
Paper

A Parallel Pipeline Convolution for Perspective Pro-

jection in Real-Time Volume Rendering
(実 時間ボリュームレンダ リングにおける透視投影のための並列パイプライン・コンボ リューシ ョン)

Masato Ogat a (member)•õ, Hanspeter Pfister•õ•õ, Hugh C. Lauer•õ•õ,

Yasunori Dohi•õ•õ•õ

Abstract This paper describes a convolution with a systolic array structure for perspective projection in real-time volume

graphics based on the shear-warp method. In the original method, the further the ray proceeds, the more voxels are required

to calculate the convolution. The increase in required voxels makes it difficult to implement the method in a VLSI-oriented

architecture. We implement a 3D convolution using three serial 1D convolutions along the X, Y, and Z axes, which reduces the

number of calculation units from M3 to 3M, where the convolution is calculated for the M3 area. The number of pipelines

for the rays is V2 for V3 voxel datasets. If the hardware of a single pipeline can calculate the V rays, then each of the

implemented pipelines is assigned to V theoretical pipelines (for V2 rays). The number of hardware pipelines should be much

smaller than V theoretical pipelines in actual implementation. We folded the theoretical pipelines and reduced them to a

certain number of hardware pipelines. We examined the relation between the folding process and its necessary time delay.

The architecture can generate an image of a 2563 voxel dataset V = 256) at 30 Hz with four pipelines. In addition, the

architecture can be extended easily for 5123 (V = 512) and 10243 (V = 1024) datasets, with 32 pipelines and 256 pipelines.

Our architecture has processing scalability.

Key words: Volume Graphics, Volume Rendering, Graphics Architecture, Real-Time, Perspective Projection, Scientific Visual-

ization, Computer Graphics, Systolic Array.

1. Introduction

Fast direct volume rendering systems are in high de-

mand due to the increasing amount of scientific data

generated by a variety of computer simulations; medical

data obtained by MRI and CT scanners; and geologi-

cal, oceanographic, and meteorological data collected

from various sensors. One of the notable characteris-

tics shared by these volume data is the amount of data

elements to be processed in rendering. This requires

a substantial amount of computing resources for ani-

mated visualization, which is essential to observe some

physical phenomena.

Although there are many algorithms for volume ren-

dering, the ray-casting algorithm is the most precise

algorithm based on a physical model. It casts rays from
the center of the projection into the volume to calculate
each pixel value on a screen. Let I(a, b) be the intensity
from a ray through the volume between points a and
b, s(r) be the light added per unit length at a distant
r along the ray, and a(r) be the absorption coefficient
that corresponds to the attenuation of the light per unit
length. The following Equation (1) calculates the effects
of the light, and has been used as a volume rendering
equation 1)5).

(1)

As a simplified implementation of Equation (1), each
sample is computed from the voxels surrounding the
sample point by interpolation, then accumulated along
the ray to calculate the intensity of the pixel. Each
resampling operation is relatively simple, but the total
number of resampling operations is very large, and the
time spent on the operations is the greatest portion of
the rendering time. This time requirement has made
arranging parallel processing for resampling one of the

Received January 19, 2000; Revised May 30, 2000; Accepted July 3,

2000

† Mitsubishi Precision Co, Ltd.

(345 Kamimachiya, Kamakura, Japan)

†† A Mitsubishi Electric Research Laboratory

(201 Broadway Cambridge, M.A, U.S.A)

††† Division of Elec. & Comp. Eng.

(Yokohama National University,156 Tokiwadai, Hodogaya, Yokohama,
Japan)

映 像 情 報 メ デ ィア 学 会 誌Vol.54, No.9, pp.1339～1348 (2000) (113)1339

major issues in real-time* volume rendering. In this

paper, we propose a new VLSI-oriented resampling ar-
chitecture for both parallel and perspective projections

based on the shear-warp methocr 5)6). In particular, we

demonstrate implementation of a 3D convolution for re-

sampling with a systolic array structure.

