
A Unified Interactive Model Evaluation for Classification, Object
Detection, and Instance Segmentation in Computer Vision

Changjian Chen, Yukai Guo, Fengyuan Tian, Shilong Liu, Weikai Yang,
Zhaowei Wang, Jing Wu, Hang Su, Hanspeter Pfister, and Shixia Liu

Ground truth
Prediction

Predictions smaller
than ground truth

Predictions larger
than ground truth

Predictions with
precise sizes

Numbers of samples

Predictions with
precise positions

Predictions shifted in
a specific direction

Dataset test

IoU Threshold 0.5

Statistics precision

Hide Unfiltered show unfiltered

Matrix Normalization by row

Two small vehicles are
segmented as one

0.0000 1.0000

Prediction confidence

0.0000 1.0000

Aspect ratio of ground truth

0.0000 1.0000

Aspect ratio of predicted objects

(a)

Prediction

tra
ns

po
rt

sh
ip

st
or

ag
e

ta
nk

la
rg

e
ve

hi
cl

e

sm
al

l v
eh

ic
le

he
lic

op
te

r

pl
an

e

ha
rb

or

la
nd

ba
ck

gr
ou

nd

precision
0.662

0.620

0.823

0.660

0.664

0.374

0.261

0.888

0.671

0.698

G
ro

un
d

Tr
ut

h

transport

ship

storage tank

large vehicle

small vehicle

helicopter

plane

harbor

land

background

A

B

C

D

G
ro

un
d

Tr
ut

h

transport

ship

storage tank

large vehicle

small vehicle

helicopter

plane

harbor

land

background

Prediction

tra
ns

po
rt

sh
ip

st
or

ag
e

ta
nk

la
rg

e
ve

hi
cl

e

sm
al

l v
eh

ic
le

he
lic

op
te

r

pl
an

e

ha
rb

or

la
nd

ba
ck

gr
ou

nd

F

E

G

pr_cat gt_cat subset_size precision recall pr_conf gt_size pr_size gt_ar pr_ar

ship ship 4204 0.554 0.952 0.41 0.87 0.87 0.04 0.05
ship ship 3649 0.593 0.981 0.46 0.82 0.83 0.15 0.14
ship ship 2600 0.591 0.978 0.45 0.83 0.83 0.24 0.23
ship ship 2689 0.598 0.95 0.41 0.79 0.79 0.34 0.33
ship ship 2735 0.596 0.955 0.41 0.78 0.78 0.44 0.43
ship ship 4291 0.579 0.981 0.44 0.55 0.57 0.44 0.43 (d)(c)

(b)

Fig. 1: Uni-Evaluator: (a) the filtering panel; (b) the matrix-based visualization provides an overview of model performance; (c) the
table visualization helps identify problematic data subsets; (d) the grid visualization displays the samples of interest.

Abstract—Existing model evaluation tools mainly focus on evaluating classification models, leaving a gap in evaluating more complex
models, such as object detection. In this paper, we develop an open-source visual analysis tool, Uni-Evaluator, to support a unified
model evaluation for classification, object detection, and instance segmentation in computer vision. The key idea behind our method is to
formulate both discrete and continuous predictions in different tasks as unified probability distributions. Based on these distributions, we
develop 1) a matrix-based visualization to provide an overview of model performance; 2) a table visualization to identify the problematic
data subsets where the model performs poorly; 3) a grid visualization to display the samples of interest. These visualizations work
together to facilitate the model evaluation from a global overview to individual samples. Two case studies demonstrate the effectiveness
of Uni-Evaluator in evaluating model performance and making informed improvements.

Index Terms—Model evaluation, computer vision, classification, object detection, instance segmentation

1 INTRODUCTION

Model evaluation assesses performance of machine learning models
and helps identify the causes of poor performance for further improve-

• C. Chen, Y. Guo, F. Tian, W. Yang, Z. Wang, and S. Liu are with the School of
Software, BNRist, Tsinghua University. C. Chen and Y. Guo are joint first
authors. S. Liu is the corresponding author. E-mail: {{ccj17, gyj22,
tianfy21, yangwk21, wzw20}@mails., shixia@}tsinghua.edu.cn.

• S. Liu, and H. Su are with the Department of Computer Science and
Technology, Tsinghua University. E-mail: slongliu86@gmail.com,
suhangss@tsinghua.edu.cn.

• J. Wu is with Cardiff University. E-mail: wuj11@cardiff.ac.uk.
• H. Pfister is with Harvard University. E-mail: pfister@seas.harvard.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

ment [50]. It is a critical step in the development of machine learning
models. For example, machine learning practitioners usually evaluate
models generated with different parameters and select the best one
for deployment. Currently, the most widely-used way for evaluating
models is to use performance metrics, such as accuracy and mAP (mean
Average Precision). However, using these metrics alone can sometimes
be misleading. For example, a classification model that always predicts
the majority class in an imbalanced dataset can achieve high accuracy
but has no predictive power at all [33]. To better understand model
performance, evaluation at finer granularity is required. Confusion
matrices [54] are thus developed, which provide evaluations at the class
level by presenting confusion between classes. However, they only fo-
cus on the classification task where the accuracy of classifying samples
is of concern. In addition to classification, there are other tasks that are
popularly used in real-world applications [38, 45]. Their model evalua-
tions concern more than the accuracy of sample-level classification. For
example, object detection concerns not only the accuracy of classifying
objects in images, but also the precision of locating the objects, which is

ar
X

iv
:2

30
8.

05
16

8v
1

 [
cs

.C
V

]
 9

 A
ug

 2
02

3

measured by mAP. For these tasks, confusion matrices are not directly
applicable. In addition, like object detection, there are scenarios where
multiple tasks are considered simultaneously [69]. Although we can
develop different fine-grained model evaluation methods for different
tasks, it will increase the learning cost and cognitive load of users when
switching among them [52]. Thus, a unified model evaluation method
for different tasks in computer vision is desirable.

From a review of previous studies and a survey with 151 computer
vision experts, we identified two key challenges in developing a unified
model evaluation method. First, predictions in different tasks can be
discrete (e.g. , class labels) or continuous (e.g. , positions of objects).
To analyze these predictions in a single tool, we need to model them
in a unified way. While previous research has explored how to model
different discrete predictions [21], it is largely unexplored how to
jointly model discrete and continuous predictions. Second, users not
only evaluate overall performance on the entire dataset, but are also
interested in analyzing performance at different levels of detail, such
as subsets and individual samples. For example, users are interested
in problematic subsets that are sliced along different attributes, such
as class labels or object sizes. Examples of such subsets include the
samples of a class with low accuracy in a classification task and the
small objects that the model failed to detect in an object detection task.
Finding these problematic subsets in a large dataset and examining their
predictions are difficult and time-consuming. Therefore, a multi-level
exploration environment for efficient model evaluation is necessary.

To tackle these challenges, we develop Uni-Evaluator, a unified
interactive model evaluation method for computer vision tasks. We
focus on three main tasks in computer vision: classification, object
detection, and instance segmentation [9]. To support a unified analysis
of model performance in different tasks, we propose a unified formu-
lation that extends the discrete probability formulation proposed by
Görtler et al. [21]. The key idea is to formulate both discrete and
continuous predictions as unified probability distributions. Based on
these distributions, we first develop a matrix-based visualization with
three evaluation modes. It provides an overview of model performance.
Next, a table visualization is developed based on LineUp [23]. It is
supported by a frequent pattern mining-based search method to facili-
tate the identification of problematic data subsets. In addition, a grid
visualization is used to display the samples of interest. With the three
coordinated visualizations, users can comprehensively evaluate model
performance from a global overview to individual samples and make
informed improvements. Uni-Evaluator relies only on the input and
output of models to perform the evaluation, so it is model-agnostic.
Two case studies are conducted on object detection and instance seg-
mentation, respectively, to validate the contributions of Uni-Evaluator.
A Python package is released at http://uni-evaluator.thuvis.org/.

The contributions of our work include:
• Coordinated visualizations to explain model performance

at different levels, which include a matrix-based visualization
with three evaluation modes, a table visualization supported by
frequent pattern mining-based search, and a grid visualization.

• A unified probability distribution method that jointly models
discrete and continuous predictions for evaluating different
models in one tool.

• An open-source visual analysis tool that integrates the
probability distribution with the coordinated visualizations to
support a unified model evaluation for computer vision tasks.

2 RELATED WORK

2.1 Model Evaluation in Computer Vision
In the field of computer vision, the most widely-used method for eval-
uating models is to use performance metrics such as accuracy, mAP,
and mIoU. Some recent methods further classify model errors into
multiple types for understanding model performance [9, 10, 30]. For
example, Bolya et al. [9] proposed to categorize object detection errors
into six disentangled ones to provide a detailed performance summary
from different perspectives. Although these methods are useful in quan-
titatively summarizing model performance, they fail to identify the
causes of poor performance. Compared with these methods, our work

combines a matrix-based visualization, a table visualization, and a grid
visualization to evaluate model performance from high-level metrics
to individual samples. Such a comprehensive evaluation enables users
to diagnose poor performance of a computer vision model and make
informed improvements to the model and/or the associated data.

2.2 Model Evaluation in Visualization

In the field of visualization, model evaluation methods are classified
into two categories: model-specific and model-agnostic methods.
Model-specific methods analyze the inner components of a specific
type of models, such as the convolutional layers of deep neural
networks [29, 35, 39, 40, 65]. Model-agnostic methods explain
model performance by considering the inputs and outputs of models
regardless of their model types. Our work falls into the latter category,
where the methods are divided into three groups: class level, instance
level, and their combination.

Class-level evaluations focus on analyzing the confusion between
classes. The most widely-used method is the confusion matrix [54].
This matrix shows which classes are confused with each other and how
heavy the confusion is. Later efforts focus on generalizing the confusion
matrix to other scenarios [20, 21, 27, 28, 60]. For example, Boxer [20]
compares performance of different classifiers on the selected subsets by
combining a confusion matrix with several chart visualizations. Con-
fusionFlow [28] enhances the confusion matrix with stacked heatmaps
and line charts to support the analysis of class confusion over time.

