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Abstract

In this approach, dual-analysis views depict distributions of genes or data samples within Caleydo.

Significant-difference plots show the elements of a cancer subtype that differ significantly from

other subtypes. Analysts can characterize subtypes, investigate how samples relate to their subtype

and other groups, and create well-defined subtypes based on statistical properties.

Although cancers are colloquially referred to by the tissue from which they originate (for

example, lung cancer), significant differences can exist between cancers from the same

tissue. The differences are often characterized by various biomolecular properties. These

different forms of cancer are called subtypes. Large-scale research projects such as the

Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov) elicit comprehensive genomic

and clinical datasets with the goals of characterizing the molecular alterations responsible

for cancer and identifying and characterizing cancer subtypes.

Owing to next-generation sequencing and microarray technology, these projects can employ

large, heterogeneous datasets. However, deriving insight from these complex datasets

remains a challenge. Current analysis relies largely on custom scripts to find interesting

genes or clusters of patients (stratifications) in these datasets. To remedy this, we developed

Caleydo StratomeX, an interactive visualization method to analyze and discover

relationships in these datasets.1 Researchers can use StratomeX to evaluate overlaps and

relationships of stratifications.

However, StratomeX doesn’t inherently enable analysts to identify the characteristic genes

of candidate subtypes, nor does it communicate how patients relate to a given subtype. The

former capability is important because the characteristic genes could also be causally

involved in a subtype and thus might be a target for a therapeutic or diagnostic approach.
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With the latter capability, researchers can investigate how samples relate to a subtype to

estimate the quality of candidate subtypes and build a deeper characterization of a subtype.

To address these limitations, we integrated two techniques into StratomeX:

■ dual analysis,2 a general high-dimensional data analysis methodology, and

■ significant-difference plots, a novel visual representation of the differences

between data subsets.

With this approach, domain scientists can discover genes that are distinctive for specific

subtypes. They can also observe the properties of a cluster’s samples and compare how they

behave in different datasets and clusters. These capabilities can provide a deeper

understanding of stratifications. Moreover, scientists can employ the dual-analysis

methodology to interactively generate stratifications.

Biological Background and Analysis Tasks

Subtype analysis is based on a variety of biomolecular datasets that capture different aspects

of the process of life, ranging from the information stored in the genome to the functional

products that trigger biochemical reactions in cells. Projects such as TCGA capture

information on gene activity, factors influencing gene expression, and the genome’s

structure and sequence. An example of gene activity data is messenger RNA (mRNA) data,

which measures mRNA’s abundance in the cell. mRNA is translated into proteins, which are

the functional products. In addition, microRNA (miRNA) and DNA methylation influence

gene expression and thus are important factors in many processes and diseases.

All these factors play a role in the development of certain cancers, so a comprehensive

analysis solution must take into account all these datasets, in addition to metadata such as

clinical patient data. In this article, we demonstrate our approach by investigating mRNA,

mRNA-seq (which relates to the same biological process as mRNA but uses a different

acquisition technique), miRNA, and methylation data. However, a comprehensive analysis

would also incorporate other datasets—for instance, related to structural variations occurring

on various scales in the genome.

In previous research, we elicited subtype analysis tasks that dealt with finding and

evaluating stratifications based on multiple datasets.1 We recently revisited those

requirements in collaboration with domain scientists and found the need to supplement them

with the following three tasks to further characterize stratifications.

Find Distinctive Elements

Identifying distinctive elements of clusters in a stratification provides a deeper

understanding of why a particular cluster exists and how it relates to other clusters in the

analysis. Distinctive elements are also good candidates to investigate as diagnostic markers

or might even be causally involved in the disease.
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Compare Samples

Investigating samples’ characteristics over several datasets and in comparison to other

stratifications helps build a more complete picture of the samples’ properties. Analysts can

observe how strongly a cluster’s members are related and explore whether they show similar

properties in a dataset different from the one used for clustering.

Create Clusters

Analysts should be able to create clusters in an exploratory manner and interactively

compare the intermediate results to metadata such as clinical data. Moreover, this manual

clustering should enable analysts to merge observations of different datasets. The resulting

clusters will be well defined in terms of statistical properties and richer in terms of the

information sources included during construction.

