
Capture and Modeling of Non-Linear Heterogeneous Soft Tissue
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Figure 1: From left to right: Force-and-deformation capture of a non-linear heterogeneous pillow; synthesized deformation with fitted
material parameters; and interactive deformation synthesized with our soft tissue modeling technique.

Abstract

This paper introduces a data-driven representation and modeling
technique for simulating non-linear heterogeneous soft tissue. It
simplifies the construction of convincing deformable models by
avoiding complex selection and tuning of physical material param-
eters, yet retaining the richness of non-linear heterogeneous behav-
ior. We acquire a set of example deformations of a real object,
and represent each of them as a spatially varying stress-strain re-
lationship in a finite-element model. We then model the material
by non-linear interpolation of these stress-strain relationships in
strain-space. Our method relies on a simple-to-build capture sys-
tem and an efficient run-time simulation algorithm based on incre-
mental loading, making it suitable for interactive computer graphics
applications. We present the results of our approach for several non-
linear materials and biological soft tissue, with accurate agreement
of our model to the measured data.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation

Keywords: physically based animation and modeling, model ac-
quisition, deformations, data-driven graphics

1 Introduction

Recent years have witnessed significant progress and popularity
of physically-based deformation models. Numerous researchers
have combined Newtonian mechanics, continuum mechanics, nu-
merical computation and computer graphics, providing a powerful
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Figure 2: Acquiring and modeling non-linear quasi-static soft tis-
sue behavior. From left to right: An object is probed with a force
sensor to acquire several example deformations, the applied force
direction, and the force magnitude. For every measurement we es-
timate its stress-strain relationship and represent it as a sample in
strain space. During runtime, we interpolate these samples in strain
space using radial basis functions (RBFs) to synthesize deforma-
tions for novel force inputs.

toolkit for physically-based deformations and stunning simulations,
with application in feature films, video games, and virtual surgery,
among others.

However, achieving realistic soft-tissue deformations requires care-
ful choices for material models and their parameters. Many real-
world objects consist of heterogeneous materials, requiring spa-
tially varying material parameters such as Young’s modulus and
Poisson’s ratio. Setting them is a difficult and time-consuming
process. Even more challenging is the problem of material non-
linearities. Most materials, for example rubber or biological soft
tissue, show non-linear constitutive behavior, i.e., a non-linear rela-
tionship between stress and strain. Despite the wide variety of non-
linear constitutive models in the literature, such as the popular hy-
perelastic Neo-Hookean and Mooney-Rivlin models [Ogden 1997],
this is still an active research area in material science. Nonetheless,
non-linear physics equations are often simplified approximations to
real material behavior, and choosing the appropriate model as well
as tuning its parameters are extremely complex tasks.

We present a novel data-driven representation and modeling tech-
nique for simulating non-linear heterogeneous soft tissue that sim-
plifies the construction of convincing deformable models (Fig. 2).
Our technique employs finite element methods and exploits a set
of measured example deformations of real-world objects, thereby
avoiding complex selection of material parameters. We transfer ev-
ery measured example deformation into a local element-wise strain
space, and represent this example deformation as a locally linear



sample of the material’s stress-strain relation. We then model the
full non-linear behavior by interpolating the material samples in
strain space using radial basis functions (RBFs). Finally, a sim-
ple elastostatic finite-element simulation of the non-linearly inter-
polated material samples based on incremental loading allows for
efficient computation of rich non-linear soft-tissue simulations.
Other earlier work in computer graphics and robotics also pro-
posed measurement-based model fitting as a means for obtaining
deformable object representations [Pai et al. 2001; Lang et al. 2002;
Schoner et al. 2004], but was limited to linear material models with
global support. In contrast, our work is the first to represent com-
plex non-linear heterogeneous materials through spatially varying
non-linear interpolation of local material properties. Our complete
soft tissue capture and modeling pipeline is also distinct for its sim-
plicity. We present a simple-to-build capture system consisting of
force probes and marker-based trinocular stereo, as well as an effi-
cient and robust algorithm for fitting the local strain-space material
samples. We demonstrate the effectiveness of our soft-tissue cap-
ture and modeling method for several non-linear materials and bi-
ological soft tissue. The combination of simplicity and efficiency,
both in acquisition and computation, and the high-expressiveness
of the results make our technique applicable for interactive applica-
tions in computer graphics and other fields.