Instance-level evaluations seek to analyze the predictions of indi-
vidual samples and their similarity relationships. Scatterplots and grid
visualizations are the two most widely-used instance-level methods.
In a scatterplot, each sample is represented by a dot with the color
encoding its predicted or ground-truth class label. The positions of the
dots are determined by their sample attributes (e.g. , prediction confi-
dence [3]), or projection (e.g. , t-SNE [36, 44, 62]) of their sample at-
tributes. Grid visualizations place the content of samples (e.g. , images)
in grids, which overcomes the overlapping and space-wasting issues
of scatterplots. Along this line, Chen et al. [15] presented a hierarchi-
cal grid visualization to support the exploration of a large number of
samples. To maintain mental maps during exploration, DendroMap [6]
enhances the grid visualization with an interactive zoomable treemap.

In real-world settings, both class-level and instance-level evaluations
are required to understand model performance. Accordingly, these
two evaluation methods are combined to maximize the values of both.
The most intuitive combination is to use separate but coordinated
views [1, 2, 7, 8, 13, 67]. For example, ConfusionWheel [2] utilizes
a chord diagram augmented with histograms to display confusion
between classes and the prediction confidence distribution of each
class. Users can inspect a subset of selected samples in scatterplots
and examine their feature distribution in bar charts. Such a strategy
is also utilized by TensorBoard [1] and Weights&Biases [7]. Although
these methods enable the simultaneous examination of the class-level
metrics and instance-level predictions, users have to switch views
between the two levels. To tackle this issue, Squares [50] combines
the two-level information using stacked bar charts, which utilize bars
to display confusion between classes and small squares in each bar
to represent the associated samples.

Despite their effectiveness, these methods only consider single-
output labels and fail to support more complex data structures, such
as multi-output labels. To solve this problem, a pioneering work,
Neo [21], employs probability distributions to represent confusion
matrices. These distributions generalize the traditional confusion
matrix to support hierarchical and multi-output labels. However, Neo
primarily focuses on classification tasks and lacks support for object
detection and instance segmentation tasks. To provide a unified model
evaluation method for different computer vision tasks, we extend the
discrete formulation in Neo to jointly model discrete and continuous
predictions presented in different tasks. Moreover, we develop three
coordinated visualizations to facilitate the identification of factors
contributing to poor performance.

http://uni-evaluator.thuvis.org/

3 SURVEY-BASED TASK ANALYSIS AND SYSTEM DESIGN

To better understand the current practice of model evaluation and the
challenges computer vision experts face, we conducted an expert sur-
vey. We first designed a survey based on the literature review. Then we
discussed it with four computer vision experts (E1–E4) for refinement.
The survey covered three parts: 1) the basic information of the par-
ticipants (Q1–Q3); 2) current practices in evaluating computer vision
models (Q4–Q8); 3) key features needed for a unified model evaluation
(Q9–Q12). The exact questions can be found in supplemental material.

We distributed the refined survey to the computer vision experts from
three top universities and three major technology companies. A total
of 151 surveys were returned. Among the participants, 28 (18.54%)
had less than 1 year of experience in computer vision, 50 (33.11%)
had 1-3 years of experience, 50 (33.11%) had 3-5 years of experience,
23 (15.23%) had more than 5 years of experience. In addition, the
participants spent more attention on “model training” (83.44%) and
“model evaluation” (61.59%) but less attention on “data collection
and processing” (19.21%) and “data labeling” (12.58%) (Fig. 2(a)).
This indicates that they have extensive experience to speak about the
intricacies of model evaluation.

3.1 Why Unified Evaluation

The survey results indicated that most of the participants (91.39%)
were interested in a unified model evaluation tool (Fig. 2(d)). From
their responses, we identified three main reasons.
Reducing the learning curve. One major advantage of a unified
model evaluation tool is that it can reduce the time for users to learn
different tools for different tasks. According to the survey results, 91
participants (60.26%) had worked on more than one task (Fig. 2(b)).
These participants pointed out that they had to use different tools to
evaluate different tasks. This significantly increased the time they spent
on learning the different visual encodings and functionalities of these
tools. Moreover, different tools require different formats of data input.
Users have to maintain different data pre-processing codes, which is
also a burden for them.
Improving the analysis efficiency. As shown in Fig. 2(c), 90 partic-
ipants (59.60%) had experience in multi-task applications. However,
when evaluating application models, users still need to use multiple
tools for multiple tasks. Their analysis is often interrupted as they have
to switch between different tools. For example, a participant reported
that while developing models for classifying medical images, he often
carried out the segmentation of lesions. When performance is poor,
he uses a confusion matrix to identify the confused classes. Then,
to identify the main causes of the confusion, he filters the associated
samples and visualizes their segmentation results in a different tool.
This significantly reduces the analysis efficiency.
Debugging a multi-task model. In addition to reducing the learning
curve and improving the analysis efficiency, a unified model evaluation

0% 10% 20% 30% 40%

1
2
3
4

Data collection
Data labeling

Model training
Model evaluation

0% 20% 40% 60% 80% 100% 0% 15% 30% 45% 60%

Classification
Object detection

Instance segmentation
More than one tasks

Unified evaluation
Overview

Subset
Individual sample

0% 20% 40% 60% 80% 100%

40.40%
33.10%

13.90%
2.00%

19.21%
12.58%

83.44%
61.59%

41.05%
41.05%

31.12%
60.26%

91.39%
87.41%

78.15%
82.78%

(c) How many tasks do you work
with in one application?

(b) What computer vision tasks
do you work with?

(a) What stage of machine learning
do you typically work on?

(d) Do you think the following features
can help you evaluate models?

4+ 10.60%

59.60%

Fig. 2: Survey responses: (a) the participants mainly focused on model
training and evaluation; (b) 91 participants (60.26%) had worked with
more than one task; (c) 90 participants (59.60%) had worked with
multi-task applications; (d) most participants thought unified evaluation
and multi-level exploration are (very) important.

will also help debug a multi-task model effectively. In a multi-task
application, the tasks mutually influence each other. Understanding
such mutual influence helps users debug the model [68, 69], such as
identifying which task is the weak point of the model. Currently,
different tasks are analyzed with different tools, which hinders the
effective analysis of the mutual influence between tasks. Therefore, a
unified evaluation for multiple tasks is desirable.

3.2 Design Goals
To distill the detailed design goals and tasks for developing such a
unified tool, we further conducted interviews with four experts (E1–E4)
for more detailed feedback and insights.
G1 - Evaluating different models with a unified tool. According
to the survey results, 138 participants (91.39%) wanted a unified tool
for evaluating different models, as switching between multiple tools is
inconvenient. The main obstacle to building a unified tool is that the
predictions in different tasks can be discrete or continuous. Although
Neo [21] has explored the modeling of discrete predictions, it is still un-
der exploration how to model both discrete and continuous predictions.
G2 - Analyzing model performance at different levels. The
participants also expressed their need to analyze model performance
at different levels. As shown in Fig. 2(d), most participants were
interested in analyzing model performance at dataset level, subset level,
and sample level. In current practice, they often utilize performance
metrics or confusion matrices to get an overview of model performance.
However, these methods may hinder the identification of problematic
subsets where a model performs poorly. Analyzing model performance
on such subsets helps improve the robustness of the model. In addition,
when diagnosing poor performance on these subsets, Therefore, a
multi-level exploration environment is needed.
G3 - Finding problematic data subsets. As mentioned above, the
participants needed to analyze model performance on problematic
subsets. However, identifying such problematic subsets is non-trivial,
especially when the dataset is large. Currently, they usually find such
subsets by manually creating different rules to slice the data and then
examining these subsets one by one. This process is tedious and time-
consuming. Therefore, the participants wanted a more efficient way to
identify the problematic subsets.

3.3 Task Analysis
Based on the design goals, we derived several tasks as guidelines for
designing the unified model evaluation tool.
T1 - Modeling both discrete and continuous predictions in a unified
manner (G1). This includes a unified formulation for both discrete and
continuous predictions to enable the analysis of model performance
across different tasks.
T2 - Visually explaining overall performance on the entire dataset
(G2). This includes the confusion between classes and imprecise sizes
and positions of predicted objects.
T3 - Interactively identifying problematic data subsets (G2, G3).
This includes a subset search method to extract candidate subsets and a
table visualization that allows users to identify problematic data subsets
based on one or more attributes.
T4 - Displaying the samples of interest for efficient exploration (G2).
This includes a grid visualization that places similar samples together
and visually presents them in a compact way to facilitate exploration.

3.4 Design of Uni-Evaluator
Motivated by the identified tasks, we develop Uni-Evaluator to support
a unified model evaluation for different computer vision tasks. As
shown in Fig. 3, Uni-Evaluator consists of two main modules: unified
formulation (Sec. 4) and visualization (Sec. 5).

Given data samples and model predictions with both discrete and
continuous variables (Fig. 3(a)), the unified formulation module mod-
els them by a probability distribution (T1, Fig. 3(b)). Based on the
distribution, the visualization module provides three coordinated visu-
alizations to explain model performance at different levels (Fig. 3(c)).

VisualizationData&Predictions Unified Formulation
Classification

Detection

Segmentation

Discrete variables
Class …

Continuous variables
Aspect ratioSize …

Cat

Unified probability distribution

Modeling

Grid visualization

Matrix-based visualization
Samples of

interest

Subsets Subsets

Cat

…
Dog

…
Table visualization

(c)(b)(a)
Fig. 3: System overview: (a) given data samples and model predictions with both discrete and continuous variables, (b) the unified formulation
module models them by a probability distribution; (c) the visualization module explains model performance at different levels.

The matrix-based visualization provides an overview of model perfor-
mance (T2). Candidate data subsets are extracted and presented in the
table visualization. Users can identify the problematic subsets (T3)
and analyze their predictions in the matrix-based visualization. In both
visualizations, users can select the samples of interest and explore them
in the grid visualization (T4). With Uni-Evaluator, users can diagnose
the causes of poor performance and make informed improvements.

