 3×4
colorspace conversion matrix. See also Figure 8 for planarity
measurements of representative data sets.

4.2. Decoding

If PVRTC decoding is supported in hardware, decoding con-
sists only of bilinearly sampling the α and β textures, select-
ing the component corresponding to the current slice (due to
encoding 3 slices in three channels) followed by color-space
conversion in the shader. Since the color space conversion is
linear, this yields the correctly interpolated value.

Because PVRTC is not supported natively by desktop
GPUs, we decode it in a GLSL shader in three passes. The
binary representation of the compressed focal stack is stored
in an OpenGL Texture Buffer Object to avoid limitations
of available texture formats. We first reconstruct the two
low frequency images Ia and Ib in a single render pass us-
ing multiple render targets (MRTs). These two images are
(N/8)× (N/4) RGB images, where N×N is the resolution
of our input stack in the X ,Y -directions. Then, we decode
the modulation weights as outlined above into an N×N ren-
der target M. This additional step allows us to fill in missing
interpolation values by averaging their neighbors (checker-
board pattern mode) without having to reconstruct the neigh-
bors multiple times. In the third pass, we bilinearly upsam-
ple images Ia and Ib by binding them as textures, we fetch a
modulation weight from M, and, in case of the checkerboard
pattern layout, average missing modulations from their four
immediate neighbors.

4.3. Treatment of Image Boundaries

One minor drawback of PVRTC is that only power-of-two
texture resolutions are supported. Furthermore, all images
are assumed to be tiling. The latter limitations can clearly
lead to problems in our scenario. Therefore, we pad each
stack with information of neighboring stacks in both X and
Y direction. This effectively reduces our image resolution
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Figure 7: Rendering performance with and without prefetching. Frames per second over time in seconds.

per stack by 8 pixels in X and Y direction, but the rest of our
method remains unchanged.

5. Results

We measured the performance of our system on a Windows
desktop client equipped with 2.66 GHz Intel i7 CPU, 12 GB
RAM, NVIDIA GTX 480 GPU with 1.5 GB VRAM, and
an Apple iPad 2 mobile client with 32 GB flash memory.
The server was a virtual machine running CentOS 5 Linux
on a 2.93 Ghz x86_64 CPU with 2 GB RAM. Desktop and
mobile clients communicate with the server either through
wired or wireless network.

5.1. Client-Sever Performance

Decoding a 512×512 image tile on a desktop PC using our
PVRTC decoder takes 0.6ms including CPU to GPU mem-
ory transfer time. We achieve more than 55 fps rendering to
a full HD (1920× 1080) screen if all tiles are in memory.
This result was measured with 30 tiles covering the entire
screen and while constantly changing the focal plane. On
the iPad, decoding the same size of tiles takes 0.87ms using
hardware PVRTC and our shader-based colorspace conver-
sion. We achieve 47 fps to update the 1024×768 pixels iPad
screen using 24 tiles in the worst case, i.e., tile size is about
half of its original size due to zoom out.

Since our system is build upon a standard web server,
many parallel requests from clients can be efficiently han-
dled by the server. The major bottleneck is slow network
transmission, so our clients request multiple tiles concur-
rently using parallel threads to hide network latency. Ta-
ble 1 shows server-to-client data transmission rates for vari-
ous numbers of simultaneous tile requests. As shown in this
table, simultaneous tile requests increase the data through-
put up to four times. We empirically found that around 20
concurrent tile requests can be used to achieve maximum
average data rates for desktop clients.

To assess the performance of our viewer for a realistic
application scenario, we measured the total rendering time
including server-to-client data transfer time. In this exper-
iment, the client continuously changes the viewpoint, fo-

Table 1: Server-to-client data transfer rates (in MB/s) for
multi-threaded tile fetching. The maximum average data rate
is achieved for 20 threads.

