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Abstract

We describe a set of image editing and viewing tools that
explicitly take into account the resolution of the display on
which the image is viewed. Our approach is twofolds. First,
we design editing tools that process only the visible data,
which is useful for images larger than the display. This en-
compasses cases such as multi-image panoramas and high-
resolution medical data. Second, we propose an adaptive
way to set viewing parameters such brightness and contrast.
Because we deal with very large images, different locations
and scales often require different viewing parameters. We
let users set these parameters at a few places and interpo-
late satisfying values everywhere else. We demonstrate the
efficiency of our approach on different display and image
sizes. Since the computational complexity to render a view
depends on the display resolution and not the actual input
image resolution, we achieve interactive image editing even
on a 16 gigapixel image.

1. Introduction

Gigapixel images are now commonplace with dedicated de-
vices to automate the image capture [2, 1, 37, 24] and im-
age stitching software [5, 12]. These large pictures have
a unique appeal compared to normal-sized images. Fully
zoomed out, they convey a global sense of the scene, while
zooming in lets one dive in, revealing the smallest details,
as if one were there. In addition, modern scientific instru-
ments such as electron microscopes or sky-surveying tele-
scopes are able to generate very high-resolution images for
scientific discovery at the nano- as well as at the cosmo-
logical scale. We are interested in two problems related to
these large images: editing them and viewing them. Edit-
ing such large pictures remains a painstaking task. Al-
though after-exposure retouching plays a major role in the
rendition of a photo [3], and enhancing scientific images is
critical to their interpretation [9], these operations are still
mostly out of reach for images above 100 megapixels. Stan-
dard editing techniques are designed to process images that
have at most a few megapixels. While significant speed
ups have been obtained at these intermediate resolutions,

e.g. [15, 17, 18, 28], major hurdles remain to interactively
edit larger images. For instance, optimization tools such
as least-squares systems and graph cuts become unpractical
when the number of unknowns approaches or exceeds a bil-
lion. Furthermore, even simple editing operations become
costly when repeated for hundreds of millions of pixels. The
basic insight of our approach is that the image is viewed on
a display with a limited resolution, and only a subset of the
image is visible at any given time. We describe a series
of image editing operators that produce results only for the
visible portion of the image and at the displayed resolution.
A simple and efficient multi-resolution data representation
(§ 2) allows each image operator to quickly access the cur-
rently visible pixels. Because the displayed view is com-
puted on demand, our operators are based on efficient im-
age pyramid manipulations and designed to be highly data
parallel (§ 3). When the user changes the view location or
resolution we simply recompute the result on the fly.

Further, editing tools do not support the fact that very large
images can be seen at multiple scales. For instance, a high-
resolution scan as shown in the companion video reveals
both the overall structure of the brain as well as the fine
entanglement between neurons. In existing software, set-
tings such as brightness and contrast are the same, whether
one looks at the whole image or at a small region. In com-
parison, we let the user specify several viewing settings for
different locations and scales. This is useful for emphasiz-
ing different structures, e.g. on a brain scan, or expressing
different artistic intents, e.g. on a photo. We describe an in-
terpolation scheme motivated by a user study to infer the
viewing parameters where the user has not specified any
settings (§ 4). This adaptive approach enables the user to
obtain a pleasing rendition at all zoom levels and locations
while setting viewing parameters only at a few places.

The novel contributions of this work are twofolds. First,
we describe editing operators such as image stitching and
seamless cloning that are output-sensitive, i.e., the associ-
ated computational effort depends only on the display res-
olution. Our algorithms are based on Laplacian pyramids,
which we motivate by a theoretical study of the constraints
required to be display-aware. Second, we propose an inter-
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polation scheme motivated by a user study to infer viewing
parameters where the user has not specified any settings.
We illustrate our approach with a prototype implemented
on the GPU and show that we can interactively edit very
large images as large as 16 gigapixels.

1.1. Related Work

The traditional strategy with large images is to process them
at full resolution and then rescale and crop according to the
current display. As far as we know, this is commonly used
in commercial software. However, this simple approach
becomes quickly unpractical with large images, especially
with optimization such as graph cuts and Poisson solvers.

Fast image filters have been proposed to speed up opera-
tions such as edge-aware smoothing [32, 15, 4, 16, 18],
seamless compositing [17, 5, 22], inpainting [10], and se-
lection [28]. Although these algorithms reduce the com-
putation times, they have been designed for standard-size
images and the entire picture at full resolution is eventually
processed. In comparison, we propose display-aware algo-
rithms that work locally in space and scale such that only
the visible portion of the data is processed.