This paper is organized as follows, section 2 presents

related work, section 3 presents some issues of the shear-

warp method, section 4 presents key ideas for imple-

mentation, section 5 shows the proposed architecture,

section 6 evaluates the architecture, section 7 describes

future work, and section 8 concludes the paper.

2. Related Work

From an architectural standpoint, the ray-casting al-

gorithm is categorized into two schemes for implemen-
tation: sample-order and voxel-order schemes. As the

term implies, the sample-order scheme uses the sample

point as the processing start point, then obtains the
memory address of the voxel. In contrast, the voxel-

order scheme uses the memory address of the voxel di-

rectly as a starting point for processing. Each scheme

has advantages and disadvantages for structuring real-

time volume rendering architectures.

2.1 Sample-order scheme

The sample-order scheme is a straightforward imple-

mentation of the ray-casting algorithm 2)4). It can uti-

lize some available optimization techniques. Early ray

termination and coherence encoding are two methods

to reduce the number of memory accesses7). The ma-

jor disadvantage of this scheme is that one voxel is si-
multaneously accessed by multiple rays for resampling,

which increases the total number of memory accesses.
In addition, it does not access the volume data in stor-

age order so it requires a complicated memory address

calculation. These are disadvantages for VLSI-oriented

implementations of real-time volume rendering system-

s. There is no rendering system in the scheme that can

generate images for large data more than 643 grids in
real-time2).

2.2 Voxel-order scheme

The voxel-order scheme uses the voxel address direct-

ly so that it can access the volume data in storage or-

der. This makes the scheme suitable for VLSI-oriented

implementation. The voxel-parallel method 10) in the

scheme reads voxels once and retains them until all the

samples that require the voxels are computed. Cube-

4 10) and its VLSI implementation, EM-Cube9)11), are

the rendering systems in this method. The architec-

tures are organized in a systolic array structure. How-

ever, they support only parallel projections.

Shear-warp5)6) is another method in the voxel-order

scheme. It can treat both parallel and perspective

projections in a unified way.

3. Issues of the Shear-warp Method for

Hardware Implementation

The shear-warp method produces a distorted base

plane* image with the shearing matrix H5)6) as an inter-
mediate image; the image is then warped to produce the

correct image on a screen. Fig. 1 shows the perspec-

tive rays parallelized at the base plane by the shearing

matrix H. Starting from a position in the first slice, i.e.

the base plane, a parallelized perspective ray proceed-

s in the progressively scaled grid to compute a sample

at each slice. The computed samples are accumulated

to produce the final pixel value in the base plane im-

age. The resampling operation is a convolution over

the voxels in a resampling area.

This method has a significant advantage in that both

projections can be treated in a unified way. However,
there are two important issues for parallel pipelined im-

plementation, i.e. the systolic array, of the method: (1)
reducing the number of calculation units for a

convolution and (2) organizing a parallel pipeline

convolution.

The number of voxels to be convoluted in one dimen-

sion, M, in the worst case is computed by:

(2)

where kmax ** , is the most distant slice number or the

* generating more than 30 images per second

*

 The plane most perpendicular to the viewing vector, which in-

cludes the front face of the volume.
** We use notation (x, y, z) for the dataset description and (i, j , k)

for the transformed, as shown in Fig. 1

Fig. 1 Shearing and scaling In perspective projections .

1340 (114) 映像情報 メデ ィア学会 誌Vol.54, No.9 (2000)

distance from the base plane, and ko is the distance be-
tween the eye position (the center of the projection) and
the base plane, as shown in Fig. 1. It can be large with
high values for kmax and/or small values for h. A large
area is required for convolution since hardware imple-
mentation can only use a fixed amount of resources for
the convolution. Without a large area, low quality or

aliased base plane images are produced. Although in

perspective projection using M voxels for convolution
ensures covering the convolution area at all samples, a
naive 3D convolution for M voxels area requires M3 cal-
culation units, so it is almost impossible to implement
with hardware for a large M

The convolution structure is another issue. We in-
tended to make a systolic array structure for the 3D
convolution to get real-time speed. These issues make
it difficult to implement the perspective projections in
real-time and have been major obstacles for hardware
implementation in this method.