4 UNIFIED PROBABILITY DISTRIBUTION

Neo [21] utilizes probability distributions to model discrete variables
in classification tasks by matching predicted classes with their ground
truth. We extend it to also model continuous predictions and ground
truth. However, in this probabilistic framing, it is non-trivial to match
each continuous prediction with the corresponding ground truth due
to multiple possible ground-truth annotations. To tackle this issue, we
develop an object matching algorithm to pair each prediction with the
suitable ground truth. Based on the matching results, we model discrete
and continuous variables using a unified probability distribution.
Object matching. A straightforward way to match a prediction with
its ground truth is to find the one with the largest overlap. However,
this strategy considers each prediction separately and may not capture
the optimal matches between predictions and their associated ground
truth. For example, in Fig. 4(a), the detected object P1 has a larger
overlap with the ground truth G2. By only considering P1, it will
be matched with G2. However, if another detected object, P2, is
considered simultaneously (Fig. 4(b)), the matching between P1 and G2
is incorrect. The optimal way is to match P1 with G1 and P2 with G2.
Therefore, it needs to consider all the predictions for optimal matching.
Mathematically, the matching between the predictions and ground truth
can be modeled as a one-to-many assignment problem [49], which
maximizes the total assignment award.

maximize
zi j

∑
Mp
j ∑

Mg
i zi jai j

s.t. zi j ∈ {0,1}, zi jI(pi j < α) = 0, ∑i zi j ≤ 1, ∀i, j.
(1)

(a) (b)
P2

Ground truth

Prediction

1G

2G

P1 1G

2G

P1

Which should P be
matched with, G or G ?

1
1 2

Consider all predictions simultaneously

P1 G2 (Larger overlap) P2 G2

P1 G1

Fig. 4: In object matching, (a) treating each prediction independently
results in incorrect matches, while (b) considering all predictions simul-
taneously enables the inference of the optimal matching.

Mp and Mg are the numbers of predictions and ground truth, respec-
tively. zi j is a binary variable indicating whether the i-th ground truth
is matched with the j-th prediction. ai j is the award for matching the
i-th ground truth with the j-th prediction. A larger value of ai j implies
a stronger matching between the two. It consists of three parts.

• Label consistency score (ci j) that ensures the matched prediction
and ground truth have the same label. It is set to 1 when the
prediction and ground truth have the same label, and 0 otherwise.

• Position consistency score (pi j) that ensures the matched predic-
tion and ground truth have a large overlap. We apply the widely-
used IoU (Intersection over Union) to measure the overlap.

• Uniqueness score of the i-th ground truth (ui) that ensures the
ground truth is matched with one prediction. We set ui = e−∑k zik .
The more predictions that are matched with the i-th ground truth,
the smaller ui.

ai j is defined as the weighted sum of the three scores: ai j = λ1ci j +
λ2 pi j +(1−λ1 −λ2)ui. λ1 and λ2 are used to balance the three parts.
They are set as 0.5 and 0.25 to emphasize the importance of the label
consistency score [9]. The constraint zi jI(pi j < α) = 0 requires that
the matched prediction and ground truth should have a minimum
overlap α . α is set to 0.1 following the setting in [9]. I(·) is the
indicator function. Constraint ∑i zi j ≤ 1 ensures that each prediction is
matched to a maximum of one ground truth. We solve this assignment
problem with a greedy strategy. We match the predictions in an image
one by one according to their confidence in descending order. For
each prediction, we match it with a ground truth to maximize Eq. (1).
Thus, the time complexity to match the predictions with the ground
truth in an image is O(MpMg), and for a dataset with N images, it is
O(MpMgN). As Mp and Mg are usually significantly smaller than N
in a large dataset, the time complexity is almost O(N). For example,
it only takes four minutes to process the COCO dataset [37] with
more than 100,000 images. In addition, object matching is a one-time
pre-processing step. Thus, this method can effectively scale up to
handle large datasets with millions of images.

Modeling both discrete and continuous variables. Based on the
matching between predictions and ground truth, we adopt the joint
probability distribution to model both discrete and continuous vari-
ables. Let C and D denote continuous and discrete variables, and let X
and Y denote ground truth and predictions. Then the joint probability
distribution is given by P(CX ,DX ,CY ,DY). In Uni-Evaluator, discrete
variables include predicted/ground-truth classes, and continuous vari-
ables include the sizes and aspect ratios of predicted objects and ground
truth, and prediction confidence.

To determine the corresponding probability function, we need to
consider the probability of both discrete and continuous variables. For
discrete variables, the probability mass function is used to determine
the probability of taking on a specific value, which is determined by the
frequency of the variable equal to that value. For continuous variables,
the probability is calculated over intervals using the cumulative distri-
bution function (CDF), which is determined by the frequency of the
variable in that interval. In our implementation, we utilize the empirical

CDF because of its time efficiency [32]. This method discretizes a
continuous variable and counts the frequency of the discretized variable
less than a specific value. With the two functions, the joint probability
is calculated using the conditional probability. Here, we illustrate the
calculation of the joint probability using an object detection example.
Suppose that we want to analyze the detected objects with the ground-
truth label “cat” and high prediction confidence (> 0.5). This is defined
as P(LabelX = cat, ConfidenceY > 0.5). The probability can then be
calculated using the following conditional probability:

P(ConfidenceY > 0.5 | LabelX = cat)P(LabelX = cat), (2)

where P(LabelX = cat) is determined by the probability mass function
of discrete variable LabelX , and P(ConfidenceY > 0.5 | LabelX = cat)
is determined by the cumulative distribution function of continuous
variable ConfidenceY given LabelX .

The probabilistic framework enables users to process data for differ-
ent analysis tasks using the standard operations of probability distribu-
tions, including marginalization and conditioning [21]. The marginal-
ization operation discards variables in the distribution by integrating or
summing them, allowing users to focus on analyzing the variables of
interest. The conditioning operation constrains variables to be of spe-
cific values or within specific intervals, which enables users to analyze
the subsets of interest.

5 UNI-EVALUATOR VISUALIZATION

Based on the unified probability distribution, we developed three coor-
dinated visualizations to explain model performance at different levels:
1) a matrix-based visualization (Fig. 1(b)) to provide an overview of
model performance (T2); 2) a table visualization (Fig. 1(c)) to identify
problematic subsets (T3); and 3) a grid visualization (Fig. 1(d)) to
display the samples of interest (T4).

5.1 Matrix-based Visualization
To evaluate both classification and localization performance in a unified
manner, it is essential to consider 1) the confusion between classes; 2)
the sizes of predicted objects; and 3) the directions in which they are
shifted from ground truth. However, analyzing the three interdepen-
dent aspects simultaneously can be challenging. Therefore, for more
effective analysis, we disentangle them by utilizing the marginalization
operation to discard irrelevant variables. Accordingly, three evaluation
modes are provided: 1) confusion mode for evaluating classification per-
formance; 2) size mode for analyzing the sizes of predicted objects; 3)
direction mode for analyzing the shifted directions of predicted objects.
Within each mode, we disentangle the associated variables from others
by utilizing the marginalization operation to discard irrelevant variables.

We employ a matrix-based visualization, an extension of Neo [21],
to convey the information in the three modes. Specifically, the
size/direction mode is enhanced with a carefully designed glyph to
support the identification and diagnosis of size/direction errors. The
rows of the matrix represent ground-truth classes, and the columns
represent predicted classes. The class names are displayed left to
the matrix and above the matrix. When the number of classes is
large (e.g. , 30 in a view with a resolution of 800× 800), the matrix
cells become small, which reduces their visibility. To address this,
we organized the classes hierarchically using hierarchical clustering
algorithms [46, 63, 64] or based on their inherent hierarchical structure,
and presented them as an indented tree. Furthermore, users can enlarge
the cells of interest with the drill-down and hovering interactions, which
are described at the end of this section. The summary statistics of each
class (precision, recall, etc.) is displayed as a list on the right side of
the matrix. The only difference between the three modes is the content
within the matrix cells. Next, we delve into each of these modes.

Confusion mode. In confusion mode, the cell represents the
number of samples in classification tasks and the number of
objects in detection/segmentation tasks. The frequency of
the samples/objects confused between classes is encoded

by the filling color in each cell, ranging from white to blue. The darker
the cell color, the greater the confusion between the associated classes.

Same to Neo [21], we place a light-gray dash in the cells with no sam-
ples/objects to make them more distinguishable from those with only a
few samples/objects. To make the confusion patterns more distinct, we
employ the Optimal Leaf Ordering algorithm [5] to reorder the matrix.

Initial

Final

Size mode. Initially, we utilize two concentric circles to
represent the size error. The green circle represents the
predicted objects with sizes smaller than the ground truth,
and the yellow circle represents the predicted objects with
larger sizes. Their radii encode the number of associated
objects. The experts agree that this design is intuitive in
identifying the main size errors in the cells. However, they
are also interested to know how many predicted objects are
with precise sizes, which is not shown in the initial design.

To address this, we utilize a pie chart with three sectors to summarize
the sizes of predicted objects in each cell. The gray sector represents
predicted objects with precise sizes, while the yellow/green represents
those with larger/smaller sizes compared to ground truth. To address the
concern of color blindness, we provide the option for users to customize
the color encoding themselves by clicking . The angle of each sector is
proportional to the number of predicted objects in this sector, and the ra-
dius of the pie chart encodes the number of predicted objects in that cell.

Initial

Final

Direction mode. A straightforward way for encoding the
shifted directions of predicted objects is to utilize a radar
chart with eight spokes. The length of each spoke encodes
the number of predicted objects shifted in that direction. A
polygon is drawn to connect the spokes. When showing this
design to the experts, they indicate that the polygon shapes
immediately attract their attention. However, the shapes
provide less information in understanding the predictions
compared with the lengths of the spokes. Additionally,

redundant lines in the radar chart, such as the boundary lines and the
extended lines along the spokes, make the visual representation even
more complex and add extra cognitive load to users. To address this
issue, we replace the radar chart with eight arrows. The length of each
arrow encodes the number of predicted objects shifted in that direction.
We also add a circle in the middle to represent the predicted objects
with precise positions. Its radius encodes the number of such objects.

In the matrix-based visualization, several interactions are provided
to facilitate exploration. First, users can use the conditioning operation
to drill down into sub-matrices of interest by clicking at the top of
Fig 1(b). In addition, when a class has much more samples/objects than
the others, some patterns in the matrix may be hidden. For example,
in the confusion mode, the cell colors of the dominant classes can
overshadow other classes (e.g. ,), making it difficult to detect mis-
classifications in the other classes. To address this issue, row/column
normalization is supported (Fig. 1G). For example, by performing row
normalization on the matrix , the confusion between the second and
third classes appears (). Moreover, in the size and the direction
modes, the charts with few objects are usually small. To ensure their
visibility when needed, users can enlarge them upon hovering.