Methodological Building Blocks

To enable the aforementioned tasks, our solution employs StratomeX and dual analysis.

StratomeX

Caleydo (www.caleydo.org) is an open-source visualization framework for biomolecular

data analysis. It provides rich functionality for loading and handling multiple heterogeneous

datasets as well as stratifications defined on the data. A core strength is its ability to slice

datasets into meaningful subsets and flexibly combine multiple small visualizations of these

subsets, using views such as histograms or heat maps, to create a fully integrated composite

visualization.3 Other examples of visual methods that improve analysis of genomics data are

the Hierarchical Cluster Explorer4 and Mayday.5

StratomeX, a Calyedo project, is a comparative-visualization technique that uses slicing. It

lets analysts investigate the relationships between multiple stratifications, represented as

columns. Each column consists of blocks, each corresponding to a group of patients.

Ribbons of varying width visualize the overlap between neighboring stratifications, resulting

in an overall appearance similar to Parallel Sets6 or Sankey Diagrams.7 Wide ribbons

indicate a strong overlap between two groups; thin or absent ribbons correspond to only a

few or no shared patients. Each block contains a visualization of the data for that group’s

patients. Analysts can switch between different types of visualizations. For numerical data,

clustered heat maps are the default because they effectively communicate global trends and

patterns.

Dual Analysis

In this approach, the visual analysis occurs in parallel on both the data items and the

dimensions. We achieve this duality by using statistics computed over both the dataset rows

and columns.

For example, consider an mRNA gene expression dataset given as a 2D data table with n

rows and p columns, where each row corresponds to a single sample (patient) and each

column to a single gene. The matrix cells contain the expression values.
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After normalizing the data appropriately, we calculate the central tendency (the mean, μ, or

median) and the spread (the standard deviation, σ, or interquartile range, IQR), using each of

the n samples and p genes separately. We calculate the robust counterparts of statistical

moments to increase the statistics’ resistance to outlier values. Because experts are often

accustomed to using nonrobust versions of the statistics (for example, μ or σ), our system

incorporates such measures. This helps users quickly familiarize themselves with the

information in the views, and at any point in an analysis, they can modify the set of statistics

they’re using.

Figure 1 illustrates how we construct dual-analysis views. Visualizations of samples have a

yellow background, with each point representing a sample; visualizations of genes have a

light-green background, with each point depicting a gene. The computed statistics determine

a point’s location in a scatterplot. We can elaborate the analysis by using statistics other than

the first two statistical moments. For the analyses in this article, we also computed skewness,

which indicates a distribution’s asymmetry (and the asymmetry’s direction), and kurtosis,

which characterizes its peakedness.

Characterizing Subtypes

To facilitate subtype characterization, we incorporate dual-analysis scatterplots and

significant-difference plots as blocks. We also use these visualizations as separate linked

views to enhance interactive visual exploration and achieve tasks such as manual cluster

creation.

Dual-Analysis Views

Figure 2 shows the embedded dual-analysis views. The sample scatterplots (yellow) display

only those samples that are members of the represented cluster. The gene scatterplots

(green) display the statistics for all the genes computed, using only the members of the

represented cluster.

We enhance interactive exploration by enabling a selection mechanism that’s linked with all

the views in StratomeX. Users can select both samples (see the second cluster in the second

column of Figure 2) and genes (see the second cluster in the third column in Figure 2) at the

same time. In Figure 2, the ribbons in StratomeX highlight the selection of the samples.

Significant-Difference Plots

We previously used plots to effectively display the changes in statistical computations in

response to a user’s selection.8 Here, we extend that approach with the determination and

communication of the visualized differences’ significance.

Figure 3 illustrates how we construct significant-difference plots (we call them just

difference plots from now on). The user first selects (brushes) a subset of samples. In

response, the system automatically calculates μ and σ for each gene using only the set of

selected samples B (μB and σB) and the rest of the samples R (μR and σR) separately. We

then compute the differences between the values with
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(1)

where Δμ and Δσ are data vectors of size p, the number of genes. The difference plot then

visualizes these values for all p. When no difference exists between a gene’s expression

values for B and R, we place that gene at the origin (0, 0). While building this view, we

compare the selected set of samples to the rest instead of comparing against all the samples.

