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Abstract. Interest is growing rapidly in using deep learning to classify
biomedical images, and interpreting these deep-learned models is neces-
sary for life-critical decisions and scientific discovery. Effective interpreta-
tion techniques accelerate biomarker discovery and provide new insights
into the etiology, diagnosis, and treatment of disease. Most interpreta-
tion techniques aim to discover spatially-salient regions within images,
but few techniques consider imagery with multiple channels of infor-
mation. For instance, highly multiplexed tumor and tissue images have
30-100 channels and require interpretation methods that work across
many channels to provide deep molecular insights. We propose a novel
channel embedding method that extracts features from each channel.
We then use these features to train a classifier for prediction. Using this
channel embedding, we apply an interpretation method to rank the most
discriminative channels. To validate our approach, we conduct an abla-
tion study on a synthetic dataset. Moreover, we demonstrate that our
method aligns with biological findings on highly multiplexed images of
breast cancer cells while outperforming baseline pipelines. Code is avail-
able at https://sabdelmagid.github.io/miccai2020-project/.

Keywords: Highly multiplexed imaging · Deep learning · Interpretabil-
ity.
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Fig. 1: Informative channel identification. (a) Given highly multiplexed imaging
data, we train (b) a neural network to encode a channel embedding and classify
a label (e.g., tumor grade). Then, we measure (c) the classification task channel
importance by adopting an interpretation method to the channel embedding.
(d) We evaluate our system by comparing the predicted informative channels to
expert knowledge, and provide new insights for clinicians and pathologists.

1 Introduction

Highly multiplexed imaging provides data on the spatial distribution of dozens to
hundreds of different protein and protein modifications in a tissue. This provides
an unprecedented view into the cells and structures that comprise healthy and
diseased tissue. As such, highly multiplexed imaging is emerging as a potentially
breakthrough technology in translational research and clinical diagnosis. Exam-
ples of highly multiplexed imaging technologies include imaging mass cytometry
(IMC) [5], multiplexed ion beam imaging (MIBI) [6], co-detection by indexing
(CODEX) [3], and cyclic immunofluorescence (CyCIF) [8].

Each image can comprise 30 to 100 unique channels (that each correspond to
the detection of a specific protein) with millions of cells, and so computational
tools are essential for analysis. To interpret the outputs of computational tools
and answer specific research and clinical questions, it is critical to know which
image channels are informative. Even though there is research on interpretation
techniques for natural images [14,15,7,18], channel- or target-wise importance
ranking interpretation techniques for highly multiplexed images do not yet exist.

We introduce a novel system to automatically identify informative channels
in highly multiplexed tissue images and to provide interpretable and potentially
actionable insight for research and clinical applications. The process is illus-
trated in Figure 1. What follows is a description of our system for the goal of
identifying the most informative channels for assessing the tumor grade of highly
multiplexed images [5]. We first encode each channel using the shared weights
of a ResNet18 [4] backbone encoder. To obtain an interpretable representation,
which we refer to as channel embedding, we use an embedding encoder. Then, we
train a classifier to produce a probabilistic prediction for each tumor grade class.
Finally, we measure each channel’s contribution to the tumor grade classification
by applying an interpretation technique, Backprop [18], that backpropagates gra-
dients to the channel embedding. In our experimental results, we demonstrate
that our system outperforms conventional algorithms [20,4,10] combined with
interpretation techniques [15,18] on the informative channel identification task
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Fig. 2: Our architecture. For an input highly multiplexed image I, we split chan-
nels and feed them into ResNet18 [4]. Next, the embedding encoder extracts an
interpretable representation r = [r0, . . . , rN ], where N is the number of chan-
nels. Both the backbone and embedding encoders share weights across channels.
Finally, we adopt three fully-connected layers to estimate class probabilities p.

for assessing tumor grade. Moreover, the informative channels identified by our
novel method align with findings from a single cell data analysis [5], even though
our approach does not require single cell segmentation.

2 Related Works

Interpretation Techniques for Neural Networks: One category of neural
network interpretation is model-agnostic. Backprop [18] and Grad-CAM [15]
backpropagate gradients to produce an attention map highlighting important
regions in the image. Filter visualization techniques [12,21,1] typically visualize
the information extracted from filters. LIME [14], DeepLIFT [17], and SHAP [11]
compute the contribution of each feature for a given example. TCAV [7] defines
high-level concepts to quantify a model’s prediction sensitivity.