5.2 Table Visualization
To help users identify problematic subsets, a frequent pattern mining-
based search method is first developed to mine the candidate subsets.
Then a table visualization is employed to convey these subsets in terms
of their attributes. The users can rank these subsets by one attribute
or the combination of multiple attributes to find problematic subsets.
Frequent pattern mining-based search. Since it is computationally
infeasible to evaluate model performance on all possible subsets, a
search method to find candidate subsets is required. The state-of-the-art
subset search method, DivExplorer [48,67], employs a frequent pattern
mining-based search method [24] to find the subsets that meet a mini-
mum subset size. Then it ranks the subsets based on model performance
on each of these subsets. With this ranking, users can identify the sub-
sets where the model performs poorly. This method works well for
classification tasks as it supports the search of the subsets sliced along
discrete attributes. To apply this method to detection and segmentation
tasks, the continuous attributes need to be discretized. Accordingly, we
first employ the equal frequency discretization method [59] to divide the

considered continuous attribute into d intervals, each of which contains
a similar number of samples/objects. This discretization method is uti-
lized because it well balances robustness and accuracy, and is one of the
most efficient discretization methods [11]. In our implementation, the
minimum subset size is set as βSc to avoid the selection of small subsets,
which contribute little to overall model performance. Here, Sc is the
number of samples/objects in the class being explored. β is set as 0.1 by
default, and the user can adjust it according to the task at hand. d is set
as 1/β to ensure each interval contains approximately S/d = βS sam-
ples/objects, where S is the number of samples/objects in the dataset.
Identifying problematic subsets. We employ an interactive table
visualization to visualize the candidate subsets and help identify the
problematic ones. In the table, each row represents a subset with all its
attributes, such as the precision and average object size (Fig. 1(c)). The
discrete attributes are displayed as text, and the continuous attributes
are displayed as bar items. We provide several interactions, such as
filtering and ranking, to explore the subsets. For example, users can
select the subsets of a specific class by filtering, or rank the subsets
by one attribute or the combination of multiple attributes. Following
Lineup [23], the combination is achieved by dragging the header of a
column onto the header of another column.

5.3 Grid Visualization
To enable efficient examination of the relevant samples, a grid visu-
alization is employed because of its effectiveness in exploring image
content [14, 15, 51]. The cells of the grid display selected samples
with their predictions. To support real-time exploration, we utilize the
kNN-based grid layout algorithm [15] to determine the position of each
sample within the grid. The algorithm preserves the proximity between
samples by first projecting them as a set of 2D points with t-SNE [44],
and then matching these points with the cells by solving a linear as-
signment problem. To clearly show the detected/segmented objects, we
crop the images and present them in the corresponding cells.

5.4 Interactive Model Evaluation
The three coordinated visualizations work together to support an inter-
active model evaluation from a global overview to individual samples.
The matrix-based visualization provides users with an overview of
model performance and helps identify the matrix cells with errors, such
as classification errors. The samples in such cells are then examined
in the grid visualization to help users analyze the main causes of the
errors. If the causes for the errors are challenging to discern in the
grid visualization, users can turn to the table visualization to analyze
the causes at the subset level. During the analysis, users can rank the
subsets based on different attributes, or utilize the Scented Widgets

() [58] in Fig. 1(a) to select samples of interest. With the identified
causes of the errors, users can then make informed improvements to
the model and/or the associated data.

6 CASE STUDIES

To demonstrate the effectiveness of Uni-Evaluator for evaluating and
improving different computer vision models (T1), we conducted two
case studies on object detection and instance segmentation. Prior to the
case studies, we briefly introduced Uni-Evaluator to the experts. The
visualizations of Uni-Evaluator were designed to be simple and familiar,
allowing the experts to quickly understand its concepts and interactions
within 20 minutes. Throughout the case studies, we followed the pair
analytics protocol [4], in which the experts led the exploration and
analysis, and we navigated the tool. This collaborative approach was
chosen to enable the experts to fully focus on their analysis tasks,
leading to enhanced efficiency and effectiveness.

6.1 Object Detection on COCO dataset

We collaborated with two experts (E1 and E2) to evaluate a state-of-
the-art object detection model, DINO [66]. E1 is a Ph.D. student who
developed DINO with his teammates. E2 is a researcher from a tech-
nology company who developed several object detection models and
integrated them into their products. A popular dataset for object de-
tection, the COCO dataset [37], is utilized in this study. This dataset
consists of 118,287 training samples with 849,947 objects and 5,000
test samples with 36,335 objects. The objects belong to 80 classes
divided into 12 super-classes. DINO with the ResNet-50 backbone [25]
achieves mAPs of 65.2% and 50.8% on the training and test samples,
respectively. Although this model improved the mAP on COCO com-
pared with previous object detection models, the experts would like to
examine what limited it from achieving a better performance.

Following common practices, the experts evaluated the model on
the test samples. They began the analysis by examining overall per-
formance in the matrix-based visualization. The matrix was initially
in the confusion mode with row normalization, showing the confusion
between 12 super-classes. Most of the off-diagonal cells had very light
colors (Fig. 5(a)), which indicated that the model had a high accuracy
in classifying the objects of different super-classes. Considering the
high classification accuracy but low mAP, the experts suspected that
the model classified objects well but failed to localize them accurately.
As localization concerns both the size errors and shifted directions of
the predictions [19], they decided to evaluate the model from these two
perspectives. E1 focused on analyzing the sizes of predicted objects,
and E2 focused on analyzing the shifted directions of predicted objects.

G
ro

un
d

Tr
ut

h

Prediction

background
accessory
person
animal
electronic
outdoor
furniture
indoor
kitchen
food
appliance
sports
vehicle

ba
ck

gr
ou

nd
ac

ce
ss

or
y

pe
rs

on
an

im
al

el
ec

tro
ni

c
ou

td
oo

r
fu

rn
itu

re
in

do
or

ki
tc

he
n

fo
od

ap
pl

ia
nc

e
sp

or
ts

ve
hi

cl
e

G
ro

un
d

Tr
ut

h

Prediction

ba
ck

gr
ou

nd
ac

ce
ss

or
y

pe
rs

on
an

im
al

el
ec

tro
ni

c
ou

td
oo

r
fu

rn
itu

re
in

do
or

ki
tc

he
n

fo
od

ap
pl

ia
nc

e
sp

or
ts

ve
hi

cl
e

background
accessory
person
animal
electronic
outdoor
furniture
indoor
kitchen
food
appliance
sports
vehicle

outdoor
traffic light

fire hydrant

stop sign
parking meter
bench

G
ro

un
d

Tr
ut

h

Prediction
ou

td
oo

r
tra

ffi
c

lig
ht

fir
e

hy
dr

an
t

st
op

 s
ig

n
pa

rk
in

g
m

et
er

be
nc

h

A

B

(d)

(c)

(b)(a)

Predictions smaller
than ground truth

Predictions larger
than ground truth

Predictions with
precise sizes

Number of objects

Fig. 5: The matrix-based visualization of the COCO dataset in (a) the confusion mode and (b) the size mode; (c) the sub-matrix of super-class
“outdoor;” (d) the predictions on the objects of “traffic light.”

6.1.1 Diagnosing Size Issues

Performance overview (T2). To investigate the potential size errors
in the predictions, E1 switched to the size mode. In the matrix, he
observed that all the large pie charts with large green and yellow
sectors were on the diagonal. This indicated that many objects were
classified correctly but localized with size errors. To investigate the
cause of the size issue, E1 decided to dive deeper into these diagonal
cells. The diagonal cell with the most size errors, super-class “outdoor”
(Fig. 5A), was taken as an example to illustrate the idea. The other
diagonal cells can be analyzed in a similar way.
Analyzing size issues in the subset of “outdoor” (T2, T3, T4). To
figure out which classes within the super-class “outdoor” contributed to
the size errors, he expanded this cell to a sub-matrix (Fig. 5(c)). In the
sub-matrix, he found the diagonal cell of “traffic light” contributed the
majority of the size errors (Fig. 5B). However, in the grid visualization,
the predictions on the associated objects did not show clear reasons for
these size errors (Fig. 5(d)). E1 then turned to the table visualization to
analyze performance on different subsets in this cell.

To find problematic subsets in the table visualization, E1 sorted the
subsets by the recall scores in ascending order. He identified many
subsets with low recall scores (Fig. 6(a)). E1 selected the subset with
the lowest recall score (Fig. 6A) and then turned to the matrix. In the
matrix, he clicked the green/yellow sector in the pie chart (Fig. 6B)
to examine the predictions with smaller/larger sizes than ground truth
in the grid visualization.

From examining the predictions with smaller sizes, E1 found that
most of these predictions existed in blurred images (Fig. 6(b)). E1
examined the training samples and found only a few such blurred
images. He concluded that this was the main reason why the model
did not perform well on these blurred images. To tackle this issue, E1
applied Gaussian noise data augmentation to 4,139 training samples
with traffic lights. After fine-tuning with the augmented samples, the
AP of “traffic light” was increased from 32.7% to 33.1%.

From examining the predictions with larger sizes, E1 found that the
model had already made precise predictions on these objects (Fig. 6(c)).
However, some annotations were imprecise, which caused small over-
laps between predictions and annotations. E1 continued to examine
other subsets of “traffic light” and found similar issues caused by im-
precise annotations. He commented that the imprecise annotations in
the test samples would mislead the model evaluation. Interested in
assessing actual performance on “traffic light,” E1 hired annotators to
re-annotate the bounding boxes of “traffic light” on test samples. E1
then re-evaluated the model using the re-annotated test samples. The
AP of “traffic light” was increased from 33.1% to 42.4%.

After exploring the subsets with low recall scores, E1 was also
interested in the subsets of “traffic light” with low precision scores. He
sorted the subsets by the precision scores in ascending order (Fig. 7(a))
and noticed that many subsets with low precision scores contained the
objects of small sizes (Fig. 7A) or small aspect ratios (Fig. 7B). Here,
the aspect ratio of an object is the ratio between the minimum and
maximum of the width and the height, which ranges between 0 and
1 [31]. E1 explained that this is reasonable because these characteristics

pr_cat gt_cat recall pr_conf gt_size pr_size

traffic light traffic light
traffic light traffic light

0.388 0.36 0.04 0.04
0.354 0.35 0.4 0.41

(a)

(c)(b)

B

A

Blurred image Imprecise annotation

Objects with
smaller sizes

Objects with
larger sizes

Fig. 6: (a) The table visualization shows subsets of “traffic light;” (b)
objects with smaller sizes; (c) objects with larger sizes.

pr_cat gt_cat precision pr_conf gt_size pr_size gt_ar pr_ar

traffic light traffic light
traffic light traffic light

traffic light traffic light

traffic light traffic light
traffic light traffic light

0.344 0.5 0.41 0.4 0.15 0.21

0.23 0.36 0.04 0.04 0.49 0.48

0.346 0.5 0.41 0.39 0.18 0.15

0.077 0.05 0.26 0.28 0.47 0.5

0.251 0.36 0.04 0.03 0.5 0.5

1-precision+gt_arpr_cat gt_cat

1-precision gt_ar

broccoli broccoli
chair chair
dining t.. dining t..