4. Basic Ideas

4.1 Sample-parallel method
We shifted the focus from voxels to samples and reor-

ganized the rendering architecture as a sample-parallel
architecture to provide a unified parallel pipeline struc-
ture for both parallel and perspective projections.

All the complicated communications and controls be-
tween other pipelines are moved from the rendering

pipelines to a resampling module in order to organize
the rendering pipelines in a fixed parallel-pipeline struc-
ture.

As shown in Fig. 2, the architecture places the resam-

pling module between the voxel memory and rendering
pipelines. This module is specialized for resampling us-
ing the voxels in the resampling area.

4.2 3D convolution by series of 1D convolu-

tions

The sheared voxel position (i•õ, j•õ, k•õ) and the resam-

pling position position (i, j, k) that correspond to voxel address

(i, j, k) are given by the following equations.

(3)

where suffix T indicates a transposition and matrix H

is given by5):

(4)

where(io,jo,ko)is the eye position as illustrated in

Fig. 1.

Let the convolution area be M•~ M•~ M for a sample

estimation. The sample value at point (i, j, k) along a

parallelized ray is given by the following 3D convolution.

(5)

where ic, jc, kc are given by:

and Vic+l, jc+m,kc+n, is a voxel addressed by (ic+l,jc+

m,kc+n) and /vlmn is a normalized convolution weight

given by:

If we assume separable weights wlmn,, i.e. wlmn=
wn wm wl, then Equation (5) can be transformed into
Equation (6).

(6)

where wl, Wm, and wn are weights given by:

(7)

This assumption is reasonable in many practical

cases. For example, a 3D Lagrange interpolation for-

mula and a 3DSinc function are separable and belong

Fig. 2 Sample-parallel architecture.

Paper • A Parallel Pipeline Convolution for Perspective Projection in Real-Time Volume Rendering (115)1341

to this category. By using a separable weight, the 3D

convolution can be implemented using a series of 1D

convolutions. This implementation uses 3M calcula-

tion units, i.e. a multiplier and adder, instead of M3

for an ordinary 3D convolution. This greatly reduces

the calculation cost.

4. 3 Induction of a parallel pipeline structure

for the 3D convolution

We first define the access timing difference Td between

two voxels. Fig. 3 illustrates the voxel accessing order

in a slice with four pipelines. All voxels in the volume

are accessed in this manner.

The access timing difference Td, caused by the ac-
cessing order, is defined by Equation (8) using voxel
dimension V and the number of pipelines Np, as shown

in Fig. 3.

(8)

The 3D convolution, Equation (6), is separated into

the following series of 1D convolutions.

(9)

In this induction, we assume M = 3 and Np = 4

for simplicity. The following discussion can be gener-

ally applied for any M and N. Fig. 4 shows four

ai
,*,*= ΣM-1 l=0 wl・vi+l,*,*

in a standing form. Equiv-

alent voxels are indicated by arrows in the figure. These

same voxels need not be accessed each time from mem-

ory, but with data passing through. The delay time for

those passing through can be calculated using Equation

(8). In this case, Tdl (vic+1,*,*; Vic,*,*)= 0. Therefore,
delay-units for timing adjustment are not necessary for

the data passing.

Fig. 5 illustrates four bi,j,*. The results for an i-
direction 1D convolution, ai ,*,*, are the same, as indi-
cated by arrows. In this case, Td2(ai,jc+1,*; ai,jc,*) = 4/4.

Therefore, delays of one time unit are necessary to ad-

just the timing for the data passing.

