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Abstract This paper describes a convolution with a systolic array structure for perspective projection in real-time volume

graphics based on the shear-warp method. In the original method, the further the ray proceeds, the more voxels are required

to  calculate the convolution. The increase in required voxels makes it difficult to implement the method in a VLSI-oriented

architecture. We implement a 3D convolution using three serial 1D convolutions along the X, Y, and Z axes, which reduces the 

number of calculation units from M3 to 3M, where the convolution is calculated for the M3 area. The number of pipelines 

for the rays is V2 for V3 voxel datasets. If the hardware of a single pipeline can calculate the V rays, then each of the 

implemented pipelines is assigned to V theoretical pipelines (for V2 rays). The number of hardware pipelines should be much 

smaller than V theoretical pipelines in actual implementation. We folded the theoretical pipelines and reduced them to a 

certain number of hardware pipelines. We examined the relation between the folding process and its necessary time delay. 

The architecture can generate an image of a 2563 voxel dataset V = 256) at 30 Hz with four pipelines. In addition, the 

architecture can be extended easily for 5123 (V = 512) and 10243 (V = 1024) datasets, with 32 pipelines and 256 pipelines. 

Our architecture has processing scalability.

Key words: Volume Graphics, Volume Rendering, Graphics Architecture, Real-Time, Perspective Projection, Scientific Visual-

ization, Computer Graphics, Systolic Array.

1. Introduction

Fast direct volume rendering systems are in high de-

mand due to the increasing amount of scientific data 

generated by a variety of computer simulations; medical 

data obtained by MRI and CT scanners; and geologi-

cal, oceanographic, and meteorological data collected 

from various sensors. One of the notable characteris-

tics shared by these volume data is the amount of data 

elements to be processed in rendering. This requires 

a substantial amount of computing resources for ani-

mated visualization, which is essential to observe some 

physical phenomena. 

Although there are many algorithms for volume ren-

dering, the ray-casting algorithm is the most precise

algorithm based on a physical model. It casts rays from 
the center of the projection into the volume to calculate 
each pixel value on a screen. Let I(a, b) be the intensity 
from a ray through the volume between points a and 
b, s(r) be the light added per unit length at a distant 
r along the ray, and a(r) be the absorption coefficient 
that corresponds to the attenuation of the light per unit 
length. The following Equation (1) calculates the effects 
of the light, and has been used as a volume rendering 
equation 1)5).

(1)

As a simplified implementation of Equation (1), each 
sample is computed from the voxels surrounding the 
sample point by interpolation, then accumulated along 
the ray to calculate the intensity of the pixel. Each 
resampling operation is relatively simple, but the total 
number of resampling operations is very large, and the 
time spent on the operations is the greatest portion of 
the rendering time. This time requirement has made 
arranging parallel processing for resampling one of the
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major issues in real-time* volume rendering. In this 

paper, we propose a new VLSI-oriented resampling ar-
chitecture for both parallel and perspective projections 

based on the shear-warp methocr 5)6). In particular, we 

demonstrate implementation of a 3D convolution for re-

sampling with a systolic array structure. 

This paper is organized as follows, section 2 presents 

related work, section 3 presents some issues of the shear-

warp method, section 4 presents key ideas for imple-

mentation, section 5 shows the proposed architecture, 

section 6 evaluates the architecture, section 7 describes 

future work, and section 8 concludes the paper. 

2. Related Work 

From an architectural standpoint, the ray-casting al-

gorithm is categorized into two schemes for implemen-
tation: sample-order and voxel-order schemes. As the 

term implies, the sample-order scheme uses the sample 

point as the processing start point, then obtains the 
memory address of the voxel. In contrast, the voxel-

order scheme uses the memory address of the voxel di-

rectly as a starting point for processing. Each scheme 

has advantages and disadvantages for structuring real-

time volume rendering architectures. 

2.1 Sample-order scheme 

The sample-order scheme is a straightforward imple-

mentation of the ray-casting algorithm 2)4). It can uti-

lize some available optimization techniques. Early ray 

termination and coherence encoding are two methods 

to reduce the number of memory accesses7). The ma-

jor disadvantage of this scheme is that one voxel is si-
multaneously accessed by multiple rays for resampling, 

which increases the total number of memory accesses. 
In addition, it does not access the volume data in stor-

age order so it requires a complicated memory address 

calculation. These are disadvantages for VLSI-oriented 

implementations of real-time volume rendering system-

s. There is no rendering system in the scheme that can 

generate images for large data more than 643 grids in 
real-time2). 