2 Related Work

Researchers in many fields, ranging from mechanical engineering
to biology, have long studied the problem of modeling complex
elasticity properties. For a recent survey of deformation models
in computer graphics, please refer to [Nealen et al. 2006].
Bio-Mechanical Models For soft tissue modeling, a common ap-
proach is to devise a constitutive model [Ogden 1997] that captures
in a sufficiently accurate manner the various behavior regimes of
the material, and then tune the model parameters until they best fit
empirical data. This approach is, however, tedious and utterly com-
plex, as it relies on accurate modeling of tissue geometry (e.g., the
bones, fat, and muscles in facial tissue), rich excitation of mate-
rial regimes, and accurate measurement of forces and deformations
(even in typically inaccessible regions). Despite the complexity of
the approach, it has seen large application in computer graphics
since the pioneering work by Terzopoulos et al. [1987], as it can
lead to stunning results with the appropriate amount of effort. Some
examples of complex bio-mechanical models in computer graph-
ics include the neck [Lee and Terzopoulos 2006], the torso [Zordan
et al. 2004; Teran et al. 2005; DiLorenzo et al. 2008], the face [Koch
et al. 1996; Magnenat-Thalmann et al. 2002; Terzopoulus and Wa-
ters 1993; Sifakis et al. 2005], and the hand [Sueda et al. 2008].
Measurement-Based Model Fitting To circumvent the complexity
of parameter tuning, several authors have proposed measurement-
based model fitting approaches. The seminal work of Pai et
al. [2001] presents a capture and modeling system for a de-
formable object’s shape, elasticity, and surface roughness. Their
deformable model was based on a Green’s functions matrix repre-
sentation [James and Pai 1999], and was later extended to increase
fitting robustness [Lang et al. 2002], and to handle viscoelastic-
ity [Schoner et al. 2004]. Our approach shares their strategy for
measuring surface displacements as the result of applied surface
forces, but, unlike theirs, is not limited to linear material behavior
and does not rely on global response functions. Sifakis et al. [2005]
give a different spin to measurement-based modeling approaches,
as they learn the relationship between facial muscle activation and
skin positions. Others, particularly in biomechanics, have explored
measurement-based fitting of the parameters of various constitutive
models, such as Young modulus estimation based on a non-linear
least squares problem [Schnur and Zabaras 1992], Young modulus
and Poisson ratio estimation through linear least squares [Becker
and Teschner 2007], estimation of non-linear viscoelastic materi-

als [Kauer et al. 2002], or even plasticity estimation [Kajberg and
Lindkvist 2004]. Our work borrows from these approaches for the
estimation of each individual sample of the stress-strain relation-
ship. However, this alone is not sufficient for capturing the rich
non-linear behavior of soft tissue. In contrast to previous work, the
realism of our material model is greatly enhanced with spatially
varying non-linear interpolation in strain space.

Data-driven Methods Purely data-driven techniques have gained
large popularity in computer graphics, as they may produce highly
realistic results for phenomena that are otherwise extremely com-
plex to model. The interpolation of lightfield samples [Buehler
et al. 2001] allows simulating the illumination of complex scenes,
while recent data-driven reflection models [Matusik et al. 2003]
represent each BRDF through a dense set of measurements. Data-
driven methods have also been applied to several other aspects of
deformation modeling in computer graphics, such as facial wrin-
kle formation from local skin deformations [Ma et al. 2008; Bickel
et al. 2008], grasping of objects [Kry and Pai 2006], skeleton-driven
cloth wrinkles [Kim and Vendrovsky 2008], body-skin deforma-
tion [Park and Hodgins 2006], or learning of skeleton-driven skin
dynamics [Park and Hodgins 2008]. Our method is a mixture of
model fitting techniques (i.e., estimating stress-strain parameters
from local measurements) and data-driven methods (i.e., using tab-
ulated stress-strain parameters and non-linear interpolation during
runtime).

