Data Driven Guides: Supporting expressive design for Information graphics

Nam Wook Kim
Harvard

Eston Schweickart
Cornell

Zhicheng Leo Liu
Adobe

Mira Dontcheva
Adobe

Wilmot Li
Adobe

Jovan Popović
Adobe

Hanspeter Pfister
Harvard
Analysts & Researchers

Source: Google Search Trends
Artists, Journalists, Bloggers, Designers

Source: Google Search Trends
Visualization Design Tools

<table>
<thead>
<tr>
<th>Less expressive (Automatic)</th>
<th>More expressive (Manual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tableau</td>
<td>Illustrator</td>
</tr>
<tr>
<td>Excel</td>
<td>CorelDRAW</td>
</tr>
<tr>
<td>Plot.ly</td>
<td>AffinityDesigner</td>
</tr>
<tr>
<td>Spotfire</td>
<td>RAW</td>
</tr>
<tr>
<td>ManyEyes</td>
<td>DataVisual</td>
</tr>
<tr>
<td>INFOACTIVE</td>
<td>Improvise</td>
</tr>
<tr>
<td>RAW</td>
<td>SageBrush</td>
</tr>
<tr>
<td>Lyra</td>
<td>DataVisual</td>
</tr>
<tr>
<td>iVisDesigner</td>
<td>Improvise</td>
</tr>
<tr>
<td>Photoshop</td>
<td>Inkscape</td>
</tr>
<tr>
<td>InDesign</td>
<td>InDesign</td>
</tr>
</tbody>
</table>
Visualization Design Tools

- Tableau
- Excel
- Plot.ly
- Spotfire
- ManyEyes
- InfoActive
- Lyra
- iVisDesigner
- RAW
- DataVisual
- SageBrush
- Improvise

Illustrator
CorelDRAW
AffinityDesigner
Photoshop
Inkscape
InDesign

Less expressive (Automatic)
More expressive (Manual)
Visualization Design Tools

Less expressive (Automatic)

Tableau
Excel
Plot.ly
Spotfire
ManyEyes

Lyra
iVisDesigner
RAW
DataVisual
SageBrush
Improvise

More expressive (Manual)

Illustrator
CorelDRAW
Affinity Designer
Photoshop
Inkscape
InDesign
DataVisual

Less expressive (Automatic)
Visualization Design Tools

Less expressive (Automatic) vs More expressive (Manual).
Interviews with infographic designers.
Interviews with infographic designers.

Participants

- 2 professional designers
- 3 master student designers
- 1 visualization researcher.
Interviews with infographic designers.

Participants

- 2 professional designers
- 3 master student designers
- 1 visualization researcher.

- 2 ~ 10 years of experience in graphic & infographic design.
Interviews with infographic designers.

Participants
- 2 professional designers
 - 3 master student designers
 - 1 visualization researcher.
- 2 ~ 10 years of experience in graphic & infographic design.
- Mostly use vector editing tools such as Adobe Illustrator.
Interviews with infographic designers.

Participants
• 2 professional designers
• 3 master student designers
• 1 visualization researcher.
• 2 ~ 10 years of experience in graphic & infographic design.
• Mostly use vector editing tools such as Adobe Illustrator.

Questions
• What difficulties they face in creating infographics?
Interviews with infographic designers.

Participants
- 2 professional designers
- 3 master student designers
- 1 visualization researcher.
- 2 ~ 10 years of experience in graphic & infographic design.
- Mostly use vector editing tools such as Adobe Illustrator.

Questions
- What difficulties they face in creating infographics?
- Overall design practice.
Interviews with infographic designers.

Participants
• 2 professional designers
• 3 master student designers
• 1 visualization researcher.
• 2 ~ 10 years of experience in graphic & infographic design.
• Mostly use vector editing tools such as Adobe Illustrator.

Questions
• What difficulties they face in creating infographics?
• Overall design practice.
• How they manually encode data into graphics.
Interviews with infographic designers.

Participants
- 2 professional designers
- 3 master student designers
- 1 visualization researcher.
- 2 ~ 10 years of experience in graphic & infographic design.
- Mostly use vector editing tools such as Adobe Illustrator.

Questions
- What difficulties they face in creating infographics?
- Overall design practice.
- How they manually encode data into graphics.

Related work
1. Lack of flexible design in visualization construction tools

Less expressive (Automatic)

Tableau
Excel
Plot.ly
Spotfire
ManyEyes
INFOACTIVE

More expressive (Manual)

Lyra
iVisDesigner
RAW
DataVisual
SageBrush
Improvise

Illustrator
CorelDRAW
Affinity Designer
Photoshop
Inkscape
InDesign
1. Lack of flexible design in visualization construction tools

- Tableau
- Excel
- Plot.ly
- Spotfire
- ManyEyes
- RAW
- Lyra
- iVisDesigner
- DataVis
- SageBrush
- Improvise

Difficult to add annotations & embellishments.
1. Lack of flexible design in visualization construction tools

Less expressive (Automatic)

<table>
<thead>
<tr>
<th>Tableau</th>
<th>Lyra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel</td>
<td>iVisDesigner</td>
</tr>
<tr>
<td>Plot.ly</td>
<td>Raw</td>
</tr>
<tr>
<td>Spotfire</td>
<td>DataViz</td>
</tr>
<tr>
<td>ManyEyes</td>
<td>SageBrush</td>
</tr>
<tr>
<td>infoActive</td>
<td>Improvise</td>
</tr>
</tbody>
</table>

Difficult to add annotations & embellishments.