(a)

(b) (c)

A B

C
A floret of broccoli
as an object

Multiple florets of
broccoli as an object

Inconsistent annotations

...

Small size

Small aspect ratio

Fig. 7: The subsets ranked by (a) the precision score and (b) the com-
bination of the precision score and the ground-truth aspect ratio; (c)
inconsistent annotations of “broccoli.”

represented some extremely hard objects in detection, and therefore
would lead to a low precision score in predictions. Conversely, objects
of large sizes or large aspect ratios were usually detected with high
precision scores because they were easy to detect. Inspired by this
finding, E1 would like to examine the subsets that were low in precision
but without such hard objects. Next, we took the subsets with low
precision scores but large aspect ratios as examples for demonstration.
Analyzing other low-precision subsets (T3, T4). E1 re-ranked the
subsets by combining the precision score and the aspect ratio of ground
truth to find some subsets with low precision scores but large aspect
ratios (Fig. 7(b)). Among the subsets, a subset of “broccoli” was ranked
at the top (Fig. 7C). He examined its associated objects and saw many
“broccoli” objects were annotated with a confusing criterion (Fig. 7(c)).
Some contained only one floret of broccoli, while others might include
two or more florets of broccoli. From these findings, he realized
that the inconsistent annotations caused some correct predictions
considered to be wrong during model evaluation. Similar patterns were
also found in other food-related classes, including “apple,” “orange,”
“banana,” and “carrot.” For more accurate model evaluation, E1 decided
to re-annotate these five classes with a consistent criterion. After the
re-annotation, the APs of “broccoli,” “apple,” “banana,” “orange,” and
“carrot” were increased from 26.9% to 62.1%, 30.3% to 38.7%, 32.9%
to 51.0%, 38.7% to 78.4%, 29.3% to 44.4%, respectively.

6.1.2 Diagnosing Direction Issues

Performance overview (T2). E2 continued the evaluation of localiza-
tion performance in terms of shifted directions. He examined the matrix
in the direction mode. In the matrix (Fig. 8(a)), he found four cells
with apparently longer arrows in specific directions (Figs. 8A, 8B, 8C,
and 8D). He decided to examine them one by one.
Analyzing the imprecise direction issue in class “person” (T2, T4).
E2 began his analysis on cell A (Fig. 8A), where many predicted objects
were shifted downward. To determine the reason for the direction errors,
he expanded the cell to a sub-matrix (Fig. 8(b)). In the sub-matrix,
he noticed cell E (Fig. 8E), where “person” was confused with “skis,”
contributed the majority of the direction errors. A large proportion of
predictions in this cell were shifted downward in position. He clicked
the downward arrow to further check the associated objects. In the
grid visualization, he noticed that the predicted “skis” were precisely
localized, but the corresponding annotations were absent (Fig. 8(c)). As
a result, the predictions were matched with the ground truth “person.”
E2 decided to add the missing annotations of “skis” in test samples.
After that, the AP of “skis” was increased from 35.4% to 36.8%.

Similarly, E2 examined the other cells with longer arrows in specific
directions (Figs. 8B, 8C and 8D). Analyzing the predictions, he discov-
ered similar issues as “skis” and decided to add the missing annotations
of “potted plant” and “vase” in test samples. After that, the APs of
“potted plant” and “vase” were increased from 33.6% to 37.0%, and
44.1% to 46.2%, respectively.

G
ro

un
d

Tr
ut

h

person

sports

Prediction

pe
rs

on

sp
or

ts
sk

is

...

...

... ...

G
ro

un
d

Tr
ut

h

background
accessory
person

furniture
indoor

Prediction

ba
ck

gr
ou

nd
ac

ce
ss

or
y

pe
rs

on
an

im
al

el
ec

tro
ni

c
ou

td
oo

r
fu

rn
itu

re
in

do
or

sp
or

ts

A

(a)

C

D

E

(b) (c)
Skis with missing annotations

B
Predictions with
precise positions
Predictions shifted
in a specific direction

Numbers of objects

Fig. 8: (a) The matrix-based visualization in the direction mode; (b) the
sub-matrix of “person” and “sports;” (c) missing annotations in “skis.”

In summary, E1 and E2 applied Gaussian noise data augmentation to
4,139 training samples with traffic lights and re-annotated the objects
of nine classes. The overall mAP on the re-annotated test samples was
improved from 50.8% to 52.5%. E2 was impressed by the improvement
and thus conducted a post-analysis on the re-annotated test samples.

6.1.3 Post Analysis

More accurately evaluating model performance. The previous study
has shown that larger models usually achieve higher mAPs than small
models on the original COCO test samples [17]. E2 sought to determine
whether they truly perform better or merely overfit the annotation
errors. Therefore, E2 evaluated performance of InternImage [56], a
large pre-trained model that achieves the highest mAP (65.0%) on the
original test samples. On the re-annotated test samples, the gain in
mAP was 2.3%, which exceeded that of DINO (1.8%). This showed
that the higher performance on large models was not due to overfitting
annotation errors even though the numbers of their parameters were
very large. This is also verified by the recent research [61].

Meanwhile, E2 noted that the current annotations might not be
accurate enough to evaluate object detection models. “Considering
the 2.3% mAP improvement by revising the annotations of only nine
classes, I expect the gain to reach around 15.0% if the other 71 classes
were re-annotated. It makes me largely underestimate performance of
object detection models.” E2 said. To accurately evaluate models, E2
emphasized the importance of re-annotating the remaining 71 classes.
The findings in the case study provide guidance for the re-annotation
process. For example, when numerous objects of the same class are
present in close proximity and delineating them is difficult even for
humans (e.g. , the broccoli in Fig. 7(c)), these objects can be annotated
as a whole with the label “is crowd” to avoid inaccurate annotations.
Distilling large models. As inaccurate annotations were identified in
the test samples, E2 suspected the annotations of the training samples
were also inaccurate. The inaccurate annotations of the training images
will degrade model performance, especially for small machine learning
models running on resource-limited devices [47]. As re-annotating
the training samples is prohibitively expensive, E2 suggested using
distillation to enhance the performance of small models. Specifically,
a large model is trained on the training samples and then utilized to
detect the objects in all the training samples. Then these detected
objects are used to train the small models. To illustrate the idea, E2
used DINO with Swin backbone [42] as the large model and DINO
with ResNet-50 backbone [25] as the small model for distillation. On
the re-annotated test samples, the mAP was improved from 52.5%

to 53.4%. “The improvement is remarkable, particularly because it
required no additional annotation efforts.” E2 commented.

6.2 Instance Segmentation on iSAID dataset

In this case study, we invited the expert E3 to evaluate an instance
segmentation model on the iSAID dataset [57], an aerial image dataset
for instance segmentation. This dataset contains 36,038 training
samples with 716,640 objects and 11,752 test samples with 233,625
objects. The objects belong to 15 classes divided into two super-classes,
“transport” and “land.” E3 employed CATNet [41], a state-of-the-art
instance segmentation model for aerial images. With the ResNet-50
backbone [25], it achieved an mAP of 51.7% on the training samples
and an mAP of 39.1% on the test samples. E3 wanted to improve
model performance, so he used Uni-Evaluator to evaluate the model
on the test samples. Here, we take the super-class “transport” as an
example to illustrate the idea.
Performance overview (T2). Initially, the matrix was in the confusion
mode with the super-class “transport” expanded, displaying the con-
fusion between seven classes (Fig. 1(b)). In the matrix, he discovered
several regions of interest: 1) in region A, “large vehicle” and “small
vehicle” were confused with each other (Fig. 1A); 2) in region B, many
objects of “ship,” “large vehicle,” “small vehicle,” “storage tank,” and
“helicopter” failed to be segmented (Fig. 1B); 3) in region C, many heli-
copters were misclassified as planes (Fig. 1C); and 4) in region D, some
backgrounds were misclassified as “large vehicle” and “small vehicle”
(Fig. 1D). Since the classification and the segmentation were interre-
lated in this multi-task scenario, E3 further examined the sizes and
the shifted directions of the segmented objects with the size mode and
direction mode, respectively. In the size mode, he found two regions of
interest: in region E, some objects of “small vehicle” were confused
with “large vehicle” (Fig. 1E); and in region F, some objects of “harbor”
were correctly classified but with size errors (Fig. 1F). However, E3
found no obvious patterns in the direction mode. He explained, “This is
reasonable because aerial images are insensitive to direction changes.”
E3 decided to analyze each identified region of interest separately.
Analyzing misclassification in “large vehicle” and “small vehicle”
(T2, T4). E3 first analyzed region A, where “large vehicle” and “small
vehicle” were confused with each other (Fig. 1A). To understand what
caused the confusion, he switched to the size mode and observed
that in cell E (Fig. 1E), the yellow sector of the pie chart occupied
a large proportion. This indicated that many segmented small
vehicles were larger than ground truth. To investigate this further, E3
clicked the yellow sector to check the associated objects (Fig. 1(d)).
He noticed that the small vehicles were so small that most of the
predictions masked two or more small vehicles as a whole. Such
wrong segmentation results were also found in the training samples. E3
hypothesized that the model was poor at predicting such small objects.
To verify this, he selected the small objects by filtering and found that
most of these objects belonged to five classes: “ship,” “storage tank,”
“small vehicle,” “large vehicle,” and “helicopter.” Many objects of these
five classes were misclassified (Fig. 1A) or failed to be segmented
(Fig. 1B). Upon this observation, he examined the model and found that
the images were downsampled in the model. The small objects were
hard to be distinguished in the downsampled images, and thus led to the
wrong segmentation. To address this issue, E3 increased the resolution
of the images from 512×512 to 1024×1024 and retrained the model.
Subsequently, the APs of “ship,” “storage tank,” “small vehicle,”
“large vehicle,” and “helicopter” were increased from 49.9% to 51.5%,
39.9% to 42.8%, 16.5% to 19.2%, 39.5% to 41.6%, 6.3% to 7.5%,
respectively, and the overall mAP was increased from 39.1% to 40.3%.
Analyzing misclassification in “helicopter” and background (T2,
T4). E3 proceeded to analyze region C and found that some objects
of “helicopter” was misclassified as “plane.” Examining the associated
objects in the grid visualization, he observed that these helicopters
were well segmented but still misclassified (Fig. 9(a)). After examining
helicopters and planes in the training samples, E3 commented, “This
misclassification occurs because helicopters and planes have a similar
appearance in aerial images (Fig. 9(b)), and the training samples contain

(a) (b) (c)
helicopter plane

Well segmented
but misclassified Look similar The middle part

is segmented
The bars are

not segmented

plane

Fig. 9: (a) A helicopter is well segmented but misclassified; (b) a
helicopter and a plane share a similar appearance; (c) the middle part
of a harbor is segmented, but its bars are not.

more instances of planes (19,720) than helicopters (1,402).” To address
this issue, E3 first collected 1,077 aerial images with 1,561 helicopters,
then applied the widely-used Copy-Paste augmentation strategy [18]
to generate more helicopters in the training samples. The augmentation
was carried out by pasting the helicopters from their original images
into other images, which resulted in a total of 5,063 helicopters.

