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Abstract. Modeling 3D context is essential for high-performance 3D
medical image analysis. Although 2D networks benefit from large-scale
2D supervised pretraining, it is weak in capturing 3D context. 3D net-
works are strong in 3D context yet lack supervised pretraining. As an
emerging technique, 3D context fusion operator, which enables conver-
sion from 2D pretrained networks, leverages the advantages of both and
has achieved great success. Existing 3D context fusion operators are de-
signed to be spatially symmetric, i.e., performing identical operations on
each 2D slice like convolutions. However, these operators are not truly
equivariant to translation, especially when only a few 3D slices are used
as inputs. In this paper, we propose a novel asymmetric 3D context fu-
sion operator (A3D), which uses different weights to fuse 3D context
from different 2D slices. Notably, A3D is NOT translation-equivariant
while it significantly outperforms existing symmetric context fusion op-
erators without introducing large computational overhead. We validate
the effectiveness of the proposed method by extensive experiments on
DeepLesion benchmark, a large-scale public dataset for universal lesion
detection from computed tomography (CT). The proposed A3D consis-
tently outperforms symmetric context fusion operators by considerable
margins, and establishes a new state of the art on DeepLesion. To fa-
cilitate open research, our code and model in PyTorch is available at
https://github.com/M3DV/AlignShift.

Keywords: 3D context · universal lesion detection · DeepLesion · A3D.

1 Introduction

Computer vision for medical image analysis has been dominated by deep learn-
ing [11,15], thanks to the availability of large-scale open datasets [1,24,18,6] and
powerful infrastructure. In this study, we focus on 3D medical image analy-
sis, e.g., computed tomography (CT) and magnetic resonance imaging (MRI).
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Spatial information from 3D voxel grids can be effectively learned by convolu-
tional neural networks (CNNs), while 3D context modeling is still essential for
high-performance models. There have been considerable debates over 2D and 3D
representation learning on 3D medical images; 2D networks benefit from large-
scale 2D pretraining [3], whereas the 2D representation is fundamentally weak in
large 3D context. 3D networks learn 3D representations; However, few publicly
available 3D medical datasets are large enough for 3D pretraining.

Recently, there have been a family of techniques that enable building 3D
networks with 2D pretraining [2,13,23,9,22], we refer to it as 3D context fusion
operators. See Sec. 2.1 for a review of existing techniques. These operators learn
3D representations while their (partial) learnable weights can be initialized from
2D convolutional kernels. Existing 3D context fusion operators are convolution-
like, i.e., either axial convolutions to fuse slice-wise information [2,13,23] or shift-
ing adjacent slices [9,22]. Therefore, these operators are designed to be spatially
symmetric: each 2D slice is operated identically. However, convolution-like op-
erations are not truly translation-equivariant [12], due to padding and limited
effective receptive fields. In many 3D medical image applications, only a few 2D
slices are used as inputs to models due to the memory constraints. It may be
meaningless to pursue translation-equivariance in these cases.

In this study, we propose a novel asymmetric 3D context fusion opera-
tor (A3D). See Sec. 2.2 for the methodology details. Basically, given D slices
of 3D input features, A3D uses different weights to fuse the input D slices for
each output slice. Therefore, the A3D is NOT translation-equivariant. How-
ever, it significantly outperforms existing symmetric context fusion operators
without introducing large computational overhead in terms of both parameters
and FLOPs. We validate the effectiveness of the proposed method by extensive
experiments on DeepLesion benchmark [21], a large-scale public dataset for uni-
versal lesion detection from computed tomography (CT). As described in Sec. 3,
the proposed A3D consistently outperforms symmetric context fusion operators
by considerable margins, and establishes a new state of the art on DeepLesion.

2 Methods

2.1 Preliminary: 3D Context Fusion Operators with 2D Pretraining

In this section, we briefly review the 3D context fusion operators that enable 2D
pretraining, including (a) no fusion, (b) I3D [2], (c) P3D [13], (d) ACS [23] and
(e) Shift [9,22]. As an emerging technique, 3D context fusion operator leverages
advantages of both 2D pretraining and 3D context modeling.