Shape Modeling Another common approach in computer graph-
ics to model deformations is shape modeling [Botsch and Sorkine
2008]. Some of the existing approaches rely on predefined exam-
ples [Sloan et al. 2001; Allen et al. 2002; Sumner et al. 2005], or
even exploit interpolation [Bergeron and Lachapelle 1985; Lewis
et al. 2000; Blanz et al. 2003], but these techniques cannot model
deformations as a reaction to contact in the way our technique does.
Some recent approaches connect shape modeling with physically-
based reactive models, by rigging using templates of forces [Capell
et al. 2005] or by skeletal interpolation of elastic forces [Galoppo
et al. 2009], but these approaches cannot model general non-linear
soft tissue.

Deformation Capture Our work captures deformation examples
by combining a stereo-vision acquisition system and force sensors,
similar to earlier approaches [Pai et al. 2001]. Other techniques in
material sciences also directly measure the parameters of constitu-
tive models, such as the tensile test [Hart 1967], or apparatus for
in-vivo measurement through tissue aspiration [Nava et al. 2003] or
indentation [Ottensmeyer and Salisbury Jr. 2004].

3 Modeling of Non-Linear Materials

In this section, we describe our representation of non-linear hetero-
geneous elastic materials, and how this representation is used for
modeling soft tissue deformations. We first give an overview of
the representation, and then describe how we parameterize the ma-
terials and how this parameterization extends from the continuum
setting to a finite element discretization. We also explain how we
support material non-linearities through interpolation of local lin-
ear models, and finally we describe our algorithm for computing
non-linear elastostatic deformations based on incremental loading.

3.1 Overview of our Approach

In materials science, (one-dimensional) elasticity properties have
long been described through stress-strain curves. Inspired by this
popular representation, we opt for modeling three-dimensional
elastic properties by sampling the stress-strain function at various
operating regimes and interpolating these samples in strain-space
(See Fig. 2).

More specifically, we characterize each sample of the stress-strain



function using a (local) linear constitutive model. Then, in order to
capture material non-linearity, we define the parameter values of the
constitutive model at an arbitrary operating point through scattered-
data interpolation in strain-space. Moreover, in order to capture ma-
terial heterogeneity, we compute both the stress-strain samples and
the scattered-data interpolation in a spatially varying manner. Fig. 3
shows example deformations with color-coded Young’s modulus,
which varies both as a function of the location and the local strain.
It is worth noting that our model can capture elasticity properties,
but not plasticity or viscosity, among others. Our model builds on
FEM and linear elasticity theory, and we refer the interested reader
to books on the topic [Bathe 1995; Hughes 2000].

3.2 Discretization and Parameterization

We use linear co-rotational FEM to locally represent a deformable
object’s elastic properties. In other words, given an object’s de-
formed configuration, we model the stress-strain relationship with
linear FEM. We capture non-linearity by varying the parameters
of the stress-strain relationship as a function of the strain itself.
Given a displacement field u, the linear co-rotational FEM employs
Cauchy’s linear strain tensor ⌃(u) = 1

2

⇤
⌦u + (⌦u)T

⌅
. Invari-

ance of the strain under rotations is obtained by extracting the ro-
tational part of the deformation gradient through polar decomposi-
tion, and then warping the stiffness matrix [Müller and Gross 2004].
Thanks to symmetry of the strain and stress tensors, we can rep-
resent both as 6-vectors. Given the strain tensor, we construct the
6-vector as ⌃ = (⌃xx ⌃yy ⌃zz ⌃xy ⌃xz ⌃yz)

T , and similarly for the
stress. The local linear material yields then a relationship

⇧(u) = E⌃(u) (1)

between strain and stress. For each element (in our case, a tetrahe-
dron), assuming locally linear isotropic material, the 6 ⇤ 6 stress-
strain relationship matrix E can be represented by Young’s modulus
E and Possion ratio ⌅

