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Figure 1: Renditions of materials generated using our model: steel teapot with greasy fingerprints (left), teapot with rust forming (right).
Closeup pictures in the center. We used a spatially varying texture to interpolate between reflectance models for each point on the teapot.

Abstract

We present a generative model for isotropic bidirectional re-
flectance distribution functions (BRDFs) based on acquired re-
flectance data. Instead of using analytical reflectance models, we
represent each BRDF as a dense set of measurements. This al-
lows us to interpolate and extrapolate in the space of acquired
BRDFs to create new BRDFs. We treat each acquired BRDF as
a single high-dimensional vector taken from a space of all possi-
ble BRDFs. We apply both linear (subspace) and non-linear (mani-
fold) dimensionality reduction tools in an effort to discover a lower-
dimensional representation that characterizes our measurements.
We let users define perceptually meaningful parametrization direc-
tions to navigate in the reduced-dimension BRDF space. On the
low-dimensional manifold, movement along these directions pro-
duces novel but valid BRDFs.

Keywords: Light Reflection Models, Photometric Measurements,
Reflectance, BRDF, Image-based Modeling

1 Introduction

A fundamental problem of computer graphics rendering is model-
ing how light is reflected from surfaces. A class of functions called
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Bidirectional Reflectance Distribution Functions (BRDFs) charac-
terizes the process where light transport occurs at an idealized sur-
face point.

Traditionally, physically inspired analytic reflection models
[Cook and Torrance 1982] [He et al. 1991] [He et al. 1992] provide
the BRDFs used in computer graphics. These BRDF models are
only approximations of reflectance of real materials. Furthermore,
most analytic reflection models are limited to describing only par-
ticular subclasses of materials – a given model can represent only
the phenomena for which it is designed. Significant efforts have
been expended on improving these models by incorporating the rel-
evant aspects of the underlying physics. Many of these models are
based on material parameters that in principle could be measured,
but in practice are difficult to acquire.

An alternative to directly measuring model parameters is to ac-
quire actual samples from a BRDF using some version of a gonio-
spectro-reflectometer [Marschner et al. 2000] [Cornell ] [CUReT ]
[STARR ] [Dana 2001] [Ward 1992] and then fit the measured data
to a selected analytic model using various optimization techniques
[Ward 1992] [Yu et al. 1999] [Lafortune et al. 1997] [Lensch et al.
2001]. There are several shortcomings to this measure-and-fit ap-
proach. First, a BRDF represented by the analytic function with the
computed parameters is only an approximation of real reflectance;
measured values of the BRDF are usually not exactly equal to the
values of the analytic model. The measure-and-fit approach is of-
ten justified by assuming that there is inherent noise in the mea-
surement process and that the fitting process filters out these errors.
This point of view, however, ignores more significant modeling er-
rors due to approximations made in the analytic surface reflection
model. Many of the salient and distinctive aspects of an objects
reflection properties might lie within the range of these modeling
errors. Second, the choice of the error function over which the op-
timization should be performed is not obvious. For example, er-
ror based on the Euclidean distance is a poor metric since it tends
to overemphasize the importance of the specular peaks (these are
usually much higher than the rest) and ignore the off-specular val-
ues. Finally, there is no guarantee that the optimization process
will yield the best model. Since most BRDF models are highly
non-linear, the optimization frameworks used in the fitting process
rely heavily on initial guesses of the models parameters. The qual-
ity of these initial guesses can have a dramatic impact on the final



parameter values of the model.
Another approach is to acquire dense measurements of the

BRDF and use these measurements directly in the rendering pro-
cess. This approach preserves those subtleties of the measured
data that are lost in a data-fitting approach. However, it is time-
consuming since it requires reflectance measurements for all de-
sired materials in the scene. Furthermore, we end up with a collec-
tion of measured BRDFs and not with a parameterized reflectance
model. Any change to the material property would require finding a
real material with the desired property and acquiring its reflectance.

We suggest an alternative sampling-based approach for model-
ing surface reflectance. We capitalize on the fact that it is feasible
to rapidly acquire accurate reflectance measurements using image-
based techniques. We acquire BRDFs for a large representative set
of materials. Materials in our collection include metals, paints, fab-
rics, minerals, synthetics, organic materials, and others. We intro-
duce a new approach to BRDF modeling, an approach that is data
driven – it interpolates/extrapolates new BRDFs from the represen-
tative BRDF data. Our approach has the advantage that the pro-
duced BRDFs look very realistic since they are based on the mea-
sured BRDFs. Furthermore, we provide a set of intuitive parameters
that allow users to change the properties of the output BRDF. We
also let users specify their own parameters by labeling a few rep-
resentative BRDFs. We believe that this way of specifying model
parameters makes our model much easier to use and control than
the analytic models in which the meaning of parameters is often
non-intuitive [Pellacini et al. 2000].