Next, E3 analyzed region D, where some backgrounds were misclas-
sified as “large vehicle” or “small vehicle” (Fig. 1D). E3 considered this
was reasonable since vehicles were small and obscure in aerial images,
making them difficult to be distinguished from the background by the
model. This was also consistent with the previous studies [12, 57]. As
this misclassification was a long-standing problem in instance segmen-
tation, E3 decided to explore it further in future research.

After fine-tuning the model with the augmented samples of “heli-
copter”, the AP of “helicopter” was increased from 7.5% to 10.4%.
The overall mAP was increased from 40.3% to 40.4%.
Analyzing the imprecise size issue in “harbor” (T2, T4). E3 contin-
ued to analyze the diagonal cell of “harbor” (Fig. 1F). The green sector
of this cell indicated that many harbors were predicted with a smaller
size. Intrigued by this observation, he clicked the green sector to check
the associated objects in the grid visualization. He found that the middle
parts of the harbors were correctly segmented, but the bars around them
were not (Fig. 9(c)). Similar patterns were also found in the training
samples. From the finding, he realized that the currently used binary
cross entropy loss function is area-based, and the model with this loss
function was unable to precisely segment the bars due to their small
sizes. It was necessary to consider the boundaries of harbors during
training. Additionally, E3 found two other classes, “plane” and “heli-
copter,” with the similar issue of complex boundaries. To address this
issue, he combined a boundary-based loss [34] with the original binary
cross entropy loss for the three classes. After fine-tuning the model, the
APs of “harbor,” “plane,” and “helicopter” were increased from 29.6%
to 31.7%, 51.5% to 52.6%, and 10.4% to 11.3%, respectively. This
resulted in an overall mAP increase to 40.6%.

In summary, E3: 1) increased the resolution of all images; 2)
added 1,077 samples with 1,561 helicopters and utilized Copy-Paste
augmentation to obtain a total of 5,063 helicopters; 3) and added
a boundary-based loss for “harbor,” “plane,” and “helicopter.” The
overall mAP was improved from 39.1% to 40.6%.

7 EXPERT FEEDBACK AND DISCUSSION

Following the case studies, we conducted six interviews to gather feed-
back from a group of experts, which included the three experts (E1,
E2, E3) who collaborated with us in the case studies and three addi-
tional experts we invited (E4, E5, E6). The newly invited experts were
Ph.D. students who had over two years of experience in computer vision
research. Each interview lasted between 40 to 65 minutes. Overall, the
expert feedback was positive regarding the usability of Uni-Evaluator.
However, some limitations were also identified, highlighting areas
requiring further investigation in the future.

7.1 Usability
Generalization to other tasks. In the current implementation, Uni-
Evaluator supports three main tasks in computer vision: classification,

object detection, and instance segmentation. According to the ex-
perts, Uni-Evaluator can also be utilized for evaluating models in other
computer vision tasks. Here we take the visual generation task as an
example to illustrate the extension idea. This task involves encoding
training samples into latent vectors and then reconstructing the original
training samples. When evaluating models in such tasks, the experts are
interested in analyzing the reconstruction errors of samples. To do the
analysis, they can cluster samples and then analyze the errors between
different clusters in the matrix-based visualization. Meanwhile, the ta-
ble visualization and the grid visualization are directly applicable to ex-
ploring the subsets and samples of interest. The semantic segmentation
task can also be analyzed in Uni-Evaluator as a pixel-level classification
task. However, since this task usually has a significant class imbalance,
such a pixel-level analysis may hinder the poor performance analysis on
minority classes. In addition, focusing only on pixel-level information
results in a loss of object-level information (the shapes of objects),
which is also critical for evaluating semantic segmentation models [26].
Therefore, it is essential to study metrics that are insensitive to class im-
balance (e.g. , mIoU) and integrate pixel- and object-level information
in Uni-Evaluator, which is a promising research topic in the future.
Diagnosing causes of poor performance. All the experts commented
positively on the design of the three modes in the matrix-based visual-
ization, which enables the identification of the specific reasons for poor
performance. In the instance segmentation case study, using the three
modes, E3 successfully identified that the confusion between “small
vehicle” and “large vehicle” was due to the small sizes of the “small
vehicle.” Furthermore, E1 noted that the table visualization facilitated
diagnosing the different causes of poor performance in different
subsets. “Using the table visualization, I quickly identified that the size
errors of class ‘traffic light’ were caused by both the blurred images
and the annotation errors in the test samples,” he commented.

7.2 Limitations and Future Work

Identifying data subsets by semantic attributes. Uni-Evaluator
currently slices the subsets along the low-level attributes of objects,
such as sizes and aspect ratios. It does not support identifying
problematic subsets based on semantic attributes that describe visual
appearances. For example, E2 observed that their object detection
models often failed to detect objects with some specific appearances,
such as a person on a bridge. However, such semantic attributes usually
require expensive manual annotations [67]. One potential method is to
use disentangled representation learning to extract candidate semantic
attributes and then allow users to select meaningful ones [22, 26, 55].
Effective model comparison. Uni-Evaluator is currently designed for
evaluating a single model. However, the experts also want to com-
pare different models for various purposes [16, 53]. For example, E4
indicated that Transformer-based object detection models usually out-
performed CNN-based object detection models, whereas the latter often
exhibited higher inference speeds in real-world applications [43]. To
exploit the strengths of both, E4 wanted to compare their performance,
identify what made the Transformer-based models perform better, and
then integrate it into the CNN-based models. Therefore, investigat-
ing how Uni-Evaluator can effectively support model comparison is a
promising future research direction.

8 CONCLUSION

We present Uni-Evaluator, a visual analysis tool that supports a unified
interactive model evaluation for computer vision tasks. From a survey
conducted with 151 computer vision experts, we distill three design
goals for a unified model evaluation and then derive four tasks from
the design goals. Based on the derived tasks, we propose a unified
probability distribution method that models both continuous and dis-
crete predictions in a unified manner. With the unified probabilistic
modeling, we develop three coordinated visualizations to facilitate a
comprehensive model evaluation from a global overview to detailed
samples. Two case studies are conducted to demonstrate the effective-
ness of Uni-Evaluator in improving the model and the associated data
in object detection and instance segmentation.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation
of China under grants U21A20469, 61936002, and 92248303, the
National Key R&D Program of China under Grant 2020YFB2104100,
grants from the Institute Guo Qiang, THUIBCS, and BLBCI, and
in part by Tsinghua-Kuaishou Institute of Future Media Data. The
authors would like to thank Dr. Xizhou Zhu, Dr. Mengchen Liu, Guo-Ye
Yang, Dr. Liuyu Xiang, and Dr. Xiaohan Wang for their contributions
to the case studies, Lanxi Xiao for her valuable comments on the
visualization design, Zhen Li for implementing parts of the matrix-
based visualization and the filtering function, and Yiwei Hou for voicing
our video.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. CoRR, abs/1603.04467,
2016. doi: 10.48550/arXiv.1603.04467 2

[2] B. Alsallakh, A. Hanbury, H. Hauser, S. Miksch, and A. Rauber. Visual
methods for analyzing probabilistic classification data. IEEE Transactions
on Visualization and Computer Graphics, 20(12):1703–1712, 2014. doi:
10.1109/TVCG.2014.2346660 2

[3] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh.
ModelTracker: Redesigning performance analysis tools for machine learn-
ing. In Proceedings of the ACM CHI Conference on Human Factors in
Computing Systems, pp. 337–346. Seoul, 2015. doi: 10.1145/2702123.
2702509 2

[4] R. Arias-Hernandez, L. T. Kaastra, T. M. Green, and B. Fisher. Pair
analytics: Capturing reasoning processes in collaborative visual analytics.
In IEEE Hawaii International Conference on System Sciences, pp. 1–10.
Koloa, Kauai, 2011. doi: 10.1109/HICSS.2011.339 6

[5] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering
for hierarchical clustering. Bioinformatics, 17(suppl_1):S22–S29, 2001.
doi: 10.1093/bioinformatics/17.suppl_1.S22 5

[6] D. Bertucci, M. M. Hamid, Y. Anand, A. Ruangrotsakun, D. Tabatabai,
M. Perez, and M. Kahng. DendroMap: Visual exploration of large-scale
image datasets for machine learning with treemaps. IEEE Transactions
on Visualization and Computer Graphics, 29(1):320–330, 2023. doi: 10.
1109/TVCG.2022.3209425 2

[7] L. Biewald. Weights & Biases. https://wandb.ai/site/, 2020. 2
[8] A. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do convolutional neural

networks learn class hierarchy? IEEE Transactions on Visualization and
Computer Graphics, 24(1):152–162, 2018. doi: 10.1109/TVCG.2017.
2744683 2

[9] D. Bolya, S. Foley, J. Hays, and J. Hoffman. TIDE: A general toolbox
for identifying object detection errors. In Proceedings of the European
Conference on Computer Vision, pp. 558–573. Glasgow, 2020. doi: 10.
1007/978-3-030-58580-8_33 2, 4

[10] A. Borji and S. M. Iranmanesh. Empirical upper bound in object detection
and more. CoRR, abs/1911.12451, 2019. doi: 10.48550/arXiv.1911.12451
2