Berman et al. [11] and Velho and Perlin [36] describe multi-
scale painting systems for large images based on wavelets.
From an application perspective, our work is complemen-
tary as we do not investigate methods for painting but rather
for adaptive viewing and more advanced editing such as
seamless cloning. Technically speaking, our methods op-
erate in a display-aware fashion, and not in a multi-scale
fashion. That is, we apply our edits on-the-fly to the current
view and never actually propagate the results to all scales.
Further, it is unclear how to extend the proposed approach
from painting to algorithms such as seamless cloning. Pin-
heiro and Velho [34] and Kopf et al. [24] propose a multi-
resolution tiled memory management system for viewing
large data. Our data management follows similar design
principles, but supports multiple input images that can be
aligned to form a local image pyramid on-the-fly without
managing a pre-built global multiresolution image pyra-
mid. It also naturally supports out-of-core computations on
graphics hardware with limited memory.

Kopf et al. [24] applies a histogram-based tone-mapper to
automatically adjust the current view of large HDR images.
Our work can also be automatic but also let the user to over-
ride the default settings as many times as desired. This al-
lows users to make adjustments that adapt to the current
view and may reflect subjective intents. Furthermore, we
propose more complex output-sensitive algorithms for tasks
such as seamless cloning. Efforts have also been made to
develop viewers suitable for multi-layer gigapixel medical
data interactively [7]. In comparison, we focus single-layer

images and also tackle editing issues.

Shantzis [35] describes a method to limit the amount of
computation by only processing the data within the bound-
ing box of each operator. We extend this approach is several
ways. Unlike Shantzis, we deal with changes of zoom level
and ignore the high-frequency data when they are not visi-
ble. This property is nontrivial as we shall see (§ 3.1). We
also design new algorithms that enable display-aware pro-
cessing such as our stitching method based on local compu-
tation only. In comparison, the standard method based on
graph cut is global, i.e. the bounding box would cover the
entire image. Further, we also deal with viewing parame-
ters, which is not in the scope of Shantzis’ work.

2. Data Representation

A major aspect of our approach is that the view presented to
the user is always computed on the fly. From a data struc-
ture point of view, this implies that the displayed pixel data
have to be readily available and that we can rapidly deter-
mine how to process them. To achieve this, we use several
mechanisms detailed in the rest of this section.

2.1. Global Space and Image Tiles

Our approach is organized around a coordinate system in
which points are located by their (x, y) spatial location and
the scale s at which they are observed. A unit scale s = 1
corresponds to the full-resolution data, while s = 1

n corre-
sponds to the image downsampled by a factor of n. We use
this coordinate system to define global space in which we
locate data with respect to the displayed image that the user
observes (Fig. 1). Typically, we have several input images
that make up, e.g., a panorama. For each image Ii, we first
compute a geometric transformation gi that aligns it with
the others by specifying its location in global space. If we
have only one input image, then g is the identity function.
The geometric alignment can either be pre-computed before
the editing session, or each image can be aligned on the fly
when it is displayed. In the former case, we use feature
point detection and homography alignment, e.g. [12]. In the
latter case, the user interactively aligns the images in an ap-
proximate manner. We then automatically register them in a
display-aware fashion by maximizing the cross-correlation
between visible overlapping areas. This is useful for im-
ages that are being produced on-line by automated scien-
tific instruments. We decompose all input images into tiles.
For each tile, we pre-compute a Gaussian pyramid to enable
access to any portion of the input images at arbitrary reso-
lutions. For resolutions that we have not pre-computed we
fetch the pyramid level with a resolution just higher than the
requested one and downsample it on the fly. The resampling
step is essentially free on graphics hardware, and although

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCP
#****

ICCP
#****

ICCP 2011 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

we load more data than needed, the overhead is small com-
pared to loading the full-resolution tile or the entire input
image. We further discuss the computational complexity of
this operation in Section 5.

2.2. Operator Representation

We distinguish two types of operators. Local operators,
such as copy-and-paste or image cloning, affect only a sub-
set of the image. We store their bounding box in global
space as well as an index that indicates in which order the
user has performed the edits. We did not include scale s in
this representation because we could not conceive of any re-
alistic scenarios in which a local operator would apply only
at certain scales, but including it would be straightforward
if needed. When the user moves the display to a new po-
sition, the viewport defines a display rectangle at a given
scale in global space. We test each operator and keep only
the ones whose bounding box intersect with the viewport.
In our current implementation operators are stored in a list
and we test them all since bounding box intersections are
efficient. Once we have identified the relevant operators,
we apply them in order to the visible pixels at the current
resolution. The global operators brightness, contrast, and
saturation, affect all the pixels. We apply these transforma-
tions after the local operators and always in the same order:
brightness, contrast, saturation. If the user modifies a set-
ting twice, we keep only the last one. We found that it is
beneficial to let users specify different values at different
positions and scales. In this case, we store one setting at
each (x, y, s) location where the user makes an adjustment
and interpolate these values to other locations (§ 4).

3. Local Operators

In this section, we describe local editing operators. The al-
gorithms are designed to be display-aware, that is, we pro-
cess only the visible portion of the image at the current res-

olution and perform only a fixed amount of computation
per pixel. We first study these operators from a theoretical
standpoint and then illustrate our strategy on two specific
tasks: seamless cloning and panorama stitching.