In our model, we do not want to store all acquired BRDFs ex-
plicitly. This leads us to the analysis of the space of all possible
BRDFs for common materials in the world. A BRDF for these ma-
terials is not an arbitrary function, and we seek a representation for
all possible functions corresponding to physical BRDFs. We treat
each of our acquired BRDFs as a single high-dimensional vector
where each measurement is an element of this vector. Then we ap-
ply both linear and non-linear dimensionality reduction tools to ob-
tain a low dimensional manifold that characterizes the set of BRDFs
we measured. In the process we also obtain a mapping between the
embedding manifold and the original BRDF space. Therefore we
can always compute the corresponding BRDF for each point on
the manifold. An interesting side effect of our approach is that it
suggests an inherent dimensionality for the space of all isotropic
BRDFs.

To summarize, the main contributions of this paper are:

• We introduce a novel model for an isotropic BRDF that is
based on measured reflectance for a large set of materials.

• We introduce a set of perceptually-based parameters for this
model. We also let users specify their own parameters.

• We analyze both linear and non-linear dimensionality of the
space of isotropic BRDFs.

• In our model the parameter values are pre-defined for many
typical materials – the materials we have measured. Using
our model we can also generate difficult to represent effects
such as rust, oxidation, or dust.

2 Previous Work

The value of physically accurate reflectance models has long been
understood within the computer graphics community [Blinn 1977].
The availability of BRDF models based on the actual physics of
light transport and validated by empirical measurements were a
significant catalyst in this realization [Torrance et al. 1966] [Trow-
bridge and Reitz 1975]. Physical accuracy was an impetus behind
the development of many subsequent computer graphics reflection

models [Cook and Torrance 1982][He et al. 1991]. An interest-
ing transition occurred with [Ward 1992], when Ward developed
a BRDF model that, while not strictly physically based, was capa-
ble of describing most significant reflection phenomena. He went to
great effort to ensure that his model obeyed the most basic of physi-
cal laws (reciprocity and energy conservation), and significantly, he
fit his model’s parameters to actual material measurements. More
recently, the availability of low-cost digital cameras has rekindled
interest in BRDF acquisition and modeling. One particularly ambi-
tious undertaking is the CUReT BRDF database [Dana et al. 1999]
[CUReT ]. The CUReT database represents approximately 200 re-
flectance measurements over varying incident and reflected angles
for a planar patch of 60 different materials. With a uniform material
sample this amounts to a relatively sparsely sampled BRDF. Such
a sparsely sampled BRDF is not directly useful as a table-based
BRDF function; thus, it was necessary to fit an analytic function in
order to get a useful model.

Marschner [Marschner et al. 2000] constructed another signifi-
cant BRDF measurement system. His system, although limited to
only isotropic BRDF measurements, was both fast and robust. In
particular, his system took unique advantage of reciprocity, bilateral
symmetry, and multiple simultaneous measurements to achieve un-
precedented leverage from each reflection measurement. This of-
fers a significant advantage. It filters measurement noise due to
minute variations over the surface, errors due to spatial variations
in photosite response within the image sensor, and variations in il-
lumination intensity. In the face of such statistical averaging, one
is hard pressed to attribute the inevitable residual errors that occur
when model fitting to additional systematic noise, rather than fail-
ings of the analytic model.

The inherent dimensionality of a BRDF, combined with the de-
sire to sample it at high resolutions in order to model specular, inci-
dent, and retroreflection effects, leads to an unwieldy sampling and
storage problem. Many researchers have addressed this specific
problem by searching for a more appropriate basis for represent-
ing BRDFs. Spherical harmonics [Westin et al. 1992] and spheri-
cal wavelets [Schröder and Sweldens 1995] are natural choices for
representing the angular parameters of the BRDF. Other efficient
representations include wavelets [Lalonde and Fournier 1997], Zer-
nicke polynomials [Koenderink et al. 1996],and separable approx-
imations obtained using singular value decomposition [Kautz and
McCool 1999] or a purely positive matrix factorization [McCool
et al. 2001]. Furthermore, recent image-based approaches to BRDF
modeling [Lensch et al. 2001] have demonstrated the power of us-
ing linear combinations of a compact reflectance function basis sets
for modeling spatially varying BDRFs. Such linear decomposi-
tions lead to an interesting question: can the true space of potential
BRDFs be described as a linear combination of basis functions?
Clearly, factorizations of the sort used to compress BRDFs are lin-
ear, allowing for arbitrary mixtures of their basis vectors to fit a
given set of data. If this decomposition approach were in fact valid,
it would imply that linear combinations of actual BRDFs might be
used to model original and physically plausible reflection models.
Exploring the ramifications of this hypothesis is one of our motiva-
tions for developing a sample-based generative model.