Given a 3D input feature Xi ∈ RCi×D×H×W , we would like to obtain a
transformed 3D output Xo ∈ RCo×D×H×W with a (pretrained) 2D convolutional
kernel W2D ∈ RCi×Co×K×K , where D×H×W is the spatial size of 3D features,
Ci and Co are the input and output channels, and K denotes the kernel size.
For simplicity, only cases with same padding are considered here. Apart from
convolutions, we simply convert 2D pooling and normalization into 3D [22]. We
then introduce each operator as follows:
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Fig. 1: Illustration of various 3D context fusion operators: (a) no fusion, (b)
I3D [2], (c) P3D [13], (d) ACS [23], (e) Shift [9,22] and (f) the proposed A3D.
In each sub-figure, left: D slices of Ci-channel 3D features as inputs; middle: ⊗
means convolution; right: illustration of convolutional kernels.

(a) no fusion. We run 2D convolutions on each 2D slice, which is equivalent to
3D convolutions with W3D ∈ RCi×Co×1×K×K converted from the 2D kernel.

(b) I3D [2]. I3D is basically an initialization technique for 3D convolution,
WI3D ∈ RCi×Co×K×K×K is initialized with K repeats of W2D/K, so that
the distribution expectation of 3D features is the same as that of 2D features.

(c) P3D [13]. P3D convolution is a 1 × K × K 3D convolution followed by a
K× 1× 1 3D convolution, where the first convolutional kernel is converted from
a 2D kernel (same as no fusion), and the second is initialized as [0, ..., 1, ..., 0]
(e.g., [0, 1, 0] if K = 3) to make it as no fusion before training.

(d) ACS [23]. ACS runs 2D-like (3D) convolutions in three views of 3D volumes,

by splitting the 2D kernel into three 3D kernels: Wa ∈ RCi×C(a)
o ×1×K×K , Wc ∈

RCi×C(c)
o ×1×K×K and Ws ∈ RCi×C(s)

o ×1×K×K (C
(a)
o + C

(c)
o + C

(s)
o = Co). 3D

context is fused with layer-by-layer ACS transformation without introducing
computational cost compared to no fusion.

(e) Shift [9,22]. Shift is a family of techniques that fuse 3D context by shift-
ing adjacent 2D slices. Take TSM [9] as an example. It first splits the input

feature Xi ∈ RCi×D×H×W by channel into 3 parts: X+
i ∈ RC+

i ×D×H×W ,

X−
i ∈ RC−

i ×D×H×W and X=
i ∈ RC=

i ×D×H×W (C+
i +C−

i +C=
i = Ci). X

+
i , X−

i

and X=
i are then shifted up, shifted down and kept among the axial axis (D

dimension), respectively. Finally, a 3D convolution with W3D ∈ RCi×Co×1×K×K

(as in no fusion) can fuse 3D context with a single slice. AlignShift [22] is a shift
operator adaptive to medical imaging thickness, thus improves the performance
of TSM on mixed-thickness data (e.g., a mix of thin- and thick-slice CT scans).
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Table 1: Parameters and theoretical (theo.) FLOPs analysis for 3D context fusion
operators, in terms of overhead over no fusion, whose parameters and FLOPs are
CoCiK

2 and O(DHWCoCiK
2), respectively. D denotes the number of slices,

D×W denotes the spatial size of each slice, Ci and Co denote the input and out-
put channel, and K denotes the kernel size. We also provide the numeric FLOPs
of the 3D backbone part for 3/7-slice inputs, i.e., GFLOPs (3/7). Additional
FLOPs introduced by A3D are marginal given a two-decimal precision.

Operators No Fusion I3D [2] P3D [13] ACS [23] Shift [9,22] A3D (Ours)

Parameters 1 K 1 + Co/(CiK) 1 1 1 + D2/(CoK
2)

Theo. FLOPs 1 K 1 + Co/(CiK) 1 1 1 + D/(CoK
2)

GFLOPs (3) 40.64 78.69 67.79 40.64 40.64 40.64
GFLOPs (7) 94.83 183.61 158.18 94.83 94.83 94.83

Algorithm 1: Asymmetric 3D Context Fusion (A3D)

Input: 3D input feature Xi ∈ RCi×D×H×W .
Parameter: asymmetric fusion weight P ∈ RD×D×Ci ,

2D (pretrained) convolutional kernel W2D ∈ RCi×Co×K×K .
Output: 3D output feature Xo ∈ RCo×D×H×W .