E =
E

(1 + ⌅)(1 � 2⌅)
(G + ⌅H) , (2)

with the two constant matrices

G = diag (1, 1, 1, 0.5, 0.5, 0.5) (3)

and

H =

⌥

↵↵↵↵ 

�1 1 1 0 0 0
1 �1 1 0 0 0
1 1 �1 0 0 0
0 0 0 �1 0 0
0 0 0 0 �1 0
0 0 0 0 0 �1

�

����⌦
. (4)

This parametrization is intuitive, where the Poisson ratio ⌅ is unit-
less and describes material compressibility, while Young’s modu-
lus E defines material elasticity. However, we employ an alterna-
tive parameterization (⇤, �) that allows us to describe the stress-
strain relationship as a linear function of the parameters [Becker
and Teschner 2007]:

E = ⇤G + �H, (5)

with
⇤ =

E
(1 + ⌅)(1 � 2⌅)

and � = ⇤⌅. (6)

The parameter � is also known as Lamé’s first parameter in elas-
ticity theory, whereas ⇤ is not directly related to any elasticity con-
stant. With the (⇤, �) parameterization, the stiffness matrix and

Figure 3: Two examples of a deformed pillow with color-coded
Young’s modulus (‘blue’ is low, ‘red’ is high), which varies both
as a function of location and the local strain. Probe pressure was
higher on the right.

the elastic forces become linear in the parameters. We exploit this
property in our parameter fitting algorithm in Section 4.1.
The per-element stiffness matrix can be written as

Ke = ⇤eVeB
T
e GBe + �eVeB

T
e HBe, (7)

where Ve is the volume of the element (i.e., tetrahedron), and Be

is a matrix dependent on the initial position of the element’s nodes.
The complete stiffness matrix is obtained by assembling the warped
per-element stiffness matrices ReKeR

T
e , where Re is the ele-

ment’s rotation. By grouping all material parameters {⇤e, �e} in
one vector p, the stiffness matrix is parameterized as K(p).

3.3 Strain-Space Interpolation

As introduced earlier, we describe the non-linear material proper-
ties through scattered-data interpolation of known local linear pa-
rameters in an element-wise manner. We obtain these known local
parameters from a set of example deformations, largely simplifying
an artist’s job of tuning material parameters for complex non-linear
constitutive models.
Let us assume a set of M known example measurements, each
with a corresponding element-wise strain vector ⌃i ⇧ IR6 and a
parameter vector pi = (⇤i, �i)

T . Recall that we use a rotationally-
invariant strain by extracting the rotation of the deformation gra-
dient through polar decomposition [Müller and Gross 2004]. Our
non-linear strain-dependent material p(⌃) is formed by interpolat-
ing linear material samples pi(⌃i). At a given deformed configu-
ration, the non-linear material is represented by the corresponding
linear material that achieves the same force-displacement relation-
ship. Note that we do not exploit linearization in the more tradi-
tional way of capturing the local slope of a non-linear function.
For each element, we define the stress-strain relationship through
scattered-data interpolation in the strain-space IR6 using radial basis
functions (RBFs). The element-wise function describing the mate-
rial, p(⌃) : IR6 ⌅ IR2, has the form

p(⌃) =
M�

i=1

wi · ⌥( ⌃ � ⌃i ) , (8)

where ⌥ is a scalar basis function, and wi ⇧ IR2 and ⌃i are the
weight and feature vector for the i’th measurement, respectively.



Figure 4: Two left-most columns: Comparison of captured and synthesized deformations for a foam block. Two right-most columns: Exam-
ples of interactive deformations produced by sliding a cylinder on top of the model.

We employ the biharmonic RBF kernel ⌥(r) = r. This globally
supported kernel allows for smoother interpolation of sparsely scat-
tered example poses than locally supported kernels, and avoids dif-
ficult tuning of the support radius [Carr et al. 2001].