3 Data Acquisition

In order to acquire a sufficient number of adequately sampled
BRDFs, it was necessary to build a measurement device. Our mod-
eling approach placed two requirements on the acquired data: first,
that each BRDF be sampled densely enough that it could be used di-
rectly as a table-based model, and second, that the space of BRDFs
be sampled adequately so as to span the range of models that we
hope to generate. Accordingly, we have built a BRDF measurement
device suitable for rapidly acquiring high-quality BRDFs for a wide



Figure 2: A photograph of our high-speed BRDF measurement
gantry.

range of different materials (see Figure 2 ). The image-based BRDF
measurement device described by [Marschner et al. 2000] inspired
our design.

Our acquisition system requires a spherically homogenous sam-
ple of the material. The system is placed in a completely isolated
room painted in black matte. It consists of the following compo-
nents: a QImaging Retiga 1300 (a 10 bit, and a 1300x1030 res-
olution Firewire camera), a Kaidan MDT-19 (a precise computer-
controlled turntable), and a Hamamatsu SQ Xenon lamp (a lamp
with stable light emission output and a continuous and relatively
constant radiation spectrum over the visible light range). The lamp
is mounted on an arm to the turntable. The light orbits the mea-
surement sample placed at the center of rotation; the camera is sta-
tionary. Our camera is geometrically calibrated using the technique
described in [Zhang 1998]. The position of the light source is de-
termined using a contact digitizer (FARO Arm). We use the same
digitizer to determine the position of the center of the material sam-
ple. The radius of the sample is measured with calipers. The light
source moves in increments of approximately 0.5 ◦ from the point
exactly opposite the camera (the sample is in between the camera
and the light source) to the point exactly in front of the camera.
We take a total of 330 high dynamic range pictures to cover the re-
quired half circle. This process takes about 3 hours. For each high
dynamic range picture we take a total of 18 10-bit photographs. The
exposure time ranges from 40 microseconds to 20 seconds. We use
the fact that our CCD camera has a very linear response curve to
derive the high dynamic measurement. For each pixel in the image
we fit a line to the exposure time vs. radiance values. The slope of
the line is used as the radiance estimate. The correlation of this line
is higher than 0.998.

Each acquired image of the sample sphere represents many
BRDF samples. Essentially each pixel of the sphere is treated as
a separate BRDF measurement. In order to compute the specific
BRDF value for a given pixel we perform the following steps. First,
we intersect the ray defined by the pixel with the sphere to deter-
mine point P. Then, we compute the normal at point P on the sphere,
the vector and the distance to the light source, and the vector to the
camera pixel. Next, we compute the irradiance at point P due the
light source (taking into account distance to the light source and
foreshortening). Finally, we compute the BRDF value as the ratio
of the high dynamic range radiance to the irradiance.

4 Data Representation

We found that specular peaks were difficult to represent using the
natural coordinate system (θin,θout , φdi f f ). Even when binning a
BRDF at a dense grid (every 1 ◦ spacing for each dimension), it

is not possible to reproduce original images (the specular highlight
becomes an oval shape, oriented at different directions). We use
a different coordinate system, described in [Rusinkiewicz 1998]
and shown in Figure 3. This coordinate frame is based on the an-
gles with respect to the half-angle (half-vector between incoming
and outgoing directions). This coordinate frame allows us to vary
the sampling density near the specular highlight. Specifically, we
vary θh (angle between the normal and the half-vector), assigning
smaller bins for values near specular reflection and larger bins for
angles far away from the specular reflection.

Figure 3: The standard coordinate frame is shown on the left.
Rusinkiewicz’s coordinate system is shown on the right.

We still discretize θh,θd into 90 bins and φd into 360 bins. This
results in a total of 90 x 90 x 360 = 2,916,000 bins for each color
component. We halve this number to 1,458,000 by enforcing the
reciprocity constraint:

f (θh,θd ,φd) = f (θh,θd ,φd + π) (1)

With this constraint we need only to discretize φd into 180 bins.