This approach avoids overlap between the two compared sets.

The difference plot on the right in Figure 3 displays the distribution of the differences in the

statistic computations in response to the (sample) selection in the scatterplot (see the left of

Figure 3). In this example, most genes have lower μ values for the selected items; that is,

they’re on the left of the y-axis.

Communicating significance—An important consideration for analyzing differences

between two subsets is statistical significance—whether the difference is not likely due to

chance. As in many other domains, researchers who analyze genomic data use statistical

hypothesis tests to test for significance.9 So, we enhance difference plots with integrated

statistical hypothesis testing.

As the hypothesis-testing procedure, we use the two-sample Welch’s t-test.10 This test

doesn’t assume that the two subsets have equal variance, which makes it suitable for our

application. We perform the test on B and R and test against the (null) hypothesis that they

have equal central tendencies. We compute t and the degrees of freedom, d.f.:

where  is the sample mean,  is the sample variance, and Ni is the sample size of B and R.

We then use these values together with the t-distribution and test the null hypothesis with a

significance level of 0.05, employing a two-tail strategy. We perform this test for all p. For

each gene, we store whether it shows a significant difference between B and R. We

communicate this information by modifying the color of each gene in the difference plot.

Genes with significant differences are red; the others are blue (see the right side of Figure 3).

This enhancement lets analysts get immediate feedback on the differences’ significance. On

the basis of this initial assessment, analysts can employ more-advanced routines to confirm

the significance of the changes between the two subsets.
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Difference plots as blocks—While constructing these blocks, we again compute Δμ and

Δσ for each gene, using Equation 1. Here, however, B corresponds to the samples that are

members of the represented cluster, and R corresponds to the rest of the samples. We also

compute the differences’ significance and color the visualization accordingly. The resulting

blocks communicate which genes are more distinctive for each cluster. Moreover, the

selection mechanism lets analysts compare these distinctive genes across different clusters.

We show an example of this feature later.

Case Studies

We demonstrated our approach’s effectiveness by analyzing a comprehensive invasive

breast carcinoma (BRCA) dataset collected by the TCGA consortium. We used the mRNA

expression data, miRNA sequencing data, and methylation data from more than 800 breast

cancer patients. First, we loaded the BRCA data, which is available pre-packaged for

Caleydo. For comparison and evaluation, we used a recently published reference study that

provided a stratification of samples.11

The case studies aimed to demonstrate how our approach lets analysts execute the three

tasks we described earlier.

Find Distinctive Elements

We first compared the significantly distinctive genes suggested by our computations with

those that the reference study identified. That study reported four subtypes: Luminal-A,

Basal-like, Luminal-B, and HER2-enriched (see Figure 4a). It used unsupervised clustering

to identify a list of genes that are differentially expressed for the HER2-enriched subtype

(see supplementary Table 7 of the study11). We selected the seven most significantly

underexpressed genes (AGR3, ESR1, GFRA1, NPY1R, PGR, SER-PINA3, and SUSD3)

and the 10 most significantly overexpressed genes (ABCA12, CALML5, CLCA2, CRYM,

DCD, GLYATL2, MUCL1, NXPH1, PNMT, and SOX11). All seven underexpressed genes

and six of the 10 overexpressed genes were identical to the ones in the reference study. This

match demonstrates that our approach quickly yields relevant results in determining

descriptive genes.

Next, we explored the expression characteristics of the Luminal-A subtype’s distinctive

genes compared to the other subtypes. We first selected the significantly underexpressed

genes for the Luminal-A subtype (see Figure 4b). These genes (AQP9, FAM83D, GGH,

MCM10, and MMP1 being some of the lowest) were often overexpressed for the Basal-like

subtype. We concluded that they’re potentially good markers to distinguish the Luminal-A

subtype from the Basal-like subtype.