2.2 Voxel-order scheme 

The voxel-order scheme uses the voxel address direct-

ly so that it can access the volume data in storage or-

der. This makes the scheme suitable for VLSI-oriented 

implementation. The voxel-parallel method 10) in the 

scheme reads voxels once and retains them until all the 

samples that require the voxels are computed. Cube-

4 10) and its VLSI implementation, EM-Cube9)11), are

the rendering systems in this method. The architec-

tures are organized in a systolic array structure. How-

ever, they support only parallel projections. 

Shear-warp5)6) is another method in the voxel-order 

scheme. It can treat both parallel and perspective 

projections in a unified way. 

3. Issues of the Shear-warp Method for 

Hardware Implementation 

The shear-warp method produces a distorted base 

plane* image with the shearing matrix H5)6) as an inter-
mediate image; the image is then warped to produce the 

correct image on a screen. Fig. 1 shows the perspec-

tive rays parallelized at the base plane by the shearing 

matrix H. Starting from a position in the first slice, i.e. 

the base plane, a parallelized perspective ray proceed-

s in the progressively scaled grid to compute a sample 

at each slice. The computed samples are accumulated 

to produce the final pixel value in the base plane im-

age. The resampling operation is a convolution over 

the voxels in a resampling area.

This method has a significant advantage in that both 

projections can be treated in a unified way. However, 
there are two important issues for parallel pipelined im-

plementation, i.e. the systolic array, of the method: (1) 
reducing the number of calculation units for a 

convolution and (2) organizing a parallel pipeline 

convolution. 

The number of voxels to be convoluted in one dimen-

sion, M, in the worst case is computed by:

(2)

where kmax ** , is the most distant slice number or the

* generating more than 30 images per second

*

 The plane most perpendicular to the viewing vector, which in-

cludes the front face of the volume.
** We use notation (x, y, z) for the dataset description and (i, j , k) 

for the transformed, as shown in Fig. 1

Fig. 1 Shearing and scaling In perspective projections .
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distance from the base plane, and ko is the distance be-
tween the eye position (the center of the projection) and 
the base plane, as shown in Fig. 1. It can be large with 
high values for kmax and/or small values for h. A large 
area is required for convolution since hardware imple-
mentation can only use a fixed amount of resources for 
the convolution. Without a large area, low quality or 

aliased base plane images are produced. Although in 

perspective projection using M voxels for convolution 
ensures covering the convolution area at all samples, a 
naive 3D convolution for M voxels area requires M3 cal-
culation units, so it is almost impossible to implement 
with hardware for a large M 

The convolution structure is another issue. We in-
tended to make a systolic array structure for the 3D 
convolution to get real-time speed. These issues make 
it difficult to implement the perspective projections in 
real-time and have been major obstacles for hardware 
implementation in this method. 

4. Basic Ideas 

4.1 Sample-parallel method 
We shifted the focus from voxels to samples and reor-

ganized the rendering architecture as a sample-parallel 
architecture to provide a unified parallel pipeline struc-
ture for both parallel and perspective projections. 

All the complicated communications and controls be-
tween other pipelines are moved from the rendering 

pipelines to a resampling module in order to organize 
the rendering pipelines in a fixed parallel-pipeline struc-
ture. 

As shown in Fig. 2, the architecture places the resam-

pling module between the voxel memory and rendering 
pipelines. This module is specialized for resampling us-
ing the voxels in the resampling area.

4.2 3D convolution by series of 1D convolu-

tions 

The sheared voxel position (i•õ, j•õ, k•õ) and the resam-

pling position position (i, j, k) that correspond to voxel address 

(i, j, k) are given by the following equations.

(3)

where suffix T indicates a transposition and matrix H 

is given by5):

(4)

where(io,jo,ko)is the eye position as illustrated in 

Fig. 1. 