Difficult to design new visual marks & layouts.
2. Tedious manual encoding required in graphic design tools

- Tableau
- Plotly
- Excel
- Spotfire
- ManyEyes
- INFOACTIVE
- RAW
- Lyra
- iVisDesigner
- DataVisual
- SageBrush
- Improvise
- Illustrator
- CorelDRAW
- AffinityDesigner
- Photoshop
- Inkscape
- InDesign

Less expressive (Automatic)

More expressive (Manual)
2. Tedious manual encoding required in graphic design tools.
3. Absence of data binding for custom/imported charts in graphic design tools

Tableau
Excel
Spotfire
ManyEyes
INFOACTIVE
Lyra
iVisDesigner
SageBrush
Improvise
Illustrator
CorelDRAW
AffinityDesigner
Photoshop
Inkscape
InDesign

Less expressive (Automatic)

More expressive (Manual)
3. Absence of data binding for custom/imported charts in graphic design tools

To customize this chart, ungrouping is required resulting in loss of data binding.
Design Goals
Design Goals

1. Maintain **flexibility** in the design process.

e.g., not enforcing a predefined outcome or specific order of operations.
Design Goals

1. Maintain **flexibility** in the design process.

2. Provide methods for accurate **data-driven drawing**.
Design Goals

1. Maintain **flexibility** in the design process.

2. Provide methods for accurate **data-driven drawing**.

3. Support persistent **data binding** for freeform graphics.
Data Driven Guides:
Supporting expressive design for Information graphics

Length guide

Area guide

\[d = \text{length} \]

\[d = \text{area} \]
Data Table

Graph
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

Data Table

Data-Driven Guides
Flexible direct manipulation
To manipulate to create a custom layout
Maintain proportional lengths
To preserve data integrity
Snap to a guide
To support accurate data-driven drawing
Data-binding using guides as the backbone of associated shapes. (2D deformation for vector graphic)
Logo Design

User Interface Design

Architectural Design

Drawing

Designer’s Friends: Rulers, Grids, Guides
Length and area guides can also be used as a **Position guide**.

Length guide

\[d = \text{length} \]

Area guide

\[d = \text{area} \]

Default guide color: **Cyan**
Visual variables
Fundamental channels for encoding information.

J. Bertin, 1983.

Rankings of visual variables by J. Mackinlay, 1986.
Visual variables

Fundamental channels for encoding information.

- Position
- Length
- Angle
- Slope
- Area
- Volume
- Color Saturation
- Color Hue
- Density
- Texture
- Connection
- Containment
- Shape

Frequently used in infographics, although often misused.

J. Bertin, 1983.

Rankings of visual variables by J. Mackinlay, 1986.
Use Cases
Use cases

1. **Drawing** data-driven graphics
OECD Better Life Index by GDP of G7 Countries.

Source: OECD better life index and World Bank Open Data (2016).
OECD Better Life Index by GDP of G7 Countries.

Source: OECD better life index and World Bank Open Data (2016).
Create & manipulate
Radial layout & link inspection
Composite structure & copy and paste
Deforms
Linear blend skinning

Related Work
Linear blend skinning

Rest pose

Old point in a shape.

Deformed

Related Work
Rest pose

Spatial Transformations (changes in guides)

Deformed

Linear blend skinning

Related Work
Linear blend skinning

Related Work

Skinning weight (Transformation amount)

\[p_i' = \sum_{j=1}^{m} w_{ij} T_j p_i, \]
Related Work
Deforms
Used as a Position Guide
American’s Uninsured Rate Dips Below 10%

% of uninsured rate in the U.S.

2010: 16.0%
2011: 15.1%
2012: 14.7%
2013: 14.4%
2014: 11.5%
2015: 9.2%

Crowdfunded Projects on Kickstarter in 2012

Source: Company Reports, Economist.

Money pledged, $m (Total: 319.8)
Games: 83.1
Film and video: 58
Design: 50.1
Music: 35
Technology: 29
Publishing: 15.3

Success rate, %
Music: 56.8
Film and video: 40.5
Design: 40.3
Technology: 37.5
Games: 32.6
Publishing: 29.6

Cyan: Data-Driven Guides

Used as flexible rulers.
Four area guides are used to encode a single shape.
Use cases

1. **Drawing** data-driven graphics

2. **Retargeting** existing artworks
MONSTROUS COSTS
Total House and Senate
campaign expenditures,
in millions

1972 74 76 78 80 82 est.

$300
$250
$200
$150
$100
$ 50

Source: Center for Responsive Politics

Original
By Nigel Holmes
Use cases

1. **Drawing** data-driven graphics

2. **Retargeting** existing artworks

3. **Proofreading** existing infographics
Proofreading existing infographics

By Nigel Holmes.