1 W3D = unsqueeze(W2D, dim = 2) ∈ RCi×Co×1×K×K ,

2 X = einsum(“cdhw, dkc→ ckhw”, [Xi,P ]) ∈ RCi×D×H×W ,
3 Xo = Conv3D(X, kernel = W3D).

Fig. 1 illustrates these operators, and Table 1 summarizes the computational
overhead over no fusion, in terms of parameters and FLOPs. Apart from theo-
retical FLOPs, we also provide the numeric FLOPs for 3/7-slice inputs to better
understand the algorithm complexity in practice. To fairly compare these meth-
ods, only FLOPs in 3D backbone are counted, those in 3D-to-2D feature layer
and detection heads on 2D feature maps are ignored. Interestingly, additional
FLOPs introduced by A3D are marginal given a two-decimal precision.

2.2 Asymmetric 3D Context Fusion (A3D)

The 3D context fusion operators above are designed to be spatially symmetric,
i.e., each 2D slice is transformed identically to ensure these convolution-like op-
erations to be translation-equivariant. However, in many medical imaging appli-
cations, only a few slices are used as model inputs because of memory constraints
(D = 3 or 7 in this study). In this case, padding (zero or others) on the axial
axis induces a significant distribution shift near top and bottom slices. More-
over, convolution-like operations are not truly translation-equivariant [12] due
to limited effective receptive fields. It is not necessary to use spatially symmetric
operators in pursuit of translation-equivariance for 3D context fusion.

To address this issue, we propose a novel asymmetric 3D context fusion op-
erator (A3D), which uses different weights to fuse 3D context for each slice.
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Mathematically, given a 3D input feature Xi ∈ RCi×D×H×W , A3D fuses fea-
tures from different slices by creating dense linear connections within the slice
dimension for each channel separately. We introduce a trainable asymmetric
fusion weight P ∈ RD×D×C , then

X(c) = P (c) ·X(c)
i ∈ RD×H×W , c ∈ {1, ..., C}, (1)

where P (c) ∈ RD×D and X
(c)
i ∈ RD×H×W denotes the channel c of P and

Xi, respectively, · denotes matrix multiplication. The output X denotes the 3D
features after 3D context fusion, it is then transformed by a 3D convolution
with W3D ∈ RCi×Co×1×K×K (as in no fusion). A3D can be implemented using
Einstein summation and 3D convolution in lines of code. Einstein summation
saves up extra memories occupied by intermediate results of operations such as
transposing, therefore makes A3D faster and more memory-efficient. We depict a
PyTorch-fashion pseudo-code of A3D in Algorithm 1. Batch dimension is ignored
for simplicity, while the algorithm is easily batched by changing “cdhw, dkc →
ckhw” into “bcdhw, dkc→ bckhw”. A3D is a simple operator that can be plugged
into any 3D image model with ease.

To facilitate stable training and faster convergence, the convolution kernels
in A3D operation can be initialized with ImageNet [3] pretrained weights to take
advantage of supervised pretraining. Furthermore, we initialize each channel of
asymmetric fusion weight P (c) with a identity matrix I ∈ RD×D added with a
random perturbation following uniform distribution in [−0.1, 0.1], i.e., the A3D
is initialized to be like no fusion before training.

Compared to symmetric 3D context fusion operators, A3D uses dense linear
connections to gather global contextual information along the axial axis (illus-
trated in Fig. 1 (f)), thus avoids the padding issue around the top and bottom
slices. Besides, as depicted in Table 1, A3D introduces negligible computational
overhead in terms of both parameters and FLOPs compared with no fusion.
Since D is typically much smaller than Co, A3D is more lightweight than I3D [2]
and P3D [13]. Moreover, as A3D can be implemented with natively supported
einsum, it is faster than ACS [23] and Shift [9,22] with channel splitting in
actual running time. Note that the A3D is NOT translation-equivariant, as it
uses different weights for each output slice to fuse the 3D context from input D
slices. However, it significantly outperforms existing symmetric context fusion
operators with negligible computational overhead.