The same discussion can be applied to the k-direction.
In this case, Td3(bi,j,kc+1; bi,j,kc) = 16/4. This indi-
cates that delays of four time units are necessary. We
can obtain a parallel pipeline 3D convolution by serially
connecting the above three 1D convolutions.

4. 4 Parallel pipeline convolution for a special
case

Fig. 6 illustrates an implementation of a parallel

pipeline convolution with a 3 x 3 x 3 area, based on
the previous discussion. The figure shows a special case
in which the dataset size in one dimension is equal to
the number of processing pipelines. In Fig. 6(a), the
convolution has two types of data paths; the solid line
indicates the data path for voxels, and the dotted line
indicates that for the sheared and resampling positions.
Operations are divided into three groups in each data

path: one group for the i, another for the j, and the
third for the k-direction. The j-direction 1D convolu-
tion has a j-delay; i.e. , Td2, to adjust the timing of
the next scanline-voxels. The k-direction 1D convolu-
tion has a k-delay; i.e., Td3, to adjust the timing of the
next slice of voxels.

The technique for accessing all the voxels with a set of

pipelines in a sequential manner is shown in Fig. 6 (b).
Fig. 6 (c) illustrates the geometrical relation between

the sheared positions and original positions on a slice.
The difference between the resampling position and the
sheared position, 6i, is used to generate the convolution
weight for each direction. Fig. 6 (d) illustrates the data
flows of an arithmetic unit in Fig. 6 (a).

Fig. 3 Voxel-accessing-order in a slice with four

pipelines for a data dimension V greater than
four.

Fig. 4 Induction of four parallel pipeline 1D convolu-

tions for i-direction.

Fig. 5 Induction of four parallel pipeline 1D convolu-

tions for j-direction.

1342(116) 映像情 報メデ ィア学会誌Vol.54, No.9(2000)

(a) Parallel pipeline convolution

(b) Sequential access of voxels, skewed, to be used for each pipeline,

(c) One slice data of a volume for the convolution input.

(d) Arithmetic unit in the pipelined convolution.

Table 1 shows several snapshots of data flow of the

pipeline operations of the 1D convolution for the i-

direction in Fig. 6 (a). In this example, one slice of

4 •~ 4 voxels is used as input for each pipeline; see

Fig. 6 (b). The table indicates that the four results

of the 1D convolution are generated simultaneously, as

shown in time-5 at location W2-c in the table. The

data flow for resampling position (i,j,k) and sheared

position (i•õ, j•õ, k •õ) is shown in Table 2. The overall

pipeline operations can be deduced from the snapshot-

s in Table 1 and bf Table 2 since the 1D convolution

structure for the j and k-directions is similar to that of

the i-direction, but with different time delays, Td2 and

Td3, as described in section 4.3.

4.5 Convolution area

The underlining architecture pairs a memory mod-

ule and a convolution pipeline so that each pipeline can

take one voxel along with a neighboring voxel through

a lateral communication and produces one sample. M

voxels guarantee to wrap the convolution area at any

slices for perspective projections.

The order of the voxels to be read cannot be con-

trolled because each memory is connected to each

pipeline. However, the position of resampling (i, j, k)
for each pipeline can be controlled. Fig. 7 illustrates

the relation between the pipelines for voxels to be read

and the pipelines for their outputs. An example with

Np = 4 and M=3 is shown in the figure. The pipeline-

outputs that do not contribute to resampling, although

they contribute to the simultaneous reading of voxels

for resampling, are neglected when compositing in the

rendering pipelines using the enable/disable flags.

Fig.6 3 •~ 3 •~ 3 parallel pipeline 3D convolutions with four pipelines for a special case: V Np = 4.

Fig. 7 Relation between the pipelines for voxels to be

read and pipelines for their outputs.

Paper • A Parallel Pipeline Convolution for Perspective Projection in Real-Time Volume Rendering (117)1343

5. Proposed Architecture

5.1 Skewed memory organization

Skewed memory organization is a technique to store

voxels in separate memory modules so that voxels in a

slice can be accessed in parallel without any memory

conflict, regardless of the viewing direction3). It does

not require multiple volume copies. We used skewed

memory organization for volume data.

