Compresso: Efficient Compression of Segmentation Data For Connectomics

Brian Matejek, Daniel Haehn, Fritz Lekschas, Michael Mitzenmacher, Hanspeter Pfister

School of Engineering
and Applied Sciences

Visual Computing
Group

- Compresso works by decoupling the compression of per-segment shapes and per-pixel labels.
- To compress the per-pixel shapes, we generate a boundary map and divide it into 3D congruent windows.

- Connectomics datasets are approaching petabytes in size requiring compression for storage and transmission.
- Automatic reconstruction techniques generate massive quantities of label volumes.
- Compresso reduces this $\mathbf{1 7 . 5 0}$ terabyte label volume to $\mathbf{2 5 . 9 4}$ gigabytes, a ratio of $\mathbf{6 7 5 x}$.
- Compresso extends to all types of segmentation datasets.

- All of the voxels that are not on a segment boundary have the same label as at least one of their immediate neighbors.
- Rather than store a label for every voxel, we store one label for the entire component enclosed by a contiguous boundary.
- We encode each window with a single integer value based on the boundary pixels within that window.
- This example window has a value of 50,978.

$$
2^{1}+2^{5}+2^{8}+2^{9}+2^{10}+2^{14}+2^{15}=50978
$$

- Segmentation datasets are highly structured with very few unique boundary patterns over the volume.
- Here are the 100 most common boundary patterns on a typical dataset representing 82% of the volume.
- We use a lookup table to store these identical boundary patterns.
- Compresso followed by a generalpurpose compression scheme (e.g. BZ2 or LZMA), outperforms existing methods.
- The principles governing Compresso extend to other types of segmentation datasets, including labeled MRI images.
- Source code is available on Github at https://github.com/vcg/compresso.