Figure 4: Two log images of a sphere (alumina oxide). A real
image is shown on the left. A synthesized image using tabulated
BRDF data is shown on the right.

Our measurement process gives us typically 20-80 million
BRDF samples for each material. We reduce the noise in our mea-
surements by removing the outliers in each bin (lowest and highest
25% of the values), and we average the remaining measurements.
This statistical smoothing is intended to remove systematic noise as
well as compensate for small variations in material properties over
the sample. As a final validation we render a synthesized version
of our sample sphere and compare it to the corresponding acquired
high dynamic range image. We conduct this inspection for all in-
put light configurations. Pictures for a typical acquired material are
in shown in Figure 4. The rendered images reproduce the input
images very well. We have used our device to acquire BRDF mea-
surements of more than 130 different materials, including metals,
plastics, painted surfaces, and cloth. Figure 5 depicts some of the
materials that were sampled. We have removed from further anal-
ysis some materials that exhibited significant subsurface scattering,
anisotropy, or non-homogenity.



Figure 5: Pictures of 100 of our acquired materials.

5 Data Analysis

These sampled BRDFs can be used directly by a renderer. Sev-
eral examples of that are shown in Figure 6, where a teapot is ren-
dered under natural illumination using the raw acquired data. Our
ultimate goal, however, is to construct an empirical BRDF model
that can be used to generate novel, yet plausible, reflectance func-
tions directly from this database. We begin with the following as-
sumption: if we treat each of our BRDF samples as a high dimen-
sional vector in an abstract BRDF space, we expect that all physical
BRDFs lie upon a lower dimensional manifold within this space
indicative of their inherent dimensionality. This is a common as-
sumption used by others [Cula and Dana 2001] and it is consis-
tent with the relatively small number of parameters seen in analytic
BRDF models. Therefore, we breakdown the task of constructing
an empirical BRDF model into two phases: discovering this lower
dimensional model, and defining an interpolation scheme within
this lower-dimensional subspace.

5.1 Linear Analysis

In the case where the physical BRDF manifold lies on a linear sub-
space, the analysis tools for both manifold discovery and interpo-
lation are well known. In this case, Principal Component Analysis
(PCA)[Bishop 1995] effectively determines a set of basis vectors
that span the desired subspace, and linear combinations of sam-
ples can be used for interpolation. Linear manifold approaches
have proven extremely effective in some problem domains, such as
face synthesis [Blanz and Vetter 1999] and radiance interpolation
[Chen et al. 2002]. Potential linear manifolds are generally sug-
gested when there is a noticeable plateau in the magnitudes of the
sorted eigenvalues. When this plateau occurs on the kth eigenvalue,
we can model the data as a k-dimensional linear subspace with a
residual error bounded by the square root of the sum of the squares
of the remaining eigenvalues.

We began our analysis of the BRDF samples by searching for a
linear embedding manifold (a hyperplane). The three color chan-
nels of each BRDF sample were assembled into a column vector
and concatenated to form a 4,374,000 by 104 measurement vector
matrix X .

Figure 6: Rendered teapots using BRDFs from our database:
nickel, hematite, gold paint, and pink fabric.

Figure 7: Plot of the eigenvalues resulting from PCA of the data
set.

We perform the analysis in the log space (we apply the natural
logarithm to each element of vector X). There are several reasons
for this normalization. First, there is a huge difference (on the order
of a few magnitudes) between the specular and non-specular values
of the BRDF. If used in the original space, the analysis tools would
associate more importance to noise in the specular values than the
actual non-specular components. The linear analysis would depre-
ciate importance of these non-specular values (the non-specular val-
ues are perceptually important). Our operation is also justified by
the fact that the human visual system is sensitive to ratios rather
than absolute radiance values.

Singular value decomposition was then applied to X T X (a
104x104 matrix). The singular values in this case are the squares of
the desired eigenvalue magnitudes. A plot of these eigenvalues is
shown in Figure 7. We also show in Figure 8 the reconstruction of a
typical material using first 1, 5, 10, 20, 30, 45, 60, and all principal
components. We see that good reconstruction is usually obtained
using the first 30-40 components.