Let the convolution area be M•~ M•~ M for a sample 

estimation. The sample value at point (i, j, k) along a 

parallelized ray is given by the following 3D convolution.

(5)

where ic, jc, kc are given by:

and Vic+l, jc+m,kc+n, is a voxel addressed by (ic+l,jc+

m,kc+n) and /vlmn is a normalized convolution weight

given by:

If we assume separable weights wlmn,, i.e. wlmn= 
wn wm wl, then Equation (5) can be transformed into 
Equation (6).

(6)

where wl, Wm, and wn are weights given by:

(7)

This assumption is reasonable in many practical 

cases. For example, a 3D Lagrange interpolation for-

mula and a 3DSinc function are separable and belong

Fig. 2 Sample-parallel architecture.
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to this category. By using a separable weight, the 3D 

convolution can be implemented using a series of 1D 

convolutions. This implementation uses 3M calcula-

tion units, i.e. a multiplier and adder, instead of M3 

for an ordinary 3D convolution. This greatly reduces 

the calculation cost. 

4. 3 Induction of a parallel pipeline structure 

for the 3D convolution 

We first define the access timing difference Td between 

two voxels. Fig. 3 illustrates the voxel accessing order 

in a slice with four pipelines. All voxels in the volume 

are accessed in this manner.

The access timing difference Td, caused by the ac-
cessing order, is defined by Equation (8) using voxel 
dimension V and the number of pipelines Np, as shown 

in Fig. 3.

(8)

The 3D convolution, Equation (6), is separated into 

the following series of 1D convolutions.

(9)

In this induction, we assume M = 3 and Np = 4 

for simplicity. The following discussion can be gener-

ally applied for any M and N. Fig. 4 shows four

ai
,*,*= ΣM-1 l=0 wl・vi+l,*,* 

in a standing form. Equiv-

alent voxels are indicated by arrows in the figure. These 

same voxels need not be accessed each time from mem-

ory, but with data passing through. The delay time for 

those passing through can be calculated using Equation 

(8). In this case, Tdl (vic+1,*,*; Vic,*,*)= 0. Therefore, 
delay-units for timing adjustment are not necessary for 

the data passing.

Fig. 5 illustrates four bi,j,*. The results for an i-
direction 1D convolution, ai ,*,*, are the same, as indi-
cated by arrows. In this case, Td2(ai,jc+1,*; ai,jc,*) = 4/4. 

Therefore, delays of one time unit are necessary to ad-

just the timing for the data passing.

The same discussion can be applied to the k-direction. 
In this case, Td3(bi,j,kc+1; bi,j,kc) = 16/4. This indi-
cates that delays of four time units are necessary. We 
can obtain a parallel pipeline 3D convolution by serially 
connecting the above three 1D convolutions. 

4. 4 Parallel pipeline convolution for a special 
case 

Fig. 6 illustrates an implementation of a parallel 

pipeline convolution with a 3 x 3 x 3 area, based on 
the previous discussion. The figure shows a special case 
in which the dataset size in one dimension is equal to 
the number of processing pipelines. In Fig. 6(a), the 
convolution has two types of data paths; the solid line 
indicates the data path for voxels, and the dotted line 
indicates that for the sheared and resampling positions. 
Operations are divided into three groups in each data 

path: one group for the i, another for the j, and the 
third for the k-direction. The j-direction 1D convolu-
tion has a j-delay; i.e. , Td2, to adjust the timing of 
the next scanline-voxels. The k-direction 1D convolu-
tion has a k-delay; i.e., Td3, to adjust the timing of the 
next slice of voxels. 

The technique for accessing all the voxels with a set of 

pipelines in a sequential manner is shown in Fig. 6 (b). 
Fig. 6 (c) illustrates the geometrical relation between 

the sheared positions and original positions on a slice. 
The difference between the resampling position and the 
sheared position, 6i, is used to generate the convolution 
weight for each direction. Fig. 6 (d) illustrates the data 
flows of an arithmetic unit in Fig. 6 (a).

Fig. 3 Voxel-accessing-order in a slice with four 

pipelines for a data dimension V greater than 
four.

Fig. 4 Induction of four parallel pipeline 1D convolu-

tions for i-direction.