[11] M. Boullé. MODL: A Bayes optimal discretization method for continuous
attributes. Machine Learning, 65:131–165, 2006. doi: 10.1007/s10994
-006-8364-x 6

[12] J. Cao, H. Cholakkal, R. M. Anwer, F. S. Khan, Y. Pang, and L. Shao.
D2Det: Towards high quality object detection and instance segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11485–11494. Seattle, 2020. doi: 10.1109/
cvpr42600.2020.01150 9

[13] C. Chen, Z. Wang, J. Wu, X. Wang, L.-Z. Guo, Y.-F. Li, and S. Liu.
Interactive graph construction for graph-based semi-supervised learning.
IEEE Transactions on Visualization and Computer Graphics, 27(9):3701–
3716, 2021. doi: 10.1109/TVCG.2021.3084694 2

[14] C. Chen, J. Wu, X. Wang, S. Xiang, S.-H. Zhang, Q. Tang, and S. Liu.
Towards better caption supervision for object detection. IEEE Transactions
on Visualization and Computer Graphics, 28(4):1941–1954, 2022. doi: 10
.1109/TVCG.2021.3138933 6

[15] C. Chen, J. Yuan, Y. Lu, Y. Liu, H. Su, S. Yuan, and S. Liu. OoDAnalyzer:
Interactive analysis of out-of-distribution samples. IEEE Transactions on
Visualization and Computer Graphics, 27(7):3335–3349, 2021. doi: 10.
1109/TVCG.2020.2973258 2, 6

[16] J. F. DeRose, J. Wang, and M. Berger. Attention flows: Analyzing and
comparing attention mechanisms in language models. IEEE Transactions
on Visualization and Computer Graphics, 27(2):1160–1170, 2021. doi: 10
.1109/TVCG.2020.3028976 9

[17] Y. Fang, W. Wang, B. Xie, Q. Sun, L. Wu, X. Wang, T. Huang, X. Wang,
and Y. Cao. EVA: Exploring the limits of masked visual representation
learning at scale. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 19358–19369. Vancouver, 2023.
8

[18] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le,
and B. Zoph. Simple copy-paste is a strong data augmentation method for
instance segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2918–2928, 2021. doi: 10.
1109/cvpr46437.2021.00294 9

[19] R. Girshick. Fast R-CNN. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1440–1448. Santiago, 2015. doi: 10.
1109/ICCV.2015.169 6

[20] M. Gleicher, A. Barve, X. Yu, and F. Heimerl. Boxer: Interactive compari-
son of classifier results. Computer Graphics Forum, 39(3):181–193, 2020.
doi: 10.1111/cgf.13972 2

[21] J. Görtler, F. Hohman, D. Moritz, K. Wongsuphasawat, D. Ren, R. Nair,
M. Kirchner, and K. Patel. Neo: Generalizing confusion matrix visualiza-
tion to hierarchical and multi-output labels. In Proceedings of the ACM
CHI Conference on Human Factors in Computing Systems, pp. 1–13. New
Orleans, 2022. doi: 10.1145/3491102.3501823 2, 3, 4, 5

[22] L. Gou, L. Zou, N. Li, M. Hofmann, A. K. Shekar, A. Wendt, and L. Ren.
VATLD: A visual analytics system to assess, understand and improve
traffic light detection. IEEE Transactions on Visualization and Computer
Graphics, 27(2):261–271, 2021. doi: 10.1109/TVCG.2020.3030350 9

[23] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. LineUp: Visual
analysis of multi-attribute rankings. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2277–2286, 2013. doi: 10.1109/TVCG.
2013.173 2, 6

[24] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current
status and future directions. Data Mining and Knowledge Discovery,
15(1):55–86, 2007. doi: 10.1007/s10618-006-0059-1 5

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 770–778. Las Vegas, 2016. doi: 10.
1109/CVPR.2016.90 6, 8

[26] W. He, L. Zou, A. K. Shekar, L. Gou, and L. Ren. Where can we help?
a visual analytics approach to diagnosing and improving semantic seg-
mentation of movable objects. IEEE Transactions on Visualization and
Computer Graphics, 28(1):1040–1050, 2021. doi: 10.1109/TVCG.2021.
3114855 9

[27] F. Heyen, T. Munz, M. Neumann, D. Ortega, N. T. Vu, D. Weiskopf, and
M. Sedlmair. ClaVis: An interactive visual comparison system for classi-
fiers. In Proceedings of the ACM International Conference on Advanced
Visual Interfaces, pp. 1–9. Island of Ischia, 2020. doi: 10.1145/3399715.
3399814 2

[28] A. Hinterreiter, P. Ruch, H. Stitz, M. Ennemoser, J. Bernard, H. Strobelt,
and M. Streit. ConfusionFlow: A model-agnostic visualization for tempo-
ral analysis of classifier confusion. IEEE Transactions on Visualization
and Computer Graphics, 28(2):1222–1236, 2022. doi: 10.1109/TVCG.
2020.3012063 2

[29] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE Transactions
on Visualization and Computer Graphics, 25(8):2674–2693, 2019. doi: 10
.1109/TVCG.2018.2843369 2

[30] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object
detectors. In Proceedings of the European Conference on Computer Vision,
pp. 340–353. Florence, 2012. doi: 10.1007/978-3-642-33712-3_25 2

[31] L. Hou, K. Lu, J. Xue, and Y. Li. Shape-adaptive selection and measure-
ment for oriented object detection. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 923–932, 2022. doi: 10.1609/aaai.v36i1.
19975 7

[32] D. Jadhav and T. Ramanathan. Parametric and non-parametric estimation
of value-at-risk. The Journal of Risk Model Validation, 3(1):51, 2009. doi:
doi.org/10.5539/ijbm.v8n11p103 5

[33] J. M. Johnson and T. M. Khoshgoftaar. Survey on deep learning with class
imbalance. Journal of Big Data, 6(1):1–54, 2019. doi: 10.1186/s40537
-019-0192-5 1

[34] H. Kervadec, J. Bouchtiba, C. Desrosiers, E. Granger, J. Dolz, and I. B.

https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1109/TVCG.2014.2346660
https://doi.org/10.1109/TVCG.2014.2346660
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1109/HICSS.2011.339
https://doi.org/10.1093/bioinformatics/17.suppl_1.S22
https://doi.org/10.1109/TVCG.2022.3209425
https://doi.org/10.1109/TVCG.2022.3209425
https://wandb.ai/site/
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1109/TVCG.2017.2744683
https://doi.org/10.1007/978-3-030-58580-8_33
https://doi.org/10.1007/978-3-030-58580-8_33
https://doi.org/10.48550/arXiv.1911.12451
https://doi.org/10.1007/s10994-006-8364-x
https://doi.org/10.1007/s10994-006-8364-x
https://doi.org/10.1109/cvpr42600.2020.01150
https://doi.org/10.1109/cvpr42600.2020.01150
https://doi.org/10.1109/TVCG.2021.3084694
https://doi.org/10.1109/TVCG.2021.3138933
https://doi.org/10.1109/TVCG.2021.3138933
https://doi.org/10.1109/TVCG.2020.2973258
https://doi.org/10.1109/TVCG.2020.2973258
https://doi.org/10.1109/TVCG.2020.3028976
https://doi.org/10.1109/TVCG.2020.3028976
https://doi.org/10.1109/cvpr46437.2021.00294
https://doi.org/10.1109/cvpr46437.2021.00294
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1111/cgf.13972
https://doi.org/10.1145/3491102.3501823
https://doi.org/10.1109/TVCG.2020.3030350
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TVCG.2021.3114855
https://doi.org/10.1109/TVCG.2021.3114855
https://doi.org/10.1145/3399715.3399814
https://doi.org/10.1145/3399715.3399814
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1007/978-3-642-33712-3_25
https://doi.org/10.1609/aaai.v36i1.19975
https://doi.org/10.1609/aaai.v36i1.19975
https://doi.org/doi.org/10.5539/ijbm.v8n11p103
https://doi.org/doi.org/10.5539/ijbm.v8n11p103
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5

Ayed. Boundary loss for highly unbalanced segmentation. Medical Image
Analysis, 67:101851, 2021. doi: 10.1016/j.media.2020.101851 9

[35] N. Lei, D. An, Y. Guo, K. Su, S. Liu, Z. Luo, S.-T. Yau, and X. Gu. A
geometric understanding of deep learning. Engineering, 6(3):361–374,
2020. doi: 10.1016/j.eng.2019.09.010 2

[36] Z. Li, X. Wang, W. Yang, J. Wu, Z. Zhang, Z. Liu, M. Sun, H. Zhang, and
S. Liu. A unified understanding of deep NLP models for text classification.
IEEE Transactions on Visualization and Computer Graphics, 28(12):4980–
4994, 2022. doi: 10.1109/TVCG.2022.3184186 2

[37] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick. Microsoft COCO: Common objects in context. In
Proceedings of the European Conference on Computer Vision, pp. 740–
755. Zürich, 2014. doi: 10.1007/978-3-319-10602-1_48 4, 6

[38] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäi-
nen. Deep learning for generic object detection: A survey. International
Journal of Computer Vision, 128:261–318, 2020. doi: 10.1007/s11263
-019-01247-4 1

[39] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu. Analyzing the noise robustness
of deep neural networks. In Proceedings of the IEEE Conference on
Visual Analytics Science and Technology, pp. 60–71. Berlin, 2018. doi: 10.
1109/VAST.2018.8802509 2

[40] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017. doi: 10.1109/TVCG.2016.
2598831 2

[41] Y. Liu, H. Li, C. Hu, S. Luo, H. Shen, and C. W. Chen. Learning to
aggregate multi-scale context for instance segmentation in remote sensing
images. CoRR, abs/2111.11057, 2021. doi: 10.48550/arXiv.2111.11057
8

[42] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo.
Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10012–10022. Montreal, 2021. doi: 10.1109/iccv48922.2021.
00986 8

[43] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A
ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11976–11986. New
Orleans, 2022. doi: 10.1109/cvpr52688.2022.01167 9

[44] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(86):2579–2605, 2008. 2, 6

[45] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
D. Terzopoulos. Image segmentation using deep learning: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(7):3523–
3542, 2022. doi: 10.1109/TPAMI.2021.3059968 1

[46] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2(1):86–97, 2012. doi: 10.1002/widm.53 5

[47] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever.
Deep double descent: Where bigger models and more data hurt. Journal
of Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021.
doi: 10.1088/1742-5468/ac3a74 8