Number of Threads
1 3 5 10 20

Ave 20.70 49.17 68.07 76.58 84.08
Min 18.68 41.82 59.08 68.46 76.25
Max 22.19 55.61 73.88 84.46 87.57

cal plane, and zoom level by following a pre-defined path.
We changed the viewpoint slowly and in a continuous man-
ner without abruptly jumping from one location to another,
mimicking the movements of a typical user. As shown in
Figure 7 (blue), our system can handle these smooth move-
ments at interactive frame rates. The number of tiles re-
quested from the server each frame is small because the
neighboring tiles are constantly loaded in the background
by the prefetching thread. Without prefetching, we observe
a significant drop in frame rates as shown in Figure 7 (red).

5.2. Compression

Our compression fidelity is summarized in Figure 8. All
data has been encoded at 0.833 bpp. We provide, per stack,
the root-mean-square error (rms), the peak signal-to-noise
ratio (PSNR), and the normalized cross-correlation (Corr.)
between adjacent slices. Furthermore, we provide metrics
about the planarity of the colorspace (also see Eqn. 6), the
rms after projection (rms project.) to a planar colorspace,
and the rms after both projection and application of our
L2-optimal downsampling of the second component (rms
downsm.). All pixel values were normalized to the range
[0,1]3. The normalized cross-correlation was computed for
all pairs of adjacent slices and measures, normalized to the
range [−1,1], how close adjacent slices are to each other.
Identical images will result in a normalized cross-correlation
of 1. The results show that adjacent slices have high corre-
lation and that our compression scheme is able to achieve
high fidelity at low bitrates. Furthermore we observe that
in all examples the colorspace was close-to-planar. As can
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Figure 8: Results of our compression scheme. We present results for 12 representative stacks exhibiting significantly different
statistics.

be seen, our L2-optimal downsampling is able to perform
chroma subsampling virtually lossless in most cases.

Compared to Jeong et al. [JST∗10], we observe simi-
lar or slightly better fidelity. While the method of Jeong et
al. can theoretically be implemented on mobile GPUs, its
many intermediate render passes coupled with frequent ta-
ble lookups poses bandwidth and state change requirements
which are not yet available on mobile GPUs. We therefore
did not consider this method for our mobile client. On desk-
top GPUs, where both methods are available, the method of
Jeong et al. is faster (0.55–0.73ms on a GeForce 285GTX
vs. 0.6ms on the faster GeForce 480GTX).

6. User Study

We have conducted three different user evaluations to as-
sess the usability and performance of our system for digital
pathology.

Image Quality Evaluation. In the first evaluation, we asked
12 study participants to conduct an image comparison test
to assess the image quality of our compression method. The
study participants consist of non-medical experts, such as
computer science major students and faculty. For the exper-
iment we used 12 example images from endometrial biop-
sies, and compressed each image with our method (K-PVR)
and with JPEG at a similar bitrate (0.833 bpp). All exper-
iments were conducted using Mac Preview image viewing
software on a iMac desktop PC. The participants were given
instructions for their task and shown a series of side-by-
side images (see Figure 9). The session concluded with ver-
bal questions and feedback. We made three groups of 12
image pairs, i.e., original/K-PVR, original/JPEG, and K-
PVR/JPEG. Each of the image pairs were shown to the par-
ticipants in random order. They were asked to "pick the
higher quality image among the two". They were allowed

Table 2: Compressed image quality evaluation result (num-
bers shown in the table are the total number of images pre-
ferred by the test participants.)

Preferred Image Type
Original K-PVR JPEG Equal

Orig. vs. K-PVR 103 22 N/A 19
Orig. vs. JPEG 75 N/A 12 57

K-PVR vs. JPEG N/A 64 53 27

to answer "equal" in cases where they could not find dis-
cernible differences between the two images. Table 2 shows
the result of this study.

As one may expect, the participants preferred the original
images to either of the compressed images (71% for orig-
inal over K-PVR, and 52% for original over JPEG). How-
ever, among the people who did not prefer the original im-
ages, more people chose K-PVR over JPEG (15% vs. 8%).
If we only consider the people who chose one image (i.e.,
people did not answer "equal"), slightly more people prefer
K-PVR to JPEG (17% vs. 13%). Finally, when K-PVR is
directly compared to JPEG, 44% people preferred K-PVR
and 36% people preferred JPEG. This result shows that K-
PVR may introduce more visible artifact than JPEG com-
pared to the original images, but without the presence of the
original images the type of artifact in K-PVR might be per-
ceptually more natural than JPEG. We also observed that
JPEG suffers from blocking artifacts that are more notice-
able when compared with fuzzy/grainy/color-shift artifacts
presented in K-PVR. These results are encouraging because
our compression method generates images that are visually
comparable/superior to JPEG compressed images while pro-
viding an efficient hardware decoding option.