Similarly, when we selected the overexpressed genes for the Luminal-A subtype (see Figure

4c), we observed that they were underexpressed for the Basal-like subtype. However, unlike

the previous set, they showed expression profiles similar to the HER2-enriched subtype.

Consequently, these genes carried less distinctive characteristics compared to the previous

set.
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Compare Samples

Here, we investigated how different datasets share certain properties of samples from a

particular subtype—for instance, outliers or trends. We first investigated the characteristics

of samples from the Basal-like subtype by considering the mRNA, miRNA, and methylation

datasets. We created a view with the subtypes from the reference study as the first column

and unstratified versions of the three datasets as the following columns (see Figure 5a).

After selecting the samples, we observed that they had lower expression values with a high

variance in the mRNA dataset and higher expression values in the miRNA dataset. When

looking at their methylation values, however, we saw no dominant characteristics.

We used the same approach to determine the characteristics of a cluster computed as a result

of an unsupervised clustering of the mRNA dataset (see the left column in Figure 5b). We

selected the second cluster’s core members—those with similar expression values and

variance. These samples didn’t show any dominant characteristics in an unsupervised

clustering of the miRNA data (see the middle column in Figure 5b). However, when

considering the reference subtypes from the BRCA study (see the right column in Figure

5b), we observed that the selected samples constituted a subgroup of the Luminal-A subtype.

We could also see that these samples were the overexpressed Luminal-A members with a

lower variance. So, we conclude that we can use the second cluster from the mRNA

stratification to determine a Luminal-A subgroup.

Create Clusters

Sometimes in tumor subtype analysis, the stratification information isn’t readily available. In

these cases, we use dual analysis to manually create stratifications, instead of automated

methods. This ability lets analysts discover structures through different views of multiple

datasets and represent these structures as a stratification.

We performed the manual clustering process on the BRCA data. We used dual-analysis

views as separate linked views rather than embedding them in StratomeX; that is, selections

in any view were highlighted in the others. We brought up two linked views of the mRNA

dataset: a skewness-versus-kurtosis visualization of the genes (see Figure 6a) and a

difference plot for the samples for Δμ versus Δσ (see Figure 6b). We added two other views

of the mRNA-seq dataset: median versus IQR visualization of the genes (see Figure 6c) and

difference plots for the samples for Δμ versus Δσ (see Figures 6d and 6e).

Then, we marked an unstratified mRNA dataset as the target for the manual clustering

(through a user interface not shown in the images). The clustering involved three steps.

In step 1, we used skewness. High skewness indicated that a gene had nonuniform

expression levels over the samples and thus was a good candidate to be a discriminator

between subtypes. So, in this example, we selected the left-skewed genes (the ones with

negative skew values) (see Figure 6a) and selected a group of samples that were visually

separate from the rest (see the left of Figure 6b). At this point, we marked this subset of

samples as a stratification of the mRNA dataset (the first cluster in the first column in Figure

6f).
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In step 2, we switched to the mRNA-seq dataset and selected the genes with higher

expression values and higher variety (see Figure 6c). The difference plot updated

automatically; we selected the samples with higher expression values and lower variance

(see Figure 6d). From the difference plot, we selected the samples in the lower-right

quadrant—that is, high values and variety. Instead of using the observed visual structures to

guide selection (as in step 1), we used the visualization axes—another strategy for making

interesting selections. We made this selection because we expected to see higher variance

and higher values for the samples in response to the selection of genes in Figure 6c. We

finished this step by marking the sample selection as a second cluster.

In step 3, without updating the selection of genes, we selected the samples with higher

variety but smaller mRNA-seq values (see Figure 6e). This selection corresponded to the

difference plot’s upper-left quadrant—that is, lower values and higher variety. We marked

this selection as the third cluster. We left the rest of the samples as an unclustered set.

We compared our custom stratification to the one from the reference study (see Figure 6f).

The cluster from step 1, characterized by genes with negative skewness, almost completely

overlapped with the Basal-like subtype. The cluster from step 2 corresponded largely to a

subgroup of the Luminal-A subtype. Finally, more than half of the samples from the cluster

from step 3 belonged to the HER2-enriched subtype. This overlap between the manually

created clusters and the reference subtypes showed that manual clustering can produce

relevant results.