Consider a system with Np rendering pipelines for a

volume with a size V3. A logical memory address for

the skewed memory is specified by (i, j, k). Let n, be

a memory module number, and ip be the index in the

module; the physical address (np,ip) is given by the

following addressing scheme using the logical address:

(10)

(11)

where

(12)

Fig. 6 (b)-right illustrates skewed memory, with one
slice of volume data.

5.2 Parallel pipelined convolution for a gen-
eral case

We have shown the architecture of 3D convolution
for the special case of V = Np. V is generally equal to
or greater than Np. By folding a string of voxels with
Np voxels, the set of Np pipelines can access the entire

string of voxels repeatedly, as shown in Fig. 3.

Table 1 Snapshots of data flow in 1D convolutions. The data flow for i-direction is shown.

Table 2 Snapshots of data flow for resampling and sheared position in 1D convolutions. The data flow

for i-direction is shown.

1344(118) 映像情報 メデ ィア学会誌Vol.54, No.9 (2000)

The folding scheme requires other types of delays in

the architecture, which are folding-delays, left-folding-

delays, and selectors. Fig. 8 shows the derivations of

these delays and their controls. The derivation of the

time delay for the case of V = 8 and Np = 4 is shown

in the figure. Fig. 8 (a) shows a naive implementation
with no folding. Fig. 8 (b) shows the dummy time-slots

generated for the folding. The input timing of the left
half of the voxels is one unit-time sooner than the right
one. Delays are used to compensate for this timing mis-
match. Fig. 8 (c) shows that the dummy time slots are
filled by folding. There are no wasted time-slots because
of this folding. This derivation enables us to see that
the time delay for folding-delays is always one unit time,
regardless of V; in contrast, that of left-folding-delays is
V/Np.

Fig. 9 shows a block diagram of the 3D convolution

for the general cases of V•† Np and Np = 4. This struc-

ture is a direct extension from Fig. 6. In the structure,

the j -delay of V/4 is used to adjust the time delay for

voxels in the next scanline, and the k-delay of V2/4 for

the next slice of voxels. In addition, the structure has

folding-delays and left-folding-delays to compensate for

the time delay caused by folding. In summary, the num-

ber of time-delays for general cases of Np pipelines is

shown in Table 3.

The following steps describe the operation of the

parallel pipeline 3D convolution in the figure. Ad-

dress Gen generates voxel address (i, j, k) with in-

cremental step Np for i, starting from (0, 0, 0). It

then increments j and k until the address reaches

(V - 1, V - 1, V - 1). The internal address of each

memory is calculated with this (i, j, k), using Equation

(11) to fetch voxels. At the same time, the shearing

(i, j, k) (i•õ, j•õ,k•õ) is carried out on the fly in the

shear bock. (3, k) is generated in the same block us-

ing (i•õ, j•õ, k•õ). This shearing is carried out using DDA

instead of matrix multiplication. A set of pipelines

reads voxels Vi,j,k, Vi+1, j, k •E•E•E Vi+Np-1,j,k simultaneously

from each memory connected to the pipeline using the

base address (i, j, k). The fetched voxels, generated

resampling positions k) ((i+ Afp _ 1), , k), and

sheared positions (i•õ i•õ k•õ) ((i+Np-i)•õ, k•õ), are

put into the convolution pipelines to get resampled da-

ta.

The resampled data are skewed so that deskew block

deskews the resampled outputs by a multiplexer using

address (i,jk). The outputs of the deskewing are put
into the rendering pipelines to carry out compositing

along the parallelized rays.

(a) Na folding.

(b) Timing shift of input data with delay°

(c) Folding a string of voxels with 4 pipelines.