Another category is self-interpretable neural networks. SENN [13] trains a
self-explaining model, which consists of classification and explanation branches.
Zhang et al. [22] modify a traditional convolutional neural network (CNN) by
adding masking layers followed by convolution layers to force activations to be
localized. Building on this work, Zhang et al. [23] visualize a CNN’s decision
making process by learning a decision tree for a pre-trained model. However,
these methods are not directly applicable to highly multiplexed input images.

Frame-level Action Localization in Videos: Discovering informative chan-
nels is similar to localizing frames with target actions in videos. Action local-
ization finds frames of interest in an entire video. CDC [16] predicts per-frame
confidence scores using 3D convolutional neural networks. BSN [10] and BMN [9]
adopt 2D convolutions to estimate actionness, starting time, and ending time
at each frame. These methods can be applicable to informative channel iden-
tification by using their per-channel classification as a measure of channel im-
portance. However, since they perform prediction by classifying one channel at
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a time, their learned features may not be generalizable and consequently their
resulting accuracy may not be sufficient.

3 Proposed Method

To enable the identification of informative channels, we propose a network archi-
tecture with a backbone encoder, an embedding encoder, and a classifier (Fig. 2).
First, we will introduce the backbone and embedding encoders, which each ex-
tract features from each channel independently. For interpretation, we represent
each input image channel as a single value ri. Next, we train a classifier that
takes the channel embedding r, which is a concatenation of ri across channels.
The classifier yields predictions, p. Once our network is trained, we apply Back-
prop [18] to the channel embedding to produce an attention map, which is then
used to rank channels in order of importance.

3.1 Channel Embedding

To leverage knowledge from previously-learned image classification tasks and
to extract meaningful features from highly multiplexed images, we begin with
ResNet18 [4] pretrained on ImageNet [2] as a backbone network. Naive ap-
plication of ResNet18 does not allow us to identify channels of interest be-
cause it weights information across channels through its constituent convolu-
tions (Fig. 3(a)). Even though 3D CNN [20] can suppress this problem by locally
weighting channels, it still blends activations across adjacent channels (Fig 3(b)).
Instead, we must extract features from each channel independently. However,
doing so will require substantial memory resources (12M parameters per chan-
nel). To overcome these problems, we apply the same backbone encoder (shared
weights) to each channel individually by modifying the first convolution layer of
ResNet18 to accept a single-channel image as opposed to a three-channel (RGB)
image (Fig 3(c)). The last fully connected (FC) layer computes a weighted sum
of these independently learned channel embeddings thereby leveraging the power
of an independent channel encoding technique while still modeling inter-channel
interactions.

For interpretation, applying Backprop [18] to the backbone encoder output
yields N 2D tensors, where N is the number of channels. The elements in each 2D
tensor represent importance; however, these values are difficult to conceptually
interpret. To avoid this issue, we add an embedding encoder that represents
each channel as a single value ri (Fig 3(d)). The embedding encoder consists
of three 3 × 3 and one 7 × 7 convolution layers with batch normalization and
ReLU. The 3×3 and 7×7 convolution layers have 64 and 1 kernels, respectively.
Concatenating the embedding encoder outputs yields a channel embedding r =
[r0, . . . , rN ].

To produce a prediction p for a classification task, we apply a classifier to the
channel embedding r. We exploit two FCs with ReLU and one FC with softmax
as a classifier. The first two FCs have 200 kernels.
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Fig. 3: Architectures of baselines and our network. GAP and FC indicate a global
average pooling and a fully connected layer. Unlike other baselines, we convert
the input image into a channel embedding and then perform classification.

3.2 Informative Channel Identification

After model training, we apply Backprop [18] to the channel embedding. Specifi-
cally, we first convert a given highly multiplexed image into a channel embedding
and perform classification. We compute gradients at the channel embedding by
backpropagating the gradients of the classification output. Then, we set the im-
portance of each channel as the magnitude of its respective gradient. Unlike
other systems using standard classification architectures [4,20], our novel system
yields a single value at each channel representing its importance in classification.
Note that due to this design choice, our system can be used in a plug-and-play
fashion with other interpretation methods [14,11,17] as well. We measure the
channel importance of all testing images and then average them across images
to measure how informative each channel is for classification.

Alternatively, we can apply a linear regression via a single FC layer to the
learned channel embedding. Considering that a simple examination of the coeffi-
cients is all that is required, this approach may be easier to interpret. We exper-
imented with this design choice and encountered poor results for both datasets.
A single FC layer is not sufficient to model the complex channel interactions. To
reduce under-fitting, a non-linear combination of the learned embeddings along
with Backprop should be used.