While there is a considerable fall off in the sequential values seen
in this plot, the plateau is reached around 45th eigenvalue (the re-
construction error is about 1% at that point). This dimension of
the embedding subspace is considerably higher than our intuition
would suggest, based on the typical number of parameters used in
analytic BRDF models. We verified that the 45-dimensional space
defined by the first principal components reconstructs all our mea-
sured BRDFs well. However, it spans a space that is bigger than the
space of all possible BRDFs. We are able to find the points in this



Figure 8: Reconstruction of a BRDF from principal components in the order of increasing number of components – mean, 5, 10, 20, 30, 45,
60, and all.

subspace that do not correspond to any physical materials. In other
words, using linear combinations of the components, we can obtain
the data samples that do not look like BRDFs. We illustrate this
point in Figure 9. Moreover, in order to span the whole space, we
would need to have at least 45 parameterization directions in order
to reach all specified BRDFs. This suggests that the space of all
possible BRDFs lies on a lower-dimensional manifold that is non-
linearly embedded in the 45D linear space. In the next section, we
apply recently developed nonlinear dimensionality reduction tech-
niques to discover this lower dimensional manifold.

5.2 Nonlinear dimensionality reduction

Nonlinear dimensionality reducers (NLDR) compute low-distortion
embeddings of high-dimensional data in low-dimensional target
spaces. The nonlinearity usually obtains from the fact that only
local relationships in the ambient space are preserved while long-
distance relationships are presumed to be corrupted by the curvature
of the manifold in the ambient space. First-generation NLDRs such
as nonmetric MDS [Kruskal and Wish 1978], IsoMap [Tenenbaum
et al. 2000], and LLE [Roweis and Saul 2000] generalize PCA to
give low-dimensional embeddings of the data, but offer no map-
ping of the data points. Recently, two second-generation methods
have been announced that offer continuous mappings between the
embedding an the original (ambient) space: Automatic Alignment
[Teh and Roweis 2003] combines LLE with a set of pre-estimated
local dimensionality reducers–each of which is presumed to be fit-
ted to a relatively flat subset of the manifold–and solves for a mix-
ture of these projections that globally flattens the data while min-
imizing barycentric distortion in each point neighborhood. Chart-
ing [Brand 2003] solves for a kernel-based mixture of projections
that minimizes Euclidean distortion of local neighborhoods; it in-
cludes a solution for the local dimensionality reducers needed by
automatic alignment. We chose to use charting because it is ex-
plicitly designed to work well with small numbers of samples and
to suppress measurement noise, two conditions that tend to break
methods for dimensionality reduction from local relationships.

Figure 10 gives the main geometric intuition behind charting.
First one solves for a set of flat “pancake” Gaussians that smoothly

Figure 10: A simple charting example. Points (⊕) sampled from a
unknown manifold (gray curve) are projected onto three subspaces
(red, green, and blue lines) and assigned a probability (indicated
by size) according to their distance from the point where the chart
touches the manifold. A minimal-distortion merger of these charts
gives a flattening of the manifold in a lower dimensional space,
where the mapped locations of points are the probability-weighted
combinations of their chart-specific locations.

cover the data manifold, in the sense that adjoining Gaussians have
similar orientation. The dominant axes of each Gaussian specify a
subspace. Projecting the data into this subspace gives a “chart” of
one part of the manifold. A chart preserves local structure where
it touches the manifold and suppresses measurement noise that dis-
places samples off the manifold. A data point has a location and
a probability in every chart. Due to curvature of the manifold, a
chart gives a very distorted picture of faraway points; these points
are assigned very low probability.

The pancake Gaussians are solved under a criterion that opti-
mizes the charts for the ensuing “connection.” The connection is
an affine merger of all charts in the target space–effectively a flat-
tening of the manifold that minimally distorts all charts and max-
imizes agreement between overlapping charts of the locations of
points to which they assign high probability. The connection gives



Figure 9: Nonlinear spaces generate valid BRDFs where linear spaces fail. Original BRDF corresponding to a point A on a 45 dimensional
hyperplane (left). Physically implausible reflectance (hole in the middle of the specular highlight) corresponding to moving away from a
point A on the 45 dimensional linear subspace (center). Physically plausible reflectance corresponding to moving equally far away from point
A on the 15 dimensional non-linear manifold (right).

Figure 11: Data reconstruction error as a function of the dimen-
sionality of the global chart. The sharp drop in this error curve
indicates that a 10-dimensional chart is sufficient for the BRDF
data. In fact, that chart has a better reconstruction error than a 25-
dimensional PCA.

mappings between the ambient and target spaces, which are simply
mixtures of affine projections, weighted by the probability that a
point “belongs” to each chart. The dimensionality-reducing map-
ping from the ambient to the target space effectively imposes a low-
dimensional coordinate system on the samples, while the inverse
mapping gives a smoothly curving low-dimensional surface in the
ambient space, effectively reconstructing the original manifold.