Fig. 5 Induction of four parallel pipeline 1D convolu-

tions for j-direction.
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(a) Parallel pipeline convolution

(b) Sequential access of voxels, skewed, to be used for each pipeline,

(c) One slice data of a volume for the convolution input.

(d) Arithmetic unit in the pipelined convolution.

Table 1 shows several snapshots of data flow of the 

pipeline operations of the 1D convolution for the i-

direction in Fig. 6 (a). In this example, one slice of 

4 •~ 4 voxels is used as input for each pipeline; see 

Fig. 6 (b). The table indicates that the four results 

of the 1D convolution are generated simultaneously, as 

shown in time-5 at location W2-c in the table. The 

data flow for resampling position (i,j,k) and sheared 

position (i•õ, j•õ, k •õ ) is shown in Table 2. The overall 

pipeline operations can be deduced from the snapshot-

s in Table 1 and bf Table 2 since the 1D convolution 

structure for the j and k-directions is similar to that of 

the i-direction, but with different time delays, Td2 and 

Td3, as described in section 4.3. 

4.5 Convolution area 

The underlining architecture pairs a memory mod-

ule and a convolution pipeline so that each pipeline can 

take one voxel along with a neighboring voxel through 

a lateral communication and produces one sample. M 

voxels guarantee to wrap the convolution area at any 

slices for perspective projections. 

The order of the voxels to be read cannot be con-

trolled because each memory is connected to each 

pipeline. However, the position of resampling (i, j, k) 
for each pipeline can be controlled. Fig. 7 illustrates 

the relation between the pipelines for voxels to be read 

and the pipelines for their outputs. An example with 

Np = 4 and M=3 is shown in the figure. The pipeline-

outputs that do not contribute to resampling, although 

they contribute to the simultaneous reading of voxels 

for resampling, are neglected when compositing in the 

rendering pipelines using the enable/disable flags.

Fig.6 3 •~ 3 •~ 3 parallel pipeline 3D convolutions with four pipelines for a special case: V Np = 4.

Fig. 7 Relation between the pipelines for voxels to be 

read and pipelines for their outputs.
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5. Proposed Architecture 

5.1 Skewed memory organization 

Skewed memory organization is a technique to store 

voxels in separate memory modules so that voxels in a 

slice can be accessed in parallel without any memory 

conflict, regardless of the viewing direction3). It does 

not require multiple volume copies. We used skewed 

memory organization for volume data. 

Consider a system with Np rendering pipelines for a 

volume with a size V3. A logical memory address for 

the skewed memory is specified by (i, j, k). Let n, be 

a memory module number, and ip be the index in the 

module; the physical address (np,ip) is given by the 

following addressing scheme using the logical address:

(10)

(11)

where

(12)

Fig. 6 (b)-right illustrates skewed memory, with one 
slice of volume data. 

5.2 Parallel pipelined convolution for a gen-
eral case 

We have shown the architecture of 3D convolution 
for the special case of V = Np. V is generally equal to 
or greater than Np. By folding a string of voxels with 
Np voxels, the set of Np pipelines can access the entire 

string of voxels repeatedly, as shown in Fig. 3.

Table 1 Snapshots of data flow in 1D convolutions. The data flow for i-direction is shown.

Table 2 Snapshots of data flow for resampling and sheared position in 1D convolutions. The data flow 

for i-direction is shown.
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The folding scheme requires other types of delays in 

the architecture, which are folding-delays, left-folding-

delays, and selectors. Fig. 8 shows the derivations of 

these delays and their controls. The derivation of the 

time delay for the case of V = 8 and Np = 4 is shown 

in the figure. Fig. 8 (a) shows a naive implementation 
with no folding. Fig. 8 (b) shows the dummy time-slots 

generated for the folding. The input timing of the left 
half of the voxels is one unit-time sooner than the right 
one. Delays are used to compensate for this timing mis-
match. Fig. 8 (c) shows that the dummy time slots are 
filled by folding. There are no wasted time-slots because 
of this folding. This derivation enables us to see that 
the time delay for folding-delays is always one unit time, 
regardless of V; in contrast, that of left-folding-delays is 
V/Np.