As a preprocess, we compute the RBF weights wi. This reduces
to solving 2T linear M ⇤ M systems for a deformable object
with T elements due to the fact that the stress-strain relationship
is an element-wise description of the material. This also leads to
scattered-data interpolation of the material parameters in a rather
low-dimensional IR6 domain. In contrast, interpolation of material
properties is much more complicated in earlier approaches based
on linear models with global support [Pai et al. 2001] due to the
extremely high dimensionality of the parameterization.

3.4 Elastostatic FEM Simulation

We compute novel deformations using an elastostatic FEM formu-
lation Ku = F, where the force F includes, among others, the
load produced by a contact probe. To correctly capture the mate-
rial’s non-linearity during the deformation, we apply the load of
the probe gradually, and solve the elastostatic FE problem for each
load increment. In other words, at each loading step we measure the
current strain ⌃, we compute the material parameters p(⌃) by means
of the interpolation described above, we formulate the elastostatic
problem, and we solve it for the new deformations. The incremen-
tal loading procedure ensures that the non-linearity of the material
is correctly captured during the complete deformation process, with
the material parameters depending on the strain at all times.

For contact handling, we compute a distance field for the rigid
probe object that produces the deformations. We test for collisions
between points on the deformable object and the distance field and,
upon collision, we compute the penetration depth and direction. We
then define a linear force field at each colliding point and solve the
FEM simulation through iterative quasi-static simulation. At each
iteration of the quasi-static FEM simulation, we first compute the
material parameters for the current configuration based on the in-
terpolation algorithm described above. Then, given the stiffness
matrix and the linear collision force field, we define a quasi-static
problem and solve for the new displacements. We compute several
iterations until an equilibrium is reached.

4 Fitting the Material Parameters

We now describe how we compute the actual material parameters
for a given object. This consists of two parts: First, estimating pa-
rameter values for each deformation example, and second, selecting
a suitable basis from all the deformation examples.

4.1 Parameter Estimation Algorithm

In order to estimate a sample of the stress-strain relationship, we
apply a known input force to the object under study. For each cap-
tured deformation we can distinguish three different regions on the
object’s surface: (i) the probing region, with measured non-zero
forces and measured displacements, (ii) the attached region, with
unknown forces and zero displacements, and (iii) the free region,
with zero forces and measured displacements. We use x̄ and F̄ to
denote the vectors of known displacements and forces, respectively,
at the points corresponding to mesh nodes in the model.

Given measured displacements and forces, we compute spatially
varying material parameters p as:

p̂ = arg min
p

⇧
n�

i=1

||xi(p, F̄)) � x̄i||2 + ⇥||Lp||2
⌃

, (9)

where xi(p, F̄) denotes the position of a mesh node as a function of
material parameters and the measured forces. The sparse Laplacian
matrix L enforces spatial smoothness of parameters. We employ
the umbrella operator [Zhang 2004] (Lp)i =

�
j wi,j(pi � pj),

where i and j refer to tetrahedron labels, and wi,j = 1 iff two
tetrahedra share a vertex. This regularization is required to prevent
overfitting due to noise in the acquired data. This is also mathemat-
ically required to obtain a well-posed problem because the number
of parameters is always twice the number of tetrahedra, |p| = 2T ,
whereas the number of measured positions |x̄| = n may be smaller,
which would result in an underconstrained problem. We also con-
sidered scattered data interpolation of material parameters in object
space as an alternative for addressing the underconstrained prob-
lem, but it would be difficult to decide where to place the samples
for highly heterogeneous objects.

We minimize the non-linear residual Eq. (9) iteratively using the
Levenberg-Marquardt algorithm [Levenberg 1944]. We derive the
Jacobian matrix in the Appendix. Instead of defining the residual in



(a) (b)

Figure 5: Our trinocular stereo vision system consists of three
high-resolution cameras (indicated in red) and two to three light
sources (indicated in green). The cameras are arranged in a tri-
angular setup, which helps maximize visibility during capture of a
contact interaction. The light sources ensure uniform illumination
during the acquisition.

terms of measured positions, the error functional could also be de-
scribed in terms of measured forces [Becker and Teschner 2007],
yielding a linear optimization problem. However, our observa-
tions have shown that this approach is unstable when the force-
displacement relationship is not close to linear material behavior.