2.3 Network Structure for Universal Lesion Detection

We develop a universal lesion detection model following Mask R-CNN [4]. An
overview of our network is depicted in Fig. 2. The network consists of a DenseNet-
121 [5] based 3D backbone with 3D context fusion operators (the proposed A3D
or others) plugged in and 2D detection heads. The network backbone takes a
gray-scale 3D tensor in shape of 1 × D × H × W as input, where D is the
number of slices included in each sample (D ∈ {3, 7} in this study). Three dense
blocks gradually downsample feature maps and increase number of channels
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Fig. 2: Universal lesion detection model on DeepLesion [21]. The 3D backbone
derived from DenseNet-121 [5,20] takes a grey-scale 3D input of D × 512× 512,
where D is the number of slices (D ∈ {3, 7} in this study). Features from different
scales are collected and fused together in a feature pyramid [10]. Detection is
based on instance segmentation framework using Mask R-CNN [4,22].

while the depth dimension stays at D. After spatial and channel-wise unification
by upsampling and D × 1 × 1 convolution, 3D features output by three dense
blocks are added together and squeezed to 2D by a D×1×1 convolution. Finally,
the 2D feature maps are used for lesion detection on key slices.

3 Experiments

3.1 Dataset and Experiment Settings

DeepLesion dataset [21] includes 32,120 axial CT sclies extracted from 10,594
studies of 4,427 patients. There are 32,735 lesions labelled in various organs
in total. Each slice contains 1 to 3 lesions, sizes of which range from 0.21 to
342.5mm. RECIST diameter coordinates and bounding boxes are annotated in
key slices. Adjacent slices within the range of ±15mm from the key slice are
given as contextual information.

Our experiments are based on the official code of AlignShift [22], and A3D
code is merged into the same code repository. Since DeepLesion does not contain
pixel-wise segmentation labels, we use GrabCut [14] to generate weak segmen-
tation labels from RECIST annotations following [22,26]. Input CT Hounsfield
units are clipped to [−1024, 2050] and then normalized to [−50, 205]. For Align-
Shift [22], we process the inputs as in its official code since it uses imaging
thickness as inputs. For A3D and other counterparts, we normalize the axial
thickness of all data to 2mm and resize each slice to 512× 512. In terms of data
augmentation, we apply random horizontal flip, shift, rescaling and rotation
during the training stage. No test-time augmentation is adopted. We follow the
official data split of 70%/15%/15% for training, validation and test, respectively.
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Table 2: Performance evaluated on the large-scale DeepLesion benchmark [21]
of the proposed A3D versus other 3D context fusion operators, in terms of sen-
sitivities (%) at various false positives (FPs) per image.

Methods Slices 0.5 1 2 4 8 16 Avg.[0.5,1,2,4]

No Fusion ×3 72.57 79.89 86.80 91.04 94.24 96.32 82.58
I3D [2] ×3 72.01 80.09 86.54 91.29 93.91 95.68 82.48
P3D [13] ×3 62.13 73.21 82.14 88.6 92.37 94.95 76.52
ACS [23] ×3 72.82 81.15 87.40 91.35 94.69 96.42 83.18
TSM [9] ×3 71.80 80.11 86.97 91.10 93.75 95.56 82.50
AlignShift [22] ×3 73.00 81.17 87.05 91.78 94.63 95.48 83.25
A3D (Ours) ×3 74.10 81.81 87.87 92.13 94.60 96.50 83.98

No Fusion ×7 73.66 82.15 87.72 91.38 93.86 95.98 83.73
I3D [2] ×7 75.37 83.43 88.68 92.20 94.52 96.07 84.92
P3D [13] ×7 74.84 82.17 87.57 91.72 94.90 96.23 84.07
ACS [23] ×7 78.38 85.39 90.07 93.19 95.18 96.75 86.76
TSM [9] ×7 75.98 83.65 88.44 92.14 94.89 96.50 85.05
AlignShift [22] ×7 78.68 85.69 90.37 93.49 95.48 97.05 87.06
A3D (Ours) ×7 80.27 86.73 91.33 94.12 96.15 97.33 88.11

As per [20,26,8], the proposed method and its counterparts are evaluated on the
test set using sensitivities at various false positive levels (i.e., FROC analysis).
We also implement the mentioned 3D context fusion operators to validate the
effectiveness of the proposed A3D.