System Usability Evaluation. We asked three pathologists
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Figure 9: A sample image pair used in the image quality
evaluation. Left: our compression method (K-PVR), Right:
JPEG compression.

to conduct a second evaluation, test driving our iPad and
desktop client systems and make a clinical diagnosis. The
participants were two women and one man, with 8, 15 and
16 years of professional pathology experience respectively.
Three slide images of endometrial biopsies were examined
using the desktop client. One pathologist navigated the im-
ages while the others observed the image on the screen. The
task was made as difficult as possible by selecting slides
with technical problems, such as thick or folded sections.
All three pathologists had previously viewed similar im-
ages as part of a validation study for whole slide imaging
in endometrial pathology, using the commercially available
Hamamatsu NDP view software. Performance on this sys-
tem was used as the baseline for subsequent comparisons.
All three pathologists were able to reach a diagnosis in ev-
ery case.

The pathologists had several comments with respect to
the performance of our system. First the ability to change
focus quickly while navigating the images is an advantage
for making a diagnosis quickly. They also appreciated the
fast frame rate of the viewer. To match the image quality
and features of an optical microscope they suggested two
additional features: gamma adjustment and the ability to
step rapidly between predefined image magnifications (e.g.,
2×,4×,10×,20× and 40×). They also requested the abil-
ity to rotate images. Finally, to facilitate documentation for
reports they suggested the option to record all actions that
were taken on an image (zoom in/out, pan, etc.) together
with the other annotations. These recordings would be use-
ful for teaching and collaboration, and they may be espe-
cially useful in situations where a hospital network is not
fast enough to support live multi-user reviews. Display of
a predefined grid would be particularly helpful for slides
with multiple tissue fragments such as lymph node dissec-
tions so that pathologists could verify that all parts of the
slide were reviewed. All the requested features are straight-
forward modifications to the current client software and we
plan to add them in the near future. The pathologists were
uniformly positive about the performance and usability of
the iPad client. They found that the multi-touch interface

for image navigation was intuitive and easy to use and more
closely matches the interaction with a microscope.

Collaborative Diagnosis Evaluation. Four pathologists
performed the third evaluation, specifically aimed at collab-
orative review. There were three men and one woman with 5,
7, 16 and 15 years of pathology experience, respectively. All
are subspecialty trained and all have normal color vision. A
series of surgically excised anal lesions, clinically and archi-
tecturally consistent with benign warts (condyloma) but with
premalignant intraepithelial changes (high grade squamous
intraepithelial lesion - dysplasia, HGSIL) on histologic re-
view [MMF∗07, SFM∗] were evaluated. This type of lesion
is a recognized problem area in pathology as we currently
lack clearly defined diagnostic criteria for HGSIL in warty
lesions, and these cases are likely to undergo collaborative
consensus review by two or more pathologists. One pathol-
ogist (JH) identified patients from department files over a
10-year period, each of whom had clinical condylomas con-
taining histologic HGSIL. 23 biopsies from eleven patients
(three biopsies from one patient, two biopsies from the re-
maining ten patients,) were reviewed. For each patient, one
of the two biopsies was randomly assigned to the "glass slide
review" group and the other to the "whole slide image (WSI)
review" group. Slides for the "WSI" group were scanned as
thin image stacks (15 planes spaced every 0.75 microns) at
40x objective magnification on a Hamamatsu NanoZoomer
2.0-HT. The scan sizes ranged from 1 to 350GB uncom-
pressed.