4.2 Strain-Space Basis Selection

A material capture session consists of capturing N example defor-
mations, from which we obtain the training dataset of N parameter
vectors for each element in the mesh. However, this dataset may be
rather large, and we are interested in selecting a compact set of M
basis parameter vectors for each element. Note that M need not be
the same for all elements.

We select the basis in the same greedy manner as proposed by [Carr
et al. 2001]. We start by setting a parameter vector at zero strain
with the average parameters computed for very small-strain de-
formations. We then add the parameter vector with largest er-
ror, until a given error tolerance is achieved. After each param-
eter vector is added to the basis, we need to compute the RBF
weights that best fit the parameter vectors for all N example de-
formations in a least-squares manner, as described in Eq. (8).
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This figure shows the evo-
lution of the fitting er-
ror for the foam block in
Fig. 4. This error plot
accumulates the error for
all captured deformations,
not only those added to
the basis. The error drops
quickly after adding the
second parameter vector to
the basis because the first
vector may not represent the average material behavior well. See
Section 6 for more details on the validation of our method.

5 Data Acquisition

We developed a simple data acquisition system consisting of force
probes and a marker-based trinocular stereo system. Deformations
are induced by physical interaction with the object. We decided
to use a marker-based system due to its simplicity, robustness, and
independence of the object’s surface properties.

Figure 5 shows our trinocular stereo vision system, consisting of

(a) (b)

Figure 6: (a) Contact probe with integrated force sensor. (b) From
left to right: USB Interface Kit, Force Sensing Resistor (red circle),
Phidget Voltage Divider, and connection cable.

three Canon 40D cameras that capture images at a resolution of
3888 ⇤ 2592. These cameras are placed in a triangular configu-
ration to minimize occlusions caused by the contact probes during
data acquisition. We built an external trigger device to synchro-
nize the three cameras, and use additional light sources to ensure
uniform illumination during the acquisition process. The surface
displacement during static deformations is measured using a set of
markers that we paint on the object’s visible surface. Our system is
capable of measuring viewpoint-registered marker positions to an
accuracy of < 1 mm.
We built contact probes with arbitrary shapes and circular disks of
different diameters attached to the tip of a long screwdriver (see
Fig. 6). We estimate the position and orientation of the contact
probe using two makers on the white shaft of the screwdriver. To
measure the magnitude of the contact forces we use a 0.2 inch Force
Sensing Resistor (FSR) (Item S-20-1000-FS2) connected to a Phid-
get Voltage Divider (Item S-50-P1121) and USB Interface Kit 8/8/8
(Item C-200-P1018) by Trossen Robotics. The force sensor’s read
operation is synchronized with the external camera trigger signal.

6 Results
Model Evaluation. We have evaluated the quality of our soft-tissue
capture and modeling technique on several real-world objects, in-
cluding two foam blocks, a heterogeneous soft pillow, and a human
face. The data is publicly available at the authors’ web sites.
Fig. 4 shows a foam block with homogeneous material. We ac-
quired 48 deformation examples, well distributed over the foam
to induce deformations in all 1, 805 tetrahedra of our model. We
then constructed the non-linear material representation, with bases
of 8 samples per tetrahedron on average, using the procedure in
Section 4.1. Even though the object is homogeneous, it should
be noted that the material parameters that were estimated for each
input example are non-homogeneous due to non-linearities in the
stress-strain relationship. The average fitting error for the captured
deformations is less than 1 mm (see figure in Section 4.2). Fig. 4
shows synthesized deformations produced with our technique using
a probe with a larger, different contact area than the probe used for
data acquisition.
To compare our model to a uniform linear co-rotational model we
use the homogeneous foam shown in Fig. 7 and Fig. 8. We captured
12 deformation examples with the probe near the center of the block
and modeled the object with 3, 240 tetrahedra. We computed an
average-fit linear co-rotational model that best approximates all the
input deformations. As shown in Fig. 8, our model (blue) accurately
captures the hyperelastic behavior of the foam, while the average-fit
linear co-rotational model (green) underestimates the deformation
at small force values and overestimates it at large ones. In addition,
the linear co-rotational model suffers from element inversion for
large forces.
Our model is of course not confined to the contact shapes that were