For charting, one must specify a set of chart centers, a width
parameter σ for the Gaussians, and a target dimensionality d. We
used the default settings: one chart centered on each data point and
σ = half the average distance between each point and its closest
neighbor. Note that locating a chart on a point does not cause the
manifold to pass through that point–only near it. See [Brand 2003]
for additional details.

As with PCA, the data-reconstruction error of a charted data set
gives an indication of the true dimensionality of the manifold. Fig-
ure 11 shows that our BRDF data probably lies on a 10D manifold.
The reconstruction error does not decline monotonically because
each dimensionality may merit a different flattening. For example,
if the data were sampled from a truncated cone, the best 1D chart
would simply be height along the cone, while the best 2D chart

would flatten the cone into an annulus. Each flattening would sup-
press the noise in different directions, some more fortuitous than
others.

While the 10D manifold exhibits good reconstruction of the orig-
inal data, our goal is to synthesize novel BRDFs. With that in mind
we chose to work on a 15D manifold because interpolations on it
pass even closer to the data density (with error comparable to 45D
PCA reconstruction). Moreover, this dimensionality is roughly con-
sistent with previous isotropic BRDF models [Ward 1992], [Lafor-
tune et al. 1997], and [Koenderink et al. 1996], which have at least
10 degrees of freedom.

A charted manifold of BRDF data makes it possible to treat the
space of BRDFs as if it were linear, and to identify meaningful
axes of variation in this embedding space. An interpolating or ex-
trapolating line in this space is a nonlinear curve in the original
BRDF space that passes closer to the data density that the equiva-
lent straight line would (on average), simply because it stays on the
manifold where a straight line does not. This translates directly to
superior BRDF synthesis, as will be demonstrated below.

6 Model Construction

In order to use our sample-based reflectance model it is necessary
to develop intuitive user interfaces for specifying and exploring
new materials. We investigated methods for characterizing material
traits by analogies derived from the existing samples. We believe
that such methods provide the best and most intuitive user interface
[Pellacini et al. 2000].

Our model is built from actual physical measurements and it re-
produces these measurements. Therefore, we have defined model
parameters for a large collection of materials – materials we have
measured. We believe that the most useful scheme of navigation is
when users can choose as a starting point some type of the material
similar to the one they desire. In our case they can pick any of the
measured materials. Then, they would change the reflectance prop-
erties of this material according to one of the following schemes
(these navigation schemes are applicable for both linear and non-
linear manifold models). The simplest method is to choose another
BRDF and move in this direction. Although of limited use, this
method works well for perceptually similar materials.

A more useful approach is to define directions corresponding to
a desired trait (the parameterization direction is a 45D vector for
linear space and a 15D vector for nonlinear space). We pick some
arbitrary point on the manifold and then move in the direction de-
fined by the vector by adding it to the current position to increase
the trait, or subtracting it to decrease the trait. We can backproject
the current point onto the original BRDF space to check the corre-
sponding BRDF. Next, we describe various procedures for identi-



fying trait vectors.
Our modeling approach requires the user to specify a sufficient

set of traits. This specification can be as simple as a binary classi-
fication (i.e., noting whether each acquired BRDF has the specified
trait.) We also allow the user to leave a BRDF unspecified in cases
where the trait is hard to determine or simply does not apply. Usu-
ally the more samples we specify for each class the more precise
the direction is.

There are many different ways to define the parameterization di-
rections based on the classification. We have examined and evalu-
ated a few. (A) Mean difference [Blanz and Vetter 1999]: In this
approach we compute the average of each BRDF in each comple-
mentary pair of clusters associated with a trait (i.e., those samples
with, and those without) in the embedding space. Then the vec-
tor between these complement averages in the embedding space is
the parameterization direction. This direction vector is then applied
(added or subtracted) to the current point in the embedding space.
(B) Support vector machines [Vapnik 1995]: Support vector ma-
chines determine the hyperplane which separates the data points in
the first material class from the data points in the second class. The
partitioning hyperplane has maximum distance to the closest points
(called support vectors) in both material classes. The parameteriza-
tion direction is the normal to this hyperplane. The hyperplane is
defined in 15D space for non-linear analysis and 45D for the linear
space. This method also tells us on which side of the hyperplane the
current point is, and how far the point is from the plane. (C) Fisher’s
linear discriminant [Duda and Hart 1973]: Each material class cor-
responds to a some distribution of high-dimensional data (15D for
non-linear analysis and 45D for linear analysis). Fisher’s linear dis-
criminant defines a projection of these distributions on the axis such
that the distributions projected on this axis are the most separable
(the projection maximizes the distance between the means of the
two classes while minimizing the variance of each class). In prac-
tice, support vector machines performed the best on our data set and
Fisher’s linear discriminant performed the poorest.