Our interactive approach enables analysts to merge interesting structures observed in several

datasets using different perspectives on the data—for example, using the skewness-versus-

kurtosis view for the mRNA dataset and the median-versus-IQR view for the mRNA-seq

dataset. This flexibility leads to outcomes that aren’t so straightforward to generate through

automated methods. Moreover, manual clustering provides a way to externalize analysis

findings. Analysts can compare manually generated clusters with automatically computed

results such as hierarchical clustering.

Throughout these studies, we’ve seen that our approach facilitates the characterization of

cancer subtypes by enabling an investigation of them over both the samples and the genes.

In the future, we aim to include advanced statistical tests and procedures, such as analysis of

variance, Bonferroni correction,9 and dimension reduction. We’ll include these methods

through integration of the R statistical-computing environment.12 We also plan to extend

difference plots to compare more than two groups. Furthermore, besides comparing one

cluster to all the other elements, we plan to implement mechanisms to compare clusters with

each other.
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Figure 1. Setting up dual-analysis views depicting the data as a 2D heat map.
To construct the view depicting samples (the one with the yellow background), we

computed the statistics for each sample (the mean, μ, and standard deviation, σ) using a row

of the data. To construct the view of the genes (the one with the light-green background), we

computed the statistics using a column of the data.
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Figure 2. Dual-analysis views in StratomeX.
The first column shows a four-cluster stratification for a microRNA (miRNA) dataset. The

scatterplots show the median versus the interquartile range (IQR) for the cluster samples.

The second column shows a three-cluster stratification for a messenger RNA (mRNA)

dataset, again showing samples. The third column uses the same three-cluster stratification

for the same dataset but shows genes instead of samples. The sample scatterplots (yellow)

depict the statistical characteristics of each cluster’s members; the gene scatterplots (green)

depict statistics computed for the genes using only the samples from the cluster represented

by the block. The selection of samples is highlighted in the first two columns and in the

ribbons. The selection of the genes enables investigation of the distribution of expression

values for the genes for different clusters in a stratification.
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Figure 3. A significant-difference plot.
The plot visualizes the differences between the selected samples (B) and unselected samples

(R) for the genes. Δμ and Δσ are data vectors of size p, the number of genes. Genes that

differ significantly are red; all others are blue.
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Figure 4. Using difference plots to find descriptive genes.
(a) We marked descriptive genes for the HER2-enriched subtype. A comparison to a

reference study11 showed the marked genes’ relevance. (b) We selected underexpressed

genes for the Luminal-A subtype. They showed overexpression for the Basal-like subtype;

that is, they constituted good features to discriminate these two subtypes. (c) The

overexpressed genes for Luminal-A could also be considered good discriminators for this

subtype but showed similar expression profiles for the Basal-like and HER2-enriched

subtypes.
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Figure 5.
(a) Investigating the sample profiles for the Basal-like subtype (column 1) over three

datasets (mRNA, miRNA, and DNA methylation). The subtype contained samples with

lower values and high variance for the mRNA data and usually higher values for the miRNA

data. In the methylation data, however, we saw no dominant characteristic. (b) We selected

core members of a cluster from an unsupervised stratification of mRNA data (circled in the

left column) and visualized them with a miRNA stratification (the middle column) and the

subtypes. The selected members corresponded to a subgroup in the Luminal-A subtype

(circled in the right column).
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Figure 6. Manual clustering of an unstratified mRNA dataset using dual-analysis views.
(a) We selected negatively skewed genes through a skewness-versus-kurtosis visualization.

(b) The difference plot for the samples updated automatically; we observed a group of

samples with lower values and marked them as our first cluster. (c) We then switched to the

mRNA-seq dataset and selected genes that were more highly expressed with a large variety

in the values. We identified two groups and marked them as (d) cluster 2 and (e) cluster 3.

(f) For validation, we compared our stratification with the subtypes from the reference study

and observed a significant overlap of the subtypes.
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