Figure 7: Comparing real (top) and modeled (bottom) deformations with a different contact probe than the one used in the data acquisition
phase.

measured ours linear co-rotational

Figure 8: Comparison of deformations using our method vs. an
average-fit linear co-rotational model.

used during data acquisition. Fig. 7 shows a side-by-side compari-
son of our model (bottom) to real deformations (top) using a differ-
ent contact probe than the circular one we used for data acquisition.
We captured the applied force with the new contact probe, and then
distribute it uniformly in the simulated setting. The figure shows
high correspondence between the real and simulated scenarios. We
refer the reader to the accompanying video for an animated side-
by-side comparison.

To evaluate the sensitivity of our capture and modeling approach
to measurement noise we created example deformations of a vir-
tual block with three layers of user-defined non-linear materials.
We then evaluated the accuracy
in matching these deformations
with our model under differ-
ent levels of noise in the in-
put data. Specifically, we ap-
plied Gaussian noise with a vari-
ance of 10%, 20% and 30%
to the input displacements and
then measured the L2 error for
all deformations and error lev-
els. On average, we obtain an
error of 0.3% of the maximum displacement for the case without
error, and 2.1%, 3.1% and 4.4% for the cases with 10%, 20% and
30% input noise, respectively.

Fig. 9 shows a pillow object with heterogeneous behavior even in its
rest state. The screenshots compare the captured deformations with
the deformations of the 1, 691 tetrahedra model synthesized with
our algorithm. The figure also shows screenshots of deformations
at interactive frame rates of about 10 Hz on a standard PC.

Facial Deformation. We have also applied our soft-tissue capture
and modeling technique to the challenging task of facial deforma-
tions, as shown in Fig. 10. We have modeled the facial tissue with a
single layer of 8, 261 tetrahedra that are attached to a low-resolution
skull model. To model the sliding contacts between the tissue and
the skull we use the same contact handling as for the probe object
(see Section 3.4). Given the deformation of the tetrahedral mesh,
we compute the deformation of a high-resolution triangle mesh us-
ing a smooth embedding based on moving least squares interpola-
tion like Kaufmann et al. [2008].
Note that our face model does not correctly capture all types of de-
formations because we use a model with closed lips, and all the
deformation examples in the training dataset were captured with
relaxed muscles and closed jaw. Nevertheless, the model is able to
produce compelling deformations even without anatomically cor-
rect modeling of the musculoskeletal structure of the face.

7 Discussion
We have presented a novel data-driven method for modeling non-
linear heterogeneous soft tissue. The major practical contribution
of our work is the ability to model rich non-linear deformations in a
very simple manner, without the complex task of carefully choosing
material models and parameters. Instead, our data-driven method
relies on a simple-to-build acquisition system, a novel representa-
tion of the material through spatially varying interpolation of fitted
linear models, and a simple deformation synthesis method.
Our work suggests a highly innovative approach to non-linear mate-
rial modeling, but it also suffers from limitations. Due to its formu-
lation, our technique is currently limited to capturing elastic proper-
ties. A fully dynamic simulation of soft tissue would require captur-
ing other properties such as viscosity and plasticity. One interesting
conclusion of our work is that it is often possible to obtain com-
pelling surface deformations with a volumetric meshing unaware of
an object’s actual volumetric structure. This is of course not valid
for all situations. For example, our face model could be greatly
enhanced with accurate lip contact and jaw motion models.
There are several aspects of our model that deserve further explo-
ration. One of them is its ability for capturing anisotropic behavior.
The underlying linear co-rotational material model that we use for
representing deformation samples can only capture isotropic behav-
ior, but deformation samples with the same total strain but in differ-
ent directions will lead to anisotropic behavior. In other words, we
locally model the material isotropic in strain space, yet strain-space
interpolation of material parameters provides global anisotropic be-
havior. It is worth exploring to what extent our approach captures
anisotropy.