Since we want our model to preserve the basic principles of
physics, we have to disallow movements on the manifold that do not
adhere to these principles. We consider the three following princi-
ples:

• Reciprocity: As mentioned before, reciprocity in our model is
met by default since we store only half of the BRDF vector.

• Non-negativity: We allow the user to move only in the space
so that all the values in the backprojected vector are positive.

• Energy conservation: A unit of light energy is applied at some
incoming light direction. If the sum of energy in all outgoing
directions is less than one (we assume that the surface does
not emit energy by itself) then the energy is conserved. This
has to be true for all incoming light directions in order for a
BRDF to follow energy conservation. We enforce this and do
not allow the users to produce BRDFs for which the sum of
energy for any incoming direction is greater than one.

7 Results

Once the BRDFs are acquired and validated, as described in section
4, we performed both linear and non-linear dimensionality reduc-
tion as described section 5. We then set out to construct a perceptual
BRDF model using the techniques outlined in section 6. This sec-
tion presents the results from a typical model construction session.

A test subject was asked to characterize each of the BRDFs
from our database using 16 different traits. These included red-
ness, greenness, blueness, specularness, diffuseness, glossiness,

Figure 12: Diffuseness trait vs specularness trait. Observe that the
diffuseness and specularness traits exhibit a weak inverse correla-
tion. The green, blue, and red vectors denote projections of the
BRDF interpolations shown in the second, third, and fourth rows of
Figure 16 respectively.

Figure 13: Metallic-like trait vs specularness trait. Observe that
the metallic-like and specularness traits exhibit a weak correlation.
The green, blue, and red vectors denote projections of the BRDF
interpolations shown in the second, third, and fourth rows of Fig-
ure 16 respectively.

metallic-like, plastic-like, roughness, silverness, gold-like, fabric-
like, acrylic-like, greasiness, dustiness, rubber-like. In a sense,
these parameters are arbitrary since the classification is completely
based on the subject’s interpretation. We could have chosen traits
without physical connotations, such as ugly or pleasing. Alterna-
tively, the traits could have been based on actual measurable quan-
tities, such as conductivity and mean surface variation. Our test
subject characterized each BRDF as one of three choices: 1) pos-
sessing the particular trait, 2) not possessing the trait, or 3) unclear.
We then used the subject’s characterizations to build a model in both
the linear and non-linear embedding spaces using Support Vector
Machines.

The results from this trait-based analysis are shown as projec-
tions onto the derived trait vectors in Figures 12, 13, and 14. These
projections are computed in the linear embedding space given by



our non-linear model. Observe that the metallic and specular char-
acteristics are weakly correlated, the specular and diffuse traits
are weakly inverse-correlated, and the glossy and diffuse traits are
inverse-correlated. This is what we would expect. Note that we
do not make attempts to model independent traits in either our trait
selection or trait vector derivations. Therefore, we expect that addi-
tion of a particular trait to an existing BRDF may effect other traits.
This lack of parameter independence is a tradeoff that we accept in
order to establish perceptually meaningful parameters in our mod-
eling approach. Despite the fact that the parameterization vectors
are not orthogonal, they did span the whole 15D non-linear embed-
ding space and provide an intuitive set of “dials” for users to design
materials.

Figure 14: Glossiness trait vs diffuseness trait. Observe that the
glossiness and diffuseness traits exhibit an inverse correlation. The
green, blue, and red vectors denote projections of the BRDF inter-
polations shown in the second, third, and fourth rows of Figure 16
respectively.

Once trait vectors are established, we can add and subtract them
from our data points in our embedding space. In Figure 15 we
demonstrate four examples of varying user-specified traits using the
linear model. The first row shows a teapot rendered using our Gold-
Paint BRDF on the far left, and the effect of adding the redness
trait in successive steps to the right. The second row starts from
a our SpecularGold BRDF (left) with successive additions of the
silverness trait. The third row adds the gold-like trait to the Blue-
GlossyPaint BRDF (left). Finally, the fourth row shows the addition
of the specularness trait to the BlackMattePlastic BRDF. It is our
experience that the linear model gives reasonable BRDFs if only
small displacements are permitted. If the displacement is too large,
physically invalid BRDFs result (as illustrated in Figure 9).