6. Analysis of Proposed Architecture

6.1 Rendering timing

We estimated the timings for rendering volumes of

practical sizes. The rendering time is directly related to

the number of resampling operations to be performed.

Since the resampling and other rendering operations can

be fully pipelined, the pipeline cycle time can be equal

to the memory access time Tm. This implies that the

Fig. 8 Derivation chart of folding delays and their con-

trol for the folding process; V = 8 and Np = 4.

Table 3 Number of time delays versus data dimension

V and the number of processing pipelines Np.

Paper • A Parallel Pipeline Convolution for Perspective Projection in Real-Time Volume Rendering (119) 1345

processing bottleneck is the memory access time. Ac-

cesses to the voxel memory are regular and deterministic

for a given set of rendering parameters.

Let V3, Np, and Nf be the volume size, the number

of rendering pipelines, and the number of image frames

generated per second. The total number of samples N,

to compute in each pipeline for one second is given by:

(13)

For each second,

(14)

The maximum dimension of volume that can be ren-

dered for a given set of parameters Tm, Nf, and Np is

given by:

(15)

Assuming that Tm = 8 ns, as in a 125-MHz SDRAM

chip, and Nf = 30 frames/second, the volume dimen-

sions computed for several values of Nf and Np are

shown in Fig. 10. The volume dimensions computed

for several typical values of Nf and Np are also shown

in Table 4. These values verify that the proposed

architecture can render volumes of practical sizes, i.e.,

more than 2563 voxels, in real-time.

6.2 Processing scalability and expandability
of the convolution area

Adding rendering pipelines increases the volume size
for a fixed frame rate or the frame rate for a vol-
ume of fixed size. There are no architectural problems
in adding rendering pipelines, because 1) in the vox-
el memory interface, each memory module in the voxel
memory is connected one-to-one to a pipeline in the re-
sampling module; 2) the resampling pipelines commu-
nicate only with the left and right pipelines in the re-
sampling module; 3) in the interface between the resam-

pling module and the rendering pipelines, each render-
ing pipeline is connected to one resampling pipeline; and
4) each pipeline communicates only with the left and
right pipelines in inter-pipeline communications. There-
fore, the proposed architecture has processing scala-
bility.

In addition, it is easy to increase the convolution area
M in the architecture by just adding calculation units
along with pipelines.

6.3 Image quality
We built a software simulator to simulate the pipeline

data flow of the proposed architecture, and verified the
concepts of both parallel and perspective projections.
To compare images, we built a sample-order ray-casting
renderer that computes slices of samples perpendicular
to the viewing vector and accumulates them to produce

Fig. 9 3 •~ 3 •~ 3 parallel pipelined 3D convolution for

general case: V •â Np, Np= 4.

Fig. 10 Maximum volume dimensions.

Table 4 Maximum volume dimensions for typical frame

rate.

1346 (120) 映像 情報 メデ ィア学会誌Vol.54, No.9(2000)

(a) Perspective projection with 2•~ 2•~ 2

convolution

(b) Perspective projection by resam-

pling the nearest neighbor voxels.

(c) Perspective projection with 3•~ 3•~ 3

convolution.

(d) Perspective projection with 3•~ 3•~ 3

convolution.

(e) Parallel projection with 3•~ 3•~ 3

convolution.

(f) Screen-to-Object perspective pro-

jection by interpolations using multi-
resolution datasets.

the final image. We conducted several rendering exper-

iments with these simulators.

Fig. 11 (a) shows a perspective image rendered from

an opaque cube sized 643 to verify the perspective pro-

jection. We used a filter kernel based on the 2•~ 2•~ 2

Lagrange formula in the resampling.