Cases for the "glass slide" group were reviewed by each
of pathologists (BFJ, RN and EY) and scored for "HGSIL
present" with concurrent assessment of three histologic fea-
tures, namely orderly normal maturation of the squamous
epithelium towards the surface, the presence of abnormally
maturing (dyskeratotic) single cells within the upper half of
the epithelium and the presence of abnormally located and
actively dividing cells (mitotic figures) in the upper half of
the epithelium. HGSIL was reported as positive regardless
of whether it was focal or diffuse. Results were collated and
cases where the pathologists disagreed on the presence of
HGSIL were reviewed concurrently by all three pathologists
at a single multi-headed microscope to render a consensus
diagnosis, which was used as the "gold standard". Cases for
the "WSI group" were reviewed by each of the same three
pathologists alone, and scored for the same parameters as
the glass slide group. Pathologists used the desktop client on
computers running Windows 7 (Xeon CPU, NVIDIA Fermi
GPUs, 30 inch monitors, Gigabit Ethernet). Results were
again collated and cases where the pathologists disagreed on
the presence of HGSIL were reviewed collaboratively using
the "chat" window and annotation tools to reach a consensus
diagnosis. The cases reviewed in both groups are very sim-
ilar with respect to the number with HGSIL. Accurate di-
agnoses made using both viewing methods with similar lev-
els of initial agreement between the pathologists after their
individual review (glass slide 8/11 and WSI 10/12). A con-
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Table 3: Results of Glass slide versus WSI review.

# Biopsies HGSIL present Initial agreement after
individual review

Consensus
agreement

Review Time

Glass slide Review 11 6 of 11 8 of 11 (73 %) 100% 1.21 to 6.00 min, av-
erage 2.47 min

WSI Review 12 6 of 12 10 of 12 (91%) 100% 1.02 to 5.47 min, av-
erage 2.56 min

sensus diagnosis was reached in all cases. One pathologist
timed each case and the range and average viewing time are
comparable between modalities. All three pathologists reli-
ably identified the three histologic features, namely epider-
mal maturation, high-level dyskeratosis and high-level mi-
toses. The results are detailed in Table 3.

The performance of our digital pathology system assessed
in terms of speed and accuracy of final diagnosis, was com-
parable to traditional glass slide review. Pathologists could
identify all features necessary to make the diagnosis with a
similar degree of ease and within the same time frame. This
equivalence between WSI and glass slide systems is only just
being realized [YYK∗] and is a major strength of our system.
Additional strengths of our system are the ability for remote
collaborative review, the ability to focus through thin image
stacks and the ability to rapidly read through aligned thin
z-stacks of serial section.

Collaborative review is an essential part of the pathology
experience, from initial training through a professional life-
time of practice, whether as a general pathologist or as a
subspecialist. Geographic constraints often limit interaction,
and remote collaborative review with real time "chat" re-
moves them and simulates the experience of using the multi-
headed microscope. When "double-scoping" usually only
one pathologist "drives" the slide, and the experience for the
viewer(s) is intrinsically more passive. With existing digi-
tal video telepathology systems (used primarily for frozen
section diagnosis), the passive viewer is also often the con-
sultant. Enabling the consultant to actively drive the slide for
diagnosis is more efficient and increases confidence in a di-
agnosis that may have significant clinical implications. With
our system, all users have the ability to drive the slide in
their own style, which differs between individuals, to review
in a manner in which they are diagnostically confident and
to point out specific features or areas of interest to ensure
accurate consensus review. Active slide review by all par-
ties is an advantage over traditional consensus microscope
review. In addition, the ability to collaboratively review an-
notated structures or highlighted areas identified during solo
review of multiple individuals is also an advantage. Digital
annotations can also have a degree of microscopic precision
that is lacking using the traditional permanent marker ap-
proach. Use of voice or voice recognition software during
chat sessions may also enhance communication and improve
efficiency.

Another advantage of our system is the ability to focus
through a thin image stack. For example, in this study we as-
sessed the presence of mitotic figures within the epithelium.
To accurately assess mitotic figures, it can be necessary to
focus up and down through the tissue, and this has been a
limitation of single plane digital images. The use of thin im-
age stacks permits the pathologist to focus through the WSI
in the same way as a traditional glass slide and enhances
the ability to diagnose features that require limited three-
dimensional data for accurate identification. Accurate iden-
tification of mitoses is of fundamental importance in other
areas of pathology, where the presence and number of mi-
toses are used for tumor staging and to guide management
decisions.