Implementation: We initialize weights in our network with random values ex-
cept for the pre-trained ResNet18 backbone network. The spatial resolution of
the input image I is 224× 224 pixels. For data augmentation, we apply horizon-
tal and vertical flips and random cropping. We use an Adam optimizer with a
learning rate of 0.0001. The training process iterates for 100 epochs with early
stopping while using a batch size of 32 and four Geforce Titan X GPUs.

4 Experimental Results

To validate the design of our model, we conduct an ablation study on a synthetic
dataset classification task. To evaluate informative channel identification perfor-
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(a) Synthetic (b) IMC

Fig. 4: Sample channels from (a) synthetic and (b) IMC [5] images.

mance, we define a task in which modern deep neural networks [4,20] achieve
high accuracy. For a real-world application, we apply our model to a task of
predicting tumor grade from a breast cancer dataset generated using IMC [5].

Methods in Comparison: To the best of our knowledge, there is no existing
method for informative channel identification. As such, we implement baseline
pipelines using modern classifiers, ResNet50 [4], ResNet3D-18 [20], and BSN [10],
and model-agnostic interpretation methods, Backprop [15] and GradCAM [18].
We apply the interpretation techniques after training the classifiers to compare
them with our system. While ResNet50 and ResNet3D-18 directly predict a
class from the image, BSN classifies each channel separately and then aggregates
the per-channel predictions to generate a single prediction. For ResNet50 and
ResNet3D-18, we use Backprop [18] for interpretation. We convert each channel’s
attention map into the channel importance by averaging it. For BSN, we adopt
GradCAM [15] instead since BSN averages per-channel classification.

4.1 Synthetic Highly Multiplexed Image Classification

According to the single cell analysis of the breast cancer dataset, each channel’s
pixel intensities follow a bi-modal distribution. We build a synthetic dataset by
emulating this highly multiplexed cell imaging environment. This dataset is then
used to conduct an ablation study and validate our design choices. The cellular
environment is mimicked in these synthetic images by dispersing a random num-
ber of circles (cells) of a fixed radius, whose intensities are sampled from bi-modal
distributions (representing the signal arising when a target is either present or
absent). We randomly choose two modes between [0.1, 0.3] and [0.7, 0.9]. Each
mode is randomly assigned a frequency of 0.2 or 0.8. We set the variance of
intensities as 0.3. We add Gaussian noise to each image. Since our objective
is to identify informative channels, we assign two non-overlapping channels to
associate with each ground truth. In particular, the two channels assigned to
each class are drawn from a class-specific bi-modal distribution, while the in-
tensities in the remaining channels are drawn from a random distribution. An
effective model would identify these specific channels assigned to each ground
truth during classification. For example, suppose there are 3 classes, A, B, and
C, which are assigned the following channel pairs: 4 and 19, 22 and 31, 2 and 17,
respectively. Our model when classifying an image from class C must identify
channels 2 and 17 and measure their importance. We synthesize 600 training,
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Table 1: Ablation study on the synthetic dataset.
Settings Scores

Backbone Embedding Accuracy Recall@6 Recall@10

ResNet18 Independent 98.0 83.3 83.3
ResNet18 Shared 99.7 83.3 100.0
ResNet3D-18 Independent 100.0 50.0 66.7
ResNet3D-18 Shared 99.7 33.3 83.3

Table 2: Quantitative comparison on the synthetic dataset.
Representation Method #Param. Acc. Recall@6 Recall@10

Single prediction
ResNet50 [4] 24M 100.0 50.0 66.7
ResNet3D-18 [20] 33M 100.0 50.0 50.0

Channel-wise prediction BSN [10] 11M 34.7 0.0 0.0

Channel embedding Ours 12M 99.7 83.3 100.0

300 validation, and 300 test images with 30 channels. Figure 4 visualizes three
channels of a synthetic image compared to a real highly multiplexed image [5].

Evaluation Metric: To evaluate classification performance, we measure ac-
curacy, which is the number of correct predictions divided by the number of
total images. For the assessment of informative channel identification, we use
Recall@K, which is a recall rate when a model proposes K most informative
channels. Since there are six channels (two per class) associated with the classi-
fication, we set base K as 6 and expanded K as 10.