Figure 9: Two left-most columns: Comparisons of captured and synthesized deformations for a heterogeneous non-linear pillow. Right
column: Interactive deformations of the model produced by pushing (top) and pulling (bottom).

Figure 10: Left: Capture of facial deformations; Middle: Synthesized deformations for the captured examples; Right: Frames of an animation
with a cylindrical probe pressing on the cheek.



Another aspect that deserves further analysis is the formulation of
the quasi-static deformation problem. Given a certain strain, we
employ a local linear co-rotational model to formulate a quasi-static
deformation problem. However, our model is not strictly a local lin-
earization, which means that the stiffness matrix of the quasi-static
deformation problem does not employ correct force derivatives. At
the same time, our linear model is more robust than a model ob-
tained by local differentiation and avoids non-passive regimes.

Similar to other approaches, our parameter fitting algorithm is for-
mulated as a minimization problem and may end up in a local min-
imum. In fact, we have identified fitting error as the major source
of potential inaccuracies in the deformation synthesis. Sometimes,
fitting error also appears because we limit Poisson’s ratio to physi-
cally valid values during the minimization. Robust parameter iden-
tification is still an open research problem in materials science, and
some recent approaches explore alternative solutions including par-
ticle filters [Burion et al. 2008]. Multi-resolution fitting may be
another way of increasing robustness.

Currently, we only measure the force in direction of the probe’s
shaft without measuring tangential forces and friction behavior.
More accurate force sensors could capture such effects. Finally, one
could build a fully automated capture system using robotics. Using
a more efficient parameter estimation algorithm for material fitting,
one could evaluate the need for further samples of the stress-strain
relationship online, and determine the optimal probing patterns on
the fly.
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BAZIN, R., BATISSE, D., AND QUELEUX, B. 2002. A compu-
tational skin model: fold and wrinkle formation. IEEE Trans. on
Information Technology in Biomedicine 6, 4, 317–323.

MATUSIK, W., PFISTER, H., BRAND, M., AND MCMILLAN, L.
2003. A data-driven reflectance model. ACM Transactions on
Graphics (Proc. of ACM SIGGRAPH) 22, 3, 759–770.
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Appendix: Jacobian for Parameter Fitting
During fitting of material parameters p = {⇤e, �e} through min-
imization of Eq. (9), we need to compute the Jacobian of the de-
formed vertex positions w.r.t. the parameters, i.e., J = ⇥x

⇥p , in each
iteration of the Levenberg-Marquardt algorithm.
Given external forces F and initial positions x0, the deformed po-
sitions under the linear co-rotational elastostatic problem [Müller
and Gross 2004] are

x = K�1 �F + K⇥x0

⇥
, (10)

with K =
�

e

✏
ReKeR

T
e

⇣

e
and K⇥ =

�

e

[ReKe]e .

Here [. . .]e denotes the assembly of the submatrix of the e-th ele-
ment into the complete stiffness matrix.
The Jacobian w.r.t. each parameter pi ⇧ {⇤e, �e} can then be
computed as

Ji =
↵K�1

↵pi

�
F + K⇥x0

⇥
+ K�1 ↵K⇥

↵pi
x0, (11)

with
↵K�1

↵pi
= �K�1 ↵K

↵pi
K�1.

Note that we do not compute the inverse of K. Instead, we compute
a sparse Cholesky factorization [Toledo et al. 2003], and then use
this factorization many times for solving the linear systems above.
Recall the expression for the (unwarped) per-element stiffness ma-
trix in Eq. (7). The remaining terms are defined as:

↵K
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e
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↵K⇥

↵�e
=
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VeReB
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e HBe
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e
.

(12)

In the case when some nodes are constrained not to deform (e.g.,
when the bottom of the captured objects is fixed), their known po-
sitions move to the right-hand side in Eq. (10), and the Jacobians
must be slightly modified.