Finally, many small biopsies are cut as multiple serial sec-
tions onto a single slide (see Figure 10). The sections are
cut at about 4 microns and together represent a small tissue
volume (20 microns thick in this example). These additional
sections may be enough to provide useful information for the
pathologist. For example, in this study we assessed the pres-
ence of dyskeratotic cells and mitotic figures in the upper
half of the epithelium. To make this assessment of location
within the epithelium, the tissue should ideally be sectioned
perpendicular to its surface. Tissue is frequently tangentially
oriented and cut, hindering this assessment. A feature of our
system is the ability to "stack" the images of the serial sec-
tions on the slide (each image having multiple focal planes)
and then rapidly step through them. Tissue orientation can
be more rapidly and efficiently assessed than by manual in-
spection of the slides.

7. Discussion

7.1. Comparison to other digital pathology systems

Existing digital pathology systems can be classified accord-
ing to three different types:

Dedicated viewer with data sharing: In this group, the
viewer software is designed around displaying images on a
dedicated graphics workstation. The dedicated viewers pro-
vide advanced view manipulation and annotation tools, and
support limited collaboration through network data shar-
ing. Remote collaborative review requires opening the same
image and annotation files. Representative applications are
Hamamatsu’s NDP.view [NDP] and Biolucida’s Viewer

Dedicated viewer with conference functionality: In this
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Figure 10: Multiple serial 4 um sections of tissue are routinely placed on a single glass slide for review. This also shows
the "traditional method" of annotation (a green permanent marker point next to the fourth tissue section, which implied the
section/region of interest).

approach, a distributed visualization and data manage-
ment system supports remote data sharing and collabo-
rative review. Some commercially available systems have
advanced collaboration features, e.g., text/voice chat and
view/annotation sharing. Among them, the Olympus OlyVia
system [?] is similar to our PC client viewer. It provides
advanced annotation and built-in conference features via a
data server. However, the design of the conference features
is different from that of our system. OlyVia supports passive
collaboration – a single user, i.e., Speaker, has the right for
view manipulation and annotation, and this information is
broadcast to the other users. While this design is consistent
with the way pathologists do collaborative review on a multi-
headed microscope, but it does not fully utilize the flexibility
of distributed computer systems. In contrast, our system al-
lows multiple users to change annotations concurrently, and
any user can follow any other other’s view in realtime with-
out the constraint of there being just a single view shared by
all users. Lack of mobile client support is another drawback
of their system. Aperio provides iPad client software (ePath
Viewer [?]), but it is a simple image viewer without collab-
oration functions.

Web-based systems: An advantage of this approach is that
users do not have to install special viewer software. Images
can be viewed via the web from almost any computer with
an internet connection. One example is the NYU Virtual Mi-
croscope [NYU]. This system is built upon the Google Maps
framework and, so, is optimized for navigating large 2D
images. However, the system only supports simple marker-
based annotation and sharing, and there is no advanced col-
laboration functionality and no ability to quickly advance
through focal planes. Recently Kitware developed a WebGL-
based virtual microscope system, SlideAtlas [?]. This sys-
tem implements per-image pyramid processing (similar to
our system) and interactive registration of images to handle
extremely large image data efficiently. The current system
provides basic functionality for collaborative review. At any
one time a single user can share a view and annotation that
is followed by others. The system supports multi-touch in-
put on mobile web-based viewers and the ability to leverage
GPU acceleration by using GL shaders. However the cur-

rent system uses GPU acceleration only for texture-based
2D rendering and its performance suffers during 3D naviga-
tion (i.e., changing focal planes) because of the fact that each
z-slide is treated separately.