Ablation Study: We conduct an ablation study to find the best architecture
design. Namely, we consider two choices for the backbone encoder: ResNet18 [4]
and ResNet3D-18 [20]. For channel embedding, we consider two approaches:
using shared weights across all channels or using independent channel-wise layers.
Table 1 lists the scores of each setting. In terms of classification accuracy, all the
settings are comparable. However, the purpose of this experiment is to examine
the model’s ability to identify informative channels rather than classification.
For informative channel identification, the ResNet18 + Shared setting achieves
the best scores in terms of both Recall@6 and Recall@10. Since the backbone
encoder, with 3D convolution layers, mixes information across channels, there is
performance degradation in the ResNet3D-18 + Independent setting.

Results: Table 2 compares our system to the baselines. We find that our novel
approach significantly outperforms the others in terms of Recall@6 and Re-
call@10 while achieving similar classification accuracy. This shows that our chan-
nel embedding is highly interpretable and effectively represents each channel.

4.2 Tumor Grade Classification

The breast cancer dataset [5] consists of multiplexed images collected using IMC.
The images have 39 channels representing a set of proteins that are thought to



8 Salma Abdel Magid et al.

Table 3: Quantitative results for tumor grading on the breast cancer dataset [5].
Representation Method #Param. Acc. Spearman Coeff.

Single prediction
ResNet50 [4] 24M 59.9 23.6
ResNet3D-18 [20] 33M 68.2 12.9

Channel-wise prediction BSN [10] 11M 58.5 41.4

Channel embedding Ours 12M 65.4 61.1

be important for diagnosis or treatment. For each patient, clinical annotation is
available. Here, we focus on identifying tumor grade: grade 1, grade 2, or grade
3. Tumor grade is an indicator of disease progression that is typically scored by
a pathologist using only H&E images. We seek to identify the most informative
channels among the 39 in the dataset with respect to the prediction of tumor
grade. The network input is a multiplexed image and the output is a tumor
grade. The dataset contains 723 tissue images from 352 breast cancer patients,
and we split them into 506 training images and 217 test images. After training
our network, we identify informative channels for predicting tumor grade.

Ground Truth Targets: Quantification of targets in single-cell analysis is cor-
related with clinical annotations such as tumor grade; however, this requires
segmentation to isolate individual cells [5]. In contrast, we predict the tumor
grade without using single-cell segmentation. Additionally, we demonstrate that
our approach can interpret the importance of individual proteins (channels).
We use the single-cell averaged expression of the individual proteins to com-
pare changes between grade 1, grade 2, and grade 3. Further, we use the sum of
the absolute fold-change as a ground truth for analysis. Finally, to evaluate the
pipelines, we use the same set of targets as those in the Jackson et al. study [5].

Evaluation Metric: For assessment of classification performance, we report
the accuracy. To evaluate each model’s informative channel identification, we
calculate the Spearman coefficients [19] using the ground truth. The Spearman
coefficient measures the correlation between two lists of ranks. To exclude chan-
nels with low importance, we only consider the top 15 most informative channels
from the ground truth when calculating the Spearman coefficient.

Results: Table 3 compares our system to the baseline pipelines. Our classifier
performs better than ResNet50 and BSN. For informative channel identification,
our system significantly surpasses the baseline systems in Spearman coefficient.
Figure 5 shows the importance of each channel predicted by our pipeline com-
pared to the ground truth. We detect seven of the top 10 ground-truth targets,
which are known proteins associated with tumor progression. One example is
Ki-67, which represents a higher proliferation rate with increasing grade. An-
other example is CAIX, which represents a marker of hypoxia and also increases
with a higher grade. Similarly, it was shown that low cytokeratins (like CK8/18,
CK19 and anti-pan keratin (AE1)) are correlated with Grade 3 pathology [5].
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Fig. 5: Measured target importance for tumor grade classification on the breast
cancer dataset [5], ordered by importance. We highlight the top 10 targets.

5 Conclusions and Future Work

We have developed a novel pipeline for channel-wise importance interpretation.
Our channel embedding effectively simplifies information in each channel while
improving channel-wise interpretability. In the experimental results, we show
that our pipeline outperforms existing methods [4,10,20] in terms of classification
and informative channel identification for tumor grade prediction [5].

Future work will focus on improving the approach and extending it to other
datasets and prediction challenges including (i) biomarker discovery associated
with survival time in breast cancer [5], (ii) discovery of cellular features predic-
tive of treatment resistance in metastatic melanoma and other diseases, and (iii)
the inclusion of spatial transcriptomic data.
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