Fig. 9 shows a block diagram of the 3D convolution 

for the general cases of V•† Np and Np = 4. This struc-

ture is a direct extension from Fig. 6. In the structure, 

the j -delay of V/4 is used to adjust the time delay for 

voxels in the next scanline, and the k-delay of V2/4 for 

the next slice of voxels. In addition, the structure has 

folding-delays and left-folding-delays to compensate for 

the time delay caused by folding. In summary, the num-

ber of time-delays for general cases of Np pipelines is 

shown in Table 3.

The following steps describe the operation of the 

parallel pipeline 3D convolution in the figure. Ad-

dress Gen generates voxel address (i, j, k) with in-

cremental step Np for i, starting from (0, 0, 0). It 

then increments j and k until the address reaches 

(V - 1, V - 1, V - 1). The internal address of each 

memory is calculated with this (i, j, k), using Equation 

(11) to fetch voxels. At the same time, the shearing 

(i, j, k) (i•õ, j•õ,k•õ) is carried out on the fly in the 

shear bock. (3, k) is generated in the same block us-

ing (i•õ, j•õ, k•õ). This shearing is carried out using DDA 

instead of matrix multiplication. A set of pipelines 

reads voxels Vi,j,k, Vi+1, j, k •E•E•E Vi+Np-1,j,k simultaneously 

from each memory connected to the pipeline using the 

base address (i, j, k). The fetched voxels, generated 

resampling positions k) ((i+ Afp _ 1), , k), and 

sheared positions (i•õ i•õ k•õ) ((i+Np-i)•õ, k•õ), are 

put into the convolution pipelines to get resampled da-

ta.

The resampled data are skewed so that deskew block 

deskews the resampled outputs by a multiplexer using 

address (i,jk). The outputs of the deskewing are put 
into the rendering pipelines to carry out compositing

along the parallelized rays.

(a) Na folding.

(b) Timing shift of input data with delay°

(c) Folding a string of voxels with 4 pipelines.

6. Analysis of Proposed Architecture 

6.1 Rendering timing 

We estimated the timings for rendering volumes of 

practical sizes. The rendering time is directly related to 

the number of resampling operations to be performed. 

Since the resampling and other rendering operations can 

be fully pipelined, the pipeline cycle time can be equal 

to the memory access time Tm. This implies that the

Fig. 8 Derivation chart of folding delays and their con-

trol for the folding process; V = 8 and Np = 4.

Table 3 Number of time delays versus data dimension 

V and the number of processing pipelines Np.

Paper •  A Parallel Pipeline Convolution for Perspective Projection in Real-Time Volume Rendering (119) 1345



processing bottleneck is the memory access time. Ac-

cesses to the voxel memory are regular and deterministic 

for a given set of rendering parameters. 

Let V3, Np, and Nf be the volume size, the number 

of rendering pipelines, and the number of image frames 

generated per second. The total number of samples N, 

to compute in each pipeline for one second is given by:

(13)

For each second,

(14)

The maximum dimension of volume that can be ren-

dered for a given set of parameters Tm, Nf, and Np is 

given by:

(15)

Assuming that Tm = 8 ns, as in a 125-MHz SDRAM 

chip, and Nf = 30 frames/second, the volume dimen-

sions computed for several values of Nf and Np are 

shown in Fig. 10. The volume dimensions computed 

for several typical values of Nf and Np are also shown

in Table 4. These values verify that the proposed 

architecture can render volumes of practical sizes, i.e., 

more than 2563 voxels, in real-time.

6.2 Processing scalability and expandability 
of the convolution area 

Adding rendering pipelines increases the volume size 
for a fixed frame rate or the frame rate for a vol-
ume of fixed size. There are no architectural problems 
in adding rendering pipelines, because 1) in the vox-
el memory interface, each memory module in the voxel 
memory is connected one-to-one to a pipeline in the re-
sampling module; 2) the resampling pipelines commu-
nicate only with the left and right pipelines in the re-
sampling module; 3) in the interface between the resam-

pling module and the rendering pipelines, each render-
ing pipeline is connected to one resampling pipeline; and 
4) each pipeline communicates only with the left and 
right pipelines in inter-pipeline communications. There-
fore, the proposed architecture has processing scala-
bility. 

In addition, it is easy to increase the convolution area 
M in the architecture by just adding calculation units 
along with pipelines. 