In summary a major difference between our system and
others is the sophistication of our collaborative tools. Our
system is unusually flexible in its ability to support realtime
view and annotation sharing between multiple users across
diverse client systems. Each user can drive an image or fol-
low the view of another as they wish. A previous study [?]
has shown that the diagnostic path in four dimensions (i.e.,
x, y, time and zoom) is an important factor affecting accu-
racy of histopathology diagnosis. Most existing systems pro-
vide only limited view sharing functionalities such as one to
many static view broadcasting or switching the regions of
interest. By contrast our system supports multi-way realtime
view sharing so that the users can interactively follow the di-
agnostic path of others as if they are looking at the screen to-
gether. In addition there can be multiple subgroups of collab-
orative review under the same session when needed; that is,
the system has the flexibility of allowing more than one col-
laborative view per image. This added flexibility is possible
mainly due to the novel design of our advanced render-local
remote visualization system that supports GPU hardware ac-
celeration on heterogeneous client platforms by leveraging
the domain-specific image compression method.

7.2. Usage Scenarios

We envision the following usage scenarios.

Take-away visualization. Domain experts either connect to
the server using WiFi or download content to mobile de-
vices. They then sit together and each of them explores
the data set in parallel while discussing their findings. The
compact form factor of mobile devices allows them to be
passed around in order to gather secondary opinions. This in
essence parallelizes the time-consuming exploration of the
data while still maintaining the classical, collaborative way
of diagnosis. The major advantage of migrating to a digital
data representation is the fact that all domain experts can
actively navigate the data.
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Distributed diagnosis. In this scenario, domain scientists
cannot meet physically. Our system allows data to be dis-
tributed with ease and at WiFi network bandwidths. A voice
channel can be established using, e.g., a phone line or Skype
connection, and landmarks—once found—can be shared via
our client-server architecture. This implements and aug-
ments the classical external consultation which otherwise re-
quires samples to be physically shipped. It is worth noting
that physical shipment usually implies a 4 week turn-around
time due to administrative overhead. Also, a digital sample
(unlike a physical one) can be accessed by multiple external
experts at the same time.

7.3. Limitations

One limitation of our system is that we always assume in-
put data to be measured at 8 bits per color channel. This is
an intrinsic problem of the mobile GPU since PVRTC only
supports 8 bit color channels, and the hardware is likely to
perform the bilinear upscales during decoding at a limited
and fixed precision. While it is clearly possible to extend our
desktop client in the future, mobile clients will not immedi-
ately benefit of this extension.

Another limitation of the system is that PVRTC encoding
is currently costly (on the order of a minute per 512×512×
15 stack) and we will investigate a CUDA-based faster en-
coder in the future.

The current system is built on top of a standard Apache
web server, so the performance of handling multiple clients
solely depends on the ability of the web server and network
speed. We will investigate parallel approaches, such as us-
ing a distributed web server, to process a large number of
concurrent clients’ requests more efficiently.

8. Conclusions

We have presented the first interactive collaborative whole
slide digital pathology system that can efficiently handle
navigation of multi-plane whole slide images on both multi-
touch mobile and desktop computing platforms. We imple-
mented mobile and desktop clients that provide essential
tools for remote collaborative diagnosis, such as realtime
view sharing, digital annotation and chat functions, shared
by multiple users in remote locations. To minimize band-
width and to leverage hardware decompression on mobile
devices, we developed a novel domain-specific hardware-
accelerated image compression method that achieves ex-
tremely low bit rates (0.833bpp) with minimal loss of image
quality. The user feedback from professional pathologists
is very encouraging and indicates that our system is com-
parable/superior to existing commercial packages including
those from Aperio, Hamamatsu and Olympus.

In future work we will implement several additional an-
notation features that were suggested by the pathologists,

such as gamma adjustments, fixed resolution steps, image
rotations, and action recordings. We plan to develop several
multi-touch user interface specifically designed for pathol-
ogy diagnosis tasks. We will also continue to improve our
image compression method. The KLT color transform is sen-
sitive to noise, and we plan to use a preconditioned form that
is robust to outliers. The encoding is currently slow due to
iterative fitting. We will investigate novel PVRTC encoding
algorithms to overcome this issue. We will also explore a
CUDA-based encoder implementation. Finally, we plan to
deploy our system to our pathology collaborators for use in
collaborative clinical diagnosis.
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Appendix

This appendix describes a method to derive the L2 optimal
downsampling used in Section 4.