We then applied the same trait classifications and Support Vec-
tor Machine calculations to the embedding space of our non-linear
model. Figure 16 demonstrates 4 examples using this approach.
The first row of Figure 16 shows our Copper BRDF on the left,
with successive additions of the roughness trait. The second row
begins with our GreenAcrylic BRDF and shows the addition of the
blueness trait. The trajectory of this path is also illustrated in Fig-
ures 12, 13, and 14. Notice that color-change specification is
not particularly correlated with any of traits used for these projec-
tions. Thus, we would expect relatively small movements and no
preferred direction. The third row, on the other hand, represents
the addition of the metallic trait to the VioletAcryllic BRDF model,
whose path is also illustrated in the projections in Figures 12, 13,
and 14. The path trajectory of this example conforms to our expec-
tations, and its magnitude is large in these visualizations since the

metallic trait is correlated to the glossiness and specularness traits
used as axis. The fourth row starts with YellowDiffusePaint BRDF
and shows the addition of the glossiness trait, which is depicted as
the red path in Figures 12, 13, and 14. The direction of this path is
as we would expect, and it has a large magnitude due to the fact the
the YellowDiffusePaint BRDF is located far away from the glossy
examples in the projections shown.

Overall the non-linear basis set results in a more robust model
than our linear basis set, in that we were able to move large dis-
tances within the non-linear embedding space and still generate
physically plausible BRDFs with the expected appearance.

Our modeling approach also allows us to associate approximate
trait vectors with physical processes. This can be done in one of two
ways, by fitting a least-squares line to a path of specified BRDFs in
the embedding space, or by computing local piecewise difference
vectors between examples. As an example, we have modeled metal
oxidation. We measured the reflectance changes as a metal was
exposed to an acidic environment. It changed from highly spec-
ular polished material to black matte material. The acquired four
BRDFs determine a path in the embedding space. The intermediate
stages are interpolated in the embedding space and backprojected
to the sample space (Figure 17). Figure 1 illustrates another pro-
cess – rust formation. We used a spatially varying texture to select
rust levels for each point on the teapot. We are currently measuring
more processes like this such as copper patination and other types
of rust formation.

8 Future Work and Conclusions

In this paper we have introduced a new approach for modeling
isotropic BRDFs. Our model generates new surface reflectance
models by forming combinations from a set of densely-sampled,
acquired BRDFs. We are hopeful that data-driven reflectance mod-
eling approaches, like ours, can greatly expand the range of material
models used in computer graphics rendering.

In order to develop an effective and efficient interpolation
scheme we choose to first analyze the inherent dimensionality of
our data set. To this end we applied both in linear subspace and non-
linear manifold analysis. The results of this analysis are suggestive
of the overall structure of BRDFs. Specifically, we found that the
linear subspace model lent itself to the creation of physically im-
plausible BRDFs, and a large number of dimensions (around 45)
were required to adequately represent our measurements. Nonethe-
less, we still found the linear subspace model to be useful for in-
terpolation over small distances. The nonlinear model, on the other
hand, was much more compact in its dimensionality (around 14
dimensions for the same accuracy as the 45-dimension linear sub-
space model), and more robust in its ability to interpolate plausi-
ble BRDFs over long distances. However, we caution against over
generalizing from our results. We are comfortable in saying that
our modeling approach effectively represents our data set, but our
sample size is still relatively small to draw conclusions regarding
the fundamental nature of isotropic BRDFs. However, we are op-
timistic that techniques like ours can be used to greatly expand our
knowledge in these areas.

We also have demonstrated methods for defining intuitive pa-
rameters for navigating within BRDF models. These techniques
can easily be customized for a range of industrial and artistic appli-
cations. Furthermore, they can be personalized for individual use
or made objective by incorporating physical measurements.

The advantages of our data-driven BRDF model include a high
degree of realism, a perceptually meaningful parameterization, rel-
ative ease of modeling for complex surface materials, and speed
of evaluation. The main disadvantage of the model is its size.
We believe that the model we propose can easily be incorpo-
rated into existing rendering systems. We also hope to extend our



Figure 15: Navigation in the linear space. Each row corresponds to changing one parameter of the model. The first row shows an increase
in the redness trait applied to the GoldPaint BRDF. The second row illustrates an increase in the silverness trait applied to the SpecularGold
BRDF. Row three applies the gold-like trait to the BlueGlossyPaint BRDF. The fourth row shows an increase in the specularness trait applied
to the BlackMattePlastic BRDF.

work in sample-based reflectance modeling to include anisotropy
(4D BRDF), macro-scale surface variations typically described by
BTFs, and subsurface scattering effects (BSSRDF). Another obvi-
ous extension would be to use this model in solving inverse render-
ing problems.
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