By Tiffany Farrant-Gonzalez.
The length of marks do not match the length of guides (curved).
Proofreading existing infographics

Length guide (Radius)

Area guide

$49,633,063

$24,201,440

$25,560,000

By Tiffany Farrant-Gonzalez.
Informal usability evaluation with designers.

Participants

• 13 master student designers
 (architecture, urban planning, and infographic design etc)
Informal usability evaluation with designers.

Participants

- 13 master student designers (architecture, urban planning, and infographic design etc)
- 2 ~ 10 years of experience in infographic design.
Informal usability evaluation with designers.

Participants

• 13 master student designers
 (architecture, urban planning, and infographic design etc)

• 2 ~ 10 years of experience in infographic design.

• Frequently used tools include vector & image editors
 (programming: only 2 people).
Informal usability evaluation with designers.

Participants
- 13 master student designers (architecture, urban planning, and infographic design etc)
- 2 ~ 10 years of experience in infographic design.
- Frequently used tools include vector & image editors (programming: only 2 people).

Procedure
- A 60 min session with a 15 min tutorial
Informal usability evaluation with designers.

Participants
- 13 master student designers (architecture, urban planning, and infographic design etc)
- 2 ~ 10 years of experience in infographic design.
- Frequently used tools include vector & image editors (programming: only 2 people).

Procedure
- A 60 min session with a 15 min tutorial
- Pre-task and post-task surveys
Informal usability evaluation with designers.

Participants
- 13 master student designers (architecture, urban planning, and infographic design etc)
- 2 ~ 10 years of experience in infographic design.
- Frequently used tools include vector & image editors (programming: only 2 people).

Procedure
- A 60 min session with a 15 min tutorial
- Pre-task and post-task surveys
- 2 replication tasks
- 1 creative task

* We did not measure time
Results

Creative Tasks

- Two selected infographics created by participants.

Data: GDP of G5 Countries.
Results

Creative Tasks

- Two selected infographics created by participants.

Post-task surveys (5-point Likert scale)

1. Interactions with DDG were intuitive. ($\mu = 4.0, \sigma = 0.71$)

Data: GDP of G5 Countries.
Creative Tasks

Post-task surveys (5-point Likert scale)

1. Interactions with DDG were intuitive. ($\mu=4.0$, $\sigma=0.71$)

2. DDG is useful for positioning and measuring custom shapes based on data compared to rulers or grids. ($\mu=4.7$, $\sigma=0.63$)
Results

Creative Tasks
• Two selected infographics created by participants.

Post-task surveys (5-point Likert scale)
1. Interactions with DDG were intuitive. ($\mu=4.0$, $\sigma=0.71$)

2. DDG is useful for positioning and measuring custom shapes based on data compared to rulers or grids. ($\mu=4.7$, $\sigma=0.63$)

3. DDG is useful for designing creative and expressive infographics ($\mu=4.9$, $\sigma=0.38$)

Data: GDP of G5 Countries.
Results: qualitative feedback

“Currently, I need a calculator to make data graphic, which is pretty arduous. This tool makes it much easier to try things out and experiment with the graphics.” - P10.
Results: qualitative feedback

“Currently, I need a calculator to make data graphic, which is pretty arduous. This tool makes it much easier to try things out and experiment with the graphics.” - P10.

“I think that this would be a wonderful aid in creating graphics for architectural representations.” - P3.
Results: qualitative feedback

“Currently, I need a calculator to make data graphic, which is pretty arduous. This tool makes it much easier to try things out and experiment with the graphics.” - P10.

“I think that this would be a wonderful aid in creating graphics for architectural representations.” - P3.

“I usually do very analytical infographics, using traditional forms like bars or circles. Because of that, I’m not quite sure if data guides might be very useful” - P5.
Limitations

1. *Data-driven guides currently works with a tabular dataset.*

<table>
<thead>
<tr>
<th>Guide Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr</td>
</tr>
<tr>
<td>55</td>
</tr>
</tbody>
</table>
Limitations

1. Data-driven guides currently works with a tabular dataset.

<table>
<thead>
<tr>
<th>Guide Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr</td>
</tr>
<tr>
<td>55</td>
</tr>
</tbody>
</table>

2. Difficult to generate guide elements such as axes and legends.
Limitations

1. Data-driven guides currently works with a tabular dataset.

<table>
<thead>
<tr>
<th>Guide Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Apr</td>
</tr>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

2. Difficult to generate guide elements such as axes and legends.

3. Other visual variables have to be manually encoded such color or angle.
Future work

1. *Reusable* creative infographic *templates*.
Future work

1. Reusable creative infographic templates.

2. Data-driven guides for other visual variables.
Future work

1. *Reusable creative infographic templates.*

2. *Data-driven guides for other visual variables.*
 - Color, angle, shape, slope etc.

3. *Intelligent systems for automatically providing design feedback.*
Data Driven Guides: Supporting expressive design for Information graphics

www.namwkim.org/ddg