Let I be a scalar input image I : [1 . . .N]× [1 . . .M]→ R.
We wish to obtain an image I′ : [1 . . .N/2]× [1 . . .M/2]→R,
such that a GPU-accelerated bilinear upscale ↑̃2 ? I′ (see also
Fig. 11) results in a minimal L2 error with respect to I. In
other words, we want to obtain a filter ↓̃2 with

↓̃2 := argmin
κ

∥∥∥(I−↑̃2 ? (κ ? I)
)∥∥∥2

2
(7)

Since ↑̃2 is a 2D separable kernel, so is ↓̃2. The reason is
that a separable reconstruction kernel, once separated, does
not take information along the orthogonal axis into account.
Hence, it is sufficient to treat the problem in 1D and then
generalize it to images in a tensor product fashion. We there-
fore consider an image row r : [1 . . .N]→ R and its down-
sampled version r′ : [1 . . .N/2]→ R.

In matrix formulation, r = ↑̃2 ? r′ corresponds to a matrix-
vector multiplication r = Ar′, where A is a circular matrix in
RN×(N/2). Formulating the problem in matrix notation thus
couples r′ to r by an overdetermined system of linear equa-
tions. We solve this system by its Moore-Penrose pseudo in-
verse (AT A)−1AT which results in the desired L2 optimal
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filter ↓̃2. However, due to boundary effects, this is only true
for images with infinite extent.

We thus construct a sufficiently large matrix A with

A =
1
4



3 0 0 · · · 1
3 1 0 · · · 0
1 3 0 · · · 0
0 3 1 · · · 0
0 1 3 · · · 0
0 0 3 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1
0 0 0 · · · 3
1 0 0 · · · 3



. (8)

1 1 1 1 

3 3 3 3 ¼ 
 

Figure 11: A schematic overview of hardware-accelerated
linear upscale. The bottom pixels are upscaled to twice
the resolution at the top. By doing so, each pixel gives a
weighted contribution to four pixels in the finer image (do-
mains marked by black bar at the top). Weights are 1

4 and 3
4

respectively.
We then proceed by computing the pseudo-inverse

(AT A)−1AT and select its middle row to minimize bound-
ary effects. This results in the following convolution kernel.

↓̃2 = 2 ↓2 ?

[
· · · ,0, 1

33 ,0,−
1
32 ,0,

1
3
,

1
3
,0,− 1

32 ,0,
1
33 ,0, · · ·

]
,

where ↓2 is a subsampling by a factor of 2 (comb filter). The
filtered pixel’s position is then between the two 1

3 factors in
the kernel.

This kernel can be efficiently implemented as an IIR (in-
finite impulse response) filter by splitting it into an odd half

2
[
· · · ,0, 1

33 ,0,−
1
32 ,0,

1
3

]
,

and an even half

2
[

1
3
,0,− 1

32 ,0,
1
33 ,0, · · ·

]
.

By observing that non-zero factors decay with a constant
factor of − 1

3 , we can thus implement the filter by scanning
the image from the left and the right using a single accum-
mulation register. After scanning the image, odd and even
contributions are added to form the final result.

Since the kernel implies an infinite image domain, we in-
troduce clamp-to-edge boundary conditions as follows. At
the image boundary, one half of the filter (odd at the left

boundary of the image, even at the right boundary) will over-
lap unavailable values. To multiply all of these values with
the first pixel in the scan, we observe that (after grouping
terms i and i+1 and adding a dummy term for i = 0)

lim
N→∞

N

∑
i=1

(−1)i−1 2
3i = lim

N→∞

(
4

N

∑
i=0

1
9i

)
−4 =

1
2
. (9)

Hence, instead of starting scans with a weight of 2
3 , as the

kernel would suggest, we start with a value of 1
2 to correctly

treat boundaries.

This method is extremely fast. Assuming an N×N image,
we need one scan along the X-axis from the left accessing
odd pixels and one from the right accessing even pixels. To-
gether, these two scans access all N2 pixels in the image to
compute an (N/2)×N image. A second pass along the Y-
axis then reduces the image to (N/2)× (N/2). The cost of
this method is thus still in O(N) and is in practice about half
as fast as the traditional box filter mipmap generation.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.