3.1. Theoretical Study

We study the requirements that an operator f must satisfy to
be display-aware. The function f takes an image I as input
and creates an image O as output, that is, O = f(I). To be
display-aware, f must be able to compute the visible por-
tion of the output using only the corresponding input data.
First, we characterize how the visible portion of an image
relates to the full-resolution data. We consider an image X .
To be displayed,X is resampled at the screen resolution and
cropped. We only consider the case where the screen reso-
lution is lower than the image resolution. The opposite case
is only about interpolating pixel values and does not need a
special treatment. Downsampling the imageX is done with
a low-pass filter ` followed by a comb filter. Assuming a
perfect low-pass filter, ` is a multiplication by a box filter
in the Fourier domain. After this, the comb filter does not
remove any information and we can ignore it. The other ef-
fect of displaying the image on a screen is that only part of
it is visible. This is a cropping operation c that is a multi-
plication by a box function in the image domain. We define
the operator s(X) = c(`(X)) that displays X on a screen.

To be display-aware, f must satisfy s(f(I)) = f(s(I)),
that is, we must be able to compute the visible portion of
the output s(f(I)) using only the visible portion of the in-
put s(I). A sufficient condition is that f commutes with `
and c. ` can be any arbitrary box centered in the Fourier do-
main. To commute with it, f must be such that the content
of f(X) at a frequency (u0, v0) depends only on the content
of X at frequencies |u| ≤ |u0| and |v| ≤ |v0|. The ratio-
nale is that these frequencies are preserved by ` even if its
cut-off is (u0, v0). The crop function c applies an arbitrary

y

x

scale

low res.

aligned image
domains

local operator 2
(out of view)

local operator 1
(active) viewport

tile
pyramidtiles

input images

editing operators

cached data global space

local 1: cut-and-paste
local 2: texture enhancement
... 
global 1: contrast
global 2: brightness
...

global 
operator 1

global operator 2

high res.

Figure 1. Our approach is based on a caching scheme that ensures that the pixel data are readily available to the editing algorithms. We
decompose each input image into tiles and compute a multi-resolution pyramid for each tile. We register the tiles into a common coordinate
system, the global space. We determine the visible tiles by intersecting them with the viewport rectangle. To the display pixels we either
apply local operators with a bounding box that intersects the viewport or interpolated global operators such as brightness and contrast.
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box in image space. For f to commute with it, it must be a
point-wise operator since there is no guarantee that adjacent
pixels are available. However, these two conditions are too
strict to allow for any useful filter. We relax the latter one
by considering an “extended screen”. For instance, for an
operator based on 5×5 windows, add a 2-pixel margin. We
apply a similar relaxation in the Fourier domain by adding
a “frequency margin”, i.e., the input image is resampled at
a slightly higher resolution, typically the closest power-of-
two resolution. In both cases, the number of processed pix-
els remain on the same order as the display resolution.

A strategy to satisfy these requirements is to decompose the
image I into a Laplacian pyramid and process each level in-
dependently and locally. If a process generates out-of-band
content, we could post-process the levels to remove this
spurious content but we did not find it useful in the exam-
ples shown in this paper. This approach yields data-parallel
algorithms since constructing a Laplacian pyramid involves
purely local operations and so do our display-aware filters.

3.2. On-the-fly Image Alignment and Stitching

Existing large-scale image viewers require a globally
aligned and stitched full-resolution panorama to build a
multiresolution image pyramid [24, 34]. Poisson com-
positing is commonly used to stitch multiple images into
a panorama [25, 5], but for very large images even opti-
mized methods become costly. Further, recent automated
image scanners [21] can produce large images at a speed of
up to 11 GB/s. In such a scenario, it is useful to get a quick
overview of the entire image with coarse alignment, and to
refine the alignment on-the-fly as the user zooms in.

Our on-the-fly alignment assumes that the input images are
approximately in the right position in global space. This
is the case for automated panorama acquisition systems
and scientific instruments. Otherwise, the user can manu-
ally align them or run an feature detection algorithm such
as [12]. We first adjust the images to have the same ex-
posure and white balance. The affine transformation be-
tween images is then automatically refined by maximizing
cross-correlation between overlapping regions. We imple-
mented this using gradient descent on the GPU. The align-
ment is computed for the current zoom level and automat-
ically refined when the user zooms further (see the video,
note that in video, refinement is not automatic so that its
effect is visible). We stitch the images using the pyramid-
based scheme of Burt and Adelson [14]. At each pixel with
an overlap, we select the image which border is the far-
thest, yielding a binary mask for each input Ii. We com-
pute Gaussian pyramids Gi from these masks and Lapla-
cian pyramids Li from the input images Ii. We linearly
blend each level n independently to form a new Laplacian
pyramid L̂n =

∑
iG

n
i L

n
i /

∑
iG

n
i . Finally, we collapse

the pyramid L̂ to obtain the result.

3.3. Push-Pull Image Cloning

Seamless copy-pasting is a standard tool in editing pack-
ages [33, 20]. Most implementations rely on solving the
Poisson equation and even if optimized algorithms