3.2 Performance Analysis

We compare A3D with a variety of 3D context fusion operators (see Sec. 2.1)
on the DeepLesion dataset. Table 2 gives the detailed performances of A3D
and all its counterparts on 3 and 7 slices. A3D delivers superior performances
compared with all counterparts on both 3 slices and 7 slices. We attribute this
performance boost to A3D’s ability of gathering information among globally
along the axial axis by creating dense connections among slices, which can be
empirically validated by the observation that A3D has a higher performance
boost on 7 slices that on 3 slices when compared with the previous state-of-
the-art AlignShift [22] (+1.05 vs. +0.73) since 7 slices provide more contextual
information. Moreover, A3D introduces no padding along the axial axis, this
advantage also leads to the performance boost compared to other operators.
Note that AlignShift-based model is adaptive to imaging thickness, which is an
orthogonal contribution to this study. The asymmetric operation-based methods
could be potentially improved by adapting imaging thickness.

Table 3 shows a performance comparison of A3D and previous State of the
Art. Without heavy engineering and data augmentations, our proposed method
outperforms the previous state-of-the-art AlignShift [22] on both 3 slices and
7 slices by considerable margin. It is worth noting that A3D with image only
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Table 3: Performance evaluated on the large-scale DeepLesion benchmark [21] of
the proposed A3D versus previous state-of-the-art, in terms of sensitivities (%)
at various false positives (FPs) per image.

Methods Venue Slices 0.5 1 2 4 8 16 Avg.[0.5,1,2,4]

3DCE [19] MICCAI’18 ×27 62.48 73.37 80.70 85.65 89.09 91.06 75.55
ULDor [16] ISBI’19 ×1 52.86 64.80 74.84 84.38 87.17 91.80 69.22
V.Attn [17] MICCAI’19 ×3 69.10 77.90 83.80 - - - -
Retina. [26] MICCAI’19 ×3 72.15 80.07 86.40 90.77 94.09 96.32 82.35
MVP [8] MICCAI’19 ×3 70.01 78.77 84.71 89.03 - - 80.63
MVP [8] MICCAI’19 ×9 73.83 81.82 87.60 91.30 - - 83.64
MULAN [20] MICCAI’19 ×9 76.12 83.69 88.76 92.30 94.71 95.64 85.22
Bou.Maps [7] MICCAI’20 ×3 73.32 81.24 86.75 90.71 - - 83.01
MP3D [25] MICCAI’20 ×9 79.60 85.29 89.61 92.45 - - 86.74
AlignShift [22] MICCAI’20 ×3 73.00 81.17 87.05 91.78 94.63 95.48 83.25
AlignShift [22] MICCAI’20 ×7 78.68 85.69 90.37 93.49 95.48 97.05 87.06
ACS [23] JBHI’21 ×3 72.82 81.15 87.40 91.35 94.69 96.42 83.18
ACS [23] JBHI’21 ×7 78.38 85.39 90.07 93.19 95.18 96.75 86.76

A3D Ours ×3 74.10 81.81 87.87 92.13 94.60 96.50 83.98
A3D Ours ×7 80.27 86.73 91.33 94.12 96.15 97.33 88.11

surpasses MULAN [20] by nearly 3% even though it takes less slices and no
additional information apart from CT images such as medical report tags and
demographic information as inputs.

4 Conclusion

In this study, we focus on 3D context fusion operators that enable 2D pre-
training, which is an emerging technique that leverages advantages of both 2D
pretraining and 3D context modeling. We analyze the unnecessary pursuit of
translation-equivariance in existing spatially symmetric 3D context fusion oper-
ators especially when only a few 2D slices are used as model inputs. To this end,
we further propose a novel asymmetric 3D context fusion operator (A3D) that is
translation-equivariant. The A3D significantly outperforms existing symmetric
context fusion operators without introducing large computational overhead. Ex-
tensive experiments on DeepLesion benchmark validate the effectiveness of the
proposed method, and we establish a new state of the art that surpasses prior
arts by considerable margins.

Acknowledgment. This work was supported by National Science Foundation
of China (U20B2072, 61976137).
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Ground Truth 2.5D 3D P3D ACS AlignShift A3D

Ground Truth True Positives False Positives

Fig. 3: Visualization of DeepLesion slices highlighted with ground truth and pre-
dictions generated by different 3D context fusion operators.
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