6.3 Image quality 
We built a software simulator to simulate the pipeline 

data flow of the proposed architecture, and verified the 
concepts of both parallel and perspective projections. 
To compare images, we built a sample-order ray-casting 
renderer that computes slices of samples perpendicular 
to the viewing vector and accumulates them to produce

Fig. 9 3 •~ 3 •~ 3 parallel pipelined 3D convolution for 

general case: V •â Np, Np= 4.

Fig. 10 Maximum volume dimensions.

Table 4 Maximum volume dimensions for typical frame 

rate.
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(a) Perspective projection with 2•~ 2•~ 2

convolution

(b) Perspective projection by resam-

pling the nearest neighbor voxels.

(c) Perspective projection with 3•~ 3•~ 3

convolution.

(d) Perspective projection with 3•~ 3•~ 3

convolution.

(e) Parallel projection with 3•~ 3•~ 3

convolution.

(f) Screen-to-Object perspective pro-

jection by interpolations using multi-
resolution datasets.

the final image. We conducted several rendering exper-

iments with these simulators. 

Fig. 11 (a) shows a perspective image rendered from 

an opaque cube sized 643 to verify the perspective pro-

jection. We used a filter kernel based on the 2•~ 2•~ 2 

Lagrange formula in the resampling. 

Figs.11 (b) and (c) show two perspective images ren-
dered from an opaque checker-board cube sized 1283 (s-

patial frequency of 64 Hz) to explore the aliasing prob-
lem; a fully opaque dataset gives the worst case for 

aliasing. The image in Fig. 11 (b) was generated by 

using the nearest neighbor voxel values in resampling 

and clearly shows the aliasing problem. The image in 

Fig. 11 (c) was generated by using a 3•~ 3•~ 3 box filter 

kernel in resampling, showing the antialiasing effect by 

a convolution. 
Figs.11 (d), (e), and (f) show the images rendered

from the engine block sized 2563 used in Lacroute's ren-
dering experiments6) with a manually adjusted opacity 
table. Fig. 11 (d) shows a perspective projection im-
age, and Fig. 11 (e) shows a parallel projection image 
for comparison. These two images were generated using 

a kernel based on the 3•~ 3•~ 3 Lagrange formula. 

Fig. 11 (f) is a perspective projection image generat-

ed by the sample-order ray-casting renderer with inter-

polations using multi-resolution datasets. There were 

256 slices taken for this image, about the same number 

of slices (256) used in Fig. 11 (d). The two images in 
Figs. 11 (d) and (f) look comparable in quality. 

7. Future Work 

Error analysis is essential for hardware implementa-
tion, which is most likcly to usc fixed-point arithmetic.

The application of resampling by convolution to render

Fig. 11 Images generated with simulators.
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a class of irregular volumes is another topic for future 
study. 

8. Conclusion 

We have proposed a convolution with a systolic array 
structure for perspective projection in real-time volume 

graphics based on the shear-warp method. In the orig-
inal algorithm, the further the ray proceeds, the more 
voxels are required to calculation the convolution. This 
increase in required voxels makes it difficult to imple-
ment the algorithm in hardware. By assuming sepa-
rability of the kernel weight for convolution, we imple-
mented a 3D convolution with three serial 1D convo-
lutions along the i, j and k axes, which reduces the 
number of calculation units from M3 to 3M, where the 
convolution is calculated for a M3 area. 

The number of pipelines for rays is V2 for V3 voxels 
datasets. If the hardware of a single pipeline can cal-
culate V rays, each of the implemented pipelines is as-
signed to V theoretical pipelines (for V2 rays). The 
number of hardware pipelines should be much smaller 
than the V theoretical pipelines in actual implementa-
tion. We folded the theoretical pipelines and reduced 
them to a certain number of hardware pipelines. We 
show the relation between this folding process and its 
necessary delay. 

The architecture can generate an image of a 2563 vox-
el dataset ( V = 256 ) at 30 Hz with four pipelines. In 
addition, the architecture can be easily extended for 
5123 (V = 512) and 10243 (V = 1024) dataset with 32 

pipelines and 256 pipelines. Our architecture has pro-
cessing scalability.
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