Figs.11 (b) and (c) show two perspective images ren-
dered from an opaque checker-board cube sized 1283 (s-

patial frequency of 64 Hz) to explore the aliasing prob-
lem; a fully opaque dataset gives the worst case for

aliasing. The image in Fig. 11 (b) was generated by

using the nearest neighbor voxel values in resampling

and clearly shows the aliasing problem. The image in

Fig. 11 (c) was generated by using a 3•~ 3•~ 3 box filter

kernel in resampling, showing the antialiasing effect by

a convolution.
Figs.11 (d), (e), and (f) show the images rendered

from the engine block sized 2563 used in Lacroute's ren-
dering experiments6) with a manually adjusted opacity
table. Fig. 11 (d) shows a perspective projection im-
age, and Fig. 11 (e) shows a parallel projection image
for comparison. These two images were generated using

a kernel based on the 3•~ 3•~ 3 Lagrange formula.

Fig. 11 (f) is a perspective projection image generat-

ed by the sample-order ray-casting renderer with inter-

polations using multi-resolution datasets. There were

256 slices taken for this image, about the same number

of slices (256) used in Fig. 11 (d). The two images in
Figs. 11 (d) and (f) look comparable in quality.

7. Future Work

Error analysis is essential for hardware implementa-
tion, which is most likcly to usc fixed-point arithmetic.

The application of resampling by convolution to render

Fig. 11 Images generated with simulators.

Paper • A Parallel Pipeline Convolution for Perspective Projection in Real-Time Volume Rendering (121) 1347

a class of irregular volumes is another topic for future
study.

8. Conclusion

We have proposed a convolution with a systolic array
structure for perspective projection in real-time volume

graphics based on the shear-warp method. In the orig-
inal algorithm, the further the ray proceeds, the more
voxels are required to calculation the convolution. This
increase in required voxels makes it difficult to imple-
ment the algorithm in hardware. By assuming sepa-
rability of the kernel weight for convolution, we imple-
mented a 3D convolution with three serial 1D convo-
lutions along the i, j and k axes, which reduces the
number of calculation units from M3 to 3M, where the
convolution is calculated for a M3 area.

The number of pipelines for rays is V2 for V3 voxels
datasets. If the hardware of a single pipeline can cal-
culate V rays, each of the implemented pipelines is as-
signed to V theoretical pipelines (for V2 rays). The
number of hardware pipelines should be much smaller
than the V theoretical pipelines in actual implementa-
tion. We folded the theoretical pipelines and reduced
them to a certain number of hardware pipelines. We
show the relation between this folding process and its
necessary delay.

The architecture can generate an image of a 2563 vox-
el dataset (V = 256) at 30 Hz with four pipelines. In
addition, the architecture can be easily extended for
5123 (V = 512) and 10243 (V = 1024) dataset with 32

pipelines and 256 pipelines. Our architecture has pro-
cessing scalability.

(References)

1) A. S. Glassner: "Principles of Digital Image Synthesis", Mor-
gan& Kaufman (1995)

2) T. Gunther, C. Poliwoda, C. Reinhart, J. Hesser, R. Manner,
H.-P. Meinzer, and H.-J. Baur: "Virim: A massively parallel
processor for real-time volume visualization in medicine", Com-
puters & Graphics, Vol.19, No.5, pp.705-710 (1995)

3) A. Kaufman and R. Bakalash: "Memory and processing archi-
tecture for 3d voxel-based imagery", IEEE Computer Graphics
& Applications, Vol.8, No.6, pp. 10-23 (Nov. 1988)

4) G. Knittel and W. Strasser: "A compact volume rendering ac-
celerator", In Proceedings of the IEEE Symposium on Volume
Visualization, pp. 67-74 (Oct. 1994)

5) P. G. Lacroute: "Fast volume rendering using a shear-warp
facrorization of the viewing transformation", Technical Report
CSL-TR-95-678 (Ph.D. Dissertation), Computer Systems Labo-
ratory, Stanford University (Sep. 1995)

6) P. G. Lacroute and M. Levoy: "Fast volume rendering using a
shear-warp factorization of the viewing transformation", In Pro-
ceedings of the ACM SIGGRAPH '94 Conference, pp. 451-457
(July 1994)

7) M. Levoy: "Efficient ray tracing of volume data", ACM Trans-
actions on Graphics, Vol.9, No.3, pp. 245-261 (July 1990)

8) M. Ogata, H. Ohkami, H.C. Lauer and H. Pfister: "A Real-
Time Volume Rendering Architecture with Resampling Scheme

for Parallel and Perspective Projections", Proceedings of the
ACM/IEEE Symposium on Volume Visualization, pp. 20-29 (Oc-
t. 1998)

9) R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibson, W. Hi-
att and T. Ohkami: "Em-cube: An architecture for low-cost
real-time volume rendering", In Proceedings of the 1997 SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, p-
p. 131-138 (Aug. 1997)

10) H. Pfister and A. Kaufman: "Cube-4: A scalable architecture for
real-time volume rendering", In Proceedings of the ACM/IEEE
Symposium on Volume Visualization , pp. 47-54, San Fransisco,
CA (Oct. 1996)

11) H. Pfister, J. H. Hardenburg, H. Lauer and S. Sailor: "The Vol-
umePro Real-Time Ray-Casting System", In Proceedings of the
ACM SIGGRAPH '99 Conference, pp. 131-138 (Aug. 1999)

12) L. Westover: "Footprint evaluation for volume rendering", In
Proceedings of the ACM SIGGRAPH '94, pp. 144-153 (Oct. 1994)

13) L. Williams: "Pyramidal parametrics", In Proceedings of the
ACM SIGGRAPH '83 Conference, pp. 1-11 (July 1983)

Masato Ogata is an assistant general man-
ager of the research and development department
at Mitsubishi Precision Co., Ltd. in Japan. His re-
search background has involved computer systems
and real-time computer graphics and related topic-
s. He developed several real-time image generators
for flight simulators. His current research interest-
s are volume graphics, scientific visualization, and
real-time volume graphics architectures. He gradu-
ated from Ohita National College of Technology in
1970, where he majored in Electrical Engineering.
He received his M.S. from Yokohama National Uni-
versity in 1995. He is currently a Ph.D. student at
Yokohama National University. He is a member of
IEEE.

Hanspeter Pfister is a research scien-
tist at MERL -A Mitsubishi Electric Research
Laboratory- in Cambridge, MA, USA. He is the
chief architect of VolumePro, Mitsubishi Electric's
real-time volume rendering system for PC-class
computers. His research interests include computer
graphics, scientific visualization, and VLSI design.
He received his Dipl.-Ing. degree in electrical en-
gineering from the Swiss Federal Institute of Tech-
nology in 1991, and a Ph.D. in Computer Science
from the State University of New York in 1996. He
is a member of ACM, IEEE, the IEEE Computer
Society, and the Eurographics Association.

Hugh C. Lauer is a senior research scien-
tist and Chief Technical Officer of Volume Graph-
ics at MERL. His research background has in-
volved computer architecture, operating systems,
distributed computing and related topics. His cur-
rent research interests are real-time volume graph-
ics and visualization. He received his B.S. in Math-
ematics from Antioch College in 1965, an M.S. in
Mathematics from Carnegie Institute of Technolo-
gy in 1967, and a Ph.D. in Computer Science from
Carnegie-Mellon University in 1973. He is a mem-
ber of ACM,IEEE, and theIEEE Computer Soci-
ety.

Yasunori Dohi is a Professor of Electrical
Engineering and Computer Science at Yokohama
National University. His research background has
involved computer architecture, VLSI algorithms,
electrical circuits design, and related topics. His
current research interests are VLSI-oriented archi-
tectures and real-time computer graphics architec-
ture. He received his B.S. in 1962, an M.S. 1964,
and a Ph.D. in Computer Science from Tokyo In-
stitute of Technology in 1967 . He is a member of
IEEE, and IEC.

1348 (122) 映像情報 メディア学会誌Vol.54, No.9(2000)