[48] E. Pastor, L. de Alfaro, and E. Baralis. Looking for trouble: Analyzing
classifier behavior via pattern divergence. In Proceedings of the ACM
International Conference on Management of Data, pp. 1400–1412. Xi’an,
2021. doi: 10.1145/3448016.3457284 5

[49] D. W. Pentico. Assignment problems: A golden anniversary survey.
European Journal of Operational Research, 176(2):774–793, 2007. doi:
10.1016/j.ejor.2005.09.014 4

[50] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares: Sup-
porting interactive performance analysis for multiclass classifiers. IEEE
Transactions on Visualization and Computer Graphics, 23(1):61–70, 2017.
doi: 10.1109/TVCG.2016.2598828 1, 2

[51] P. Rottmann, M. Wallinger, A. Bonerath, S. Gedicke, M. Nöllenburg, and
J.-H. Haunert. MosaicSets: Embedding set systems into grid graphs. IEEE
Transactions on Visualization and Computer Graphics, 29(1):875–885,
2023. doi: 10.1109/TVCG.2022.3209485 6

[52] W. Schroeder. Switching between tools in complex applications. Journal
of Usability Studies, 3(4):173–188, 2008. 2

[53] R. Sevastjanova, E. Cakmak, S. Ravfogel, R. Cotterell, and M. El-Assady.
Visual comparison of language model adaptation. IEEE Transactions on
Visualization and Computer Graphics, 29(1):1178–1188, 2023. doi: 10.
1109/TVCG.2022.3209458 9

[54] J. T. Townsend. Theoretical analysis of an alphabetic confusion matrix.

Perception & Psychophysics, 9:40–50, 1971. doi: 10.3758/BF03213026
1, 2

[55] Q. Wang, S. L’Yi, and N. Gehlenborg. DRAVA: Aligning human concepts
with machine learning latent dimensions for the visual exploration of small
multiples. In Proceedings of the ACM CHI Conference on Human Factors
in Computing Systems, pp. 1–15. Hamburg, 2023. doi: 10.1145/3544548.
3581127 9

[56] W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu, L. Lu,
H. Li, et al. InternImage: Exploring large-scale vision foundation models
with deformable convolutions. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 14408–14419.
Vancouver, 2023. 8

[57] S. Waqas Zamir, A. Arora, A. Gupta, S. Khan, G. Sun, F. Shahbaz Khan,
F. Zhu, L. Shao, G.-S. Xia, and X. Bai. iSAID: A large-scale dataset for
instance segmentation in aerial images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp.
28–37. Long Beach, 2019. 8, 9

[58] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving
navigation cues with embedded visualizations. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1129–1136, 2007. doi: 10.
1109/TVCG.2007.70589 6

[59] A. K. Wong and D. K. Chiu. Synthesizing statistical knowledge from
incomplete mixed-mode data. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 9(6):796–805, 1987. doi: 10.1109/TPAMI.1987.
4767986 5

[60] P. Xenopoulos, J. Rulff, L. G. Nonato, B. Barr, and C. Silva. Calibrate:
Interactive analysis of probabilistic model output. IEEE Transactions
on Visualization and Computer Graphics, 29(1):853–863, 2023. doi: 10.
1109/TVCG.2022.3209489 2

[61] J. Yang, C. Li, X. Dai, and J. Gao. Focal modulation networks. In
Proceedings of the Advances in Neural Information Processing Systems,
pp. 4203–4217. New Orleans, 2022. doi: 10.31525/ct1-nct03946618 8

[62] W. Yang, Z. Li, M. Liu, Y. Lu, K. Cao, R. Maciejewski, and S. Liu.
Diagnosing concept drift with visual analytics. In Proceedings of IEEE
Conference on Visual Analytics Science and Technology, pp. 12–23, 2020.
doi: 10.1109/vast50239.2020.00007 2

[63] W. Yang, X. Wang, J. Lu, W. Dou, and S. Liu. Interactive steering of
hierarchical clustering. IEEE Transactions on Visualization and Computer
Graphics, 27(10):3953–3967, 2021. doi: 10.1109/tvcg.2020.2995100 5

[64] W. Yang, X. Ye, X. Zhang, L. Xiao, J. Xia, Z. Wang, J. Zhu, H. Pfister,
and S. Liu. Diagnosing ensemble few-shot classifiers. IEEE Transactions
on Visualization and Computer Graphics, 28(9):3292–3306, 2022. doi: 10
.1109/TVCG.2022.3182488 5

[65] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu. A survey of visual
analytics techniques for machine learning. Computational Visual Media,
7(1):3–36, 2021. doi: 10.1007/s41095-020-0191-7 2

[66] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. Ni, and H. Shum.
DINO: DETR with improved denoising anchor boxes for end-to-end object
detection. In Proceedings of the International Conference on Learning
Representations, pp. 1–9. Kigali, 2023. 6

[67] X. Zhang, J. P. Ono, H. Song, L. Gou, K.-L. Ma, and L. Ren. SliceTeller:
A data slice-driven approach for machine learning model validation. IEEE
Transactions on Visualization and Computer Graphics, 29(1):842–852,
2023. doi: 10.1109/TVCG.2022.3209465 2, 5, 9

[68] Y. Zhang and Q. Yang. An overview of multi-task learning. National
Science Review, 5(1):30–43, 2018. doi: 10.1093/nsr/nwx105 3

[69] Y. Zhang and Q. Yang. A survey on multi-task learning. IEEE Transactions
on Knowledge and Data Engineering, 34(12):5586–5609, 2022. doi: 10.
1109/TKDE.2021.3070203 2, 3

https://doi.org/10.1016/j.media.2020.101851
https://doi.org/10.1016/j.eng.2019.09.010
https://doi.org/10.1109/TVCG.2022.3184186
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1007/s11263-019-01247-4
https://doi.org/10.1109/VAST.2018.8802509
https://doi.org/10.1109/VAST.2018.8802509
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.48550/arXiv.2111.11057
https://doi.org/10.1109/iccv48922.2021.00986
https://doi.org/10.1109/iccv48922.2021.00986
https://doi.org/10.1109/cvpr52688.2022.01167
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1002/widm.53
https://doi.org/10.1088/1742-5468/ac3a74
https://doi.org/10.1145/3448016.3457284
https://doi.org/10.1016/j.ejor.2005.09.014
https://doi.org/10.1016/j.ejor.2005.09.014
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2022.3209485
https://doi.org/10.1109/TVCG.2022.3209458
https://doi.org/10.1109/TVCG.2022.3209458
https://doi.org/10.3758/BF03213026
https://doi.org/10.1145/3544548.3581127
https://doi.org/10.1145/3544548.3581127
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TPAMI.1987.4767986
https://doi.org/10.1109/TPAMI.1987.4767986
https://doi.org/10.1109/TVCG.2022.3209489
https://doi.org/10.1109/TVCG.2022.3209489
https://doi.org/10.31525/ct1-nct03946618
https://doi.org/10.1109/vast50239.2020.00007
https://doi.org/10.1109/tvcg.2020.2995100
https://doi.org/10.1109/TVCG.2022.3182488
https://doi.org/10.1109/TVCG.2022.3182488
https://doi.org/10.1007/s41095-020-0191-7
https://doi.org/10.1109/TVCG.2022.3209465
https://doi.org/10.1093/nsr/nwx105
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203

Appendix A: Survey on Computer Vision
Model Evaluation

Part One: Basic Information

1. Please select the range of your age. [Select one of the following]

l 11-20

l 21-30

l 31-40

l 41-50

l 51-60

l 60+

2. Please select your gender. [Select one of the following]

l Male

l Female

3. How many years of experience do you have in computer vision? [Select one of the following]

l less than 1 year

l 1-3 years

l 3-5 year

l 41-50

l 51-60

l 60+

Part Two: Current Practice

4. What computer vision tasks do you work with? [Select all that apply]

l Image classification

l Object detection

l Image segmentation

l Other:

5. What stage of machine learning do you typically work on? [Select all that apply]

l Data collection and processing

l Data labeling

l Model training

l Model evaluation

6. Have you ever worked with multiple tasks (e.g., classification, detection, segmentation) in
one application? If so, how many tasks did you work with? [Select one of the following]

l No

l 2

l 3

Survey on Computer Vision Model Evaluation

l 4

l 4+

7. How do you evaluate a computer vision model? [Select all that apply]

l By analyzing the training logs of the model, including

l By using visualization tools, including

l By inspecting the prediction results of a given sample

l Other:

8. What problems do you encounter when using these evaluation methods? [Select all that
apply]

l These methods focus on evaluating classification results and do not support the evaluation of more
complex prediction results, such as detection results

l Cannot help users identify problems in the training data, e.g., incorrect annotations

l Cannot help users identify the classes where the model performs poorly

l Cannot help users compare different models at the class level and instance level

l Other:

Part Three: Key Features Needed

Do you think the following features can help you analyze and improve computer vision model
performance? Please rate the importance.
Unimportant / Slightly important / Moderately important / Important / Very important

9. A unified evaluation for different computer vision tasks.

Unimportant
Ü

——–
Ü

——–
Ü

——–
Ü

——–
Ü

Very important

10. Analyzing the overall model performance on the entire dataset.

Unimportant
Ü

——–
Ü

——–
Ü

——–
Ü

——–
Ü

Very important

11. Analyzing the model performance on data subsets (e.g., objects with large/small sizes).

Unimportant
Ü

——–
Ü

——–
Ü

——–
Ü

——–
Ü

Very important

12. Exploring the prediction results of a given sample (e.g., a mispredicted sample) efficiently.

Unimportant
Ü

——–
Ü

——–
Ü

——–
Ü

——–
Ü

Very important

	Introduction
	Related Work
	Model Evaluation in Computer Vision
	Model Evaluation in Visualization

	Survey-Based Task Analysis and System Design
	Why Unified Evaluation
	Design Goals
	Task Analysis
	Design of Uni-Evaluator

	Unified Probability Distribution
	Uni-Evaluator Visualization
	Matrix-based Visualization
	Table Visualization
	Grid Visualization
	Interactive Model Evaluation

	Case Studies
	Object Detection on COCO dataset
	Diagnosing Size Issues
	Diagnosing Direction Issues
	Post Analysis

	Instance Segmentation on iSAID dataset

	Expert Feedback and Discussion
	Usability
	Limitations and Future Work

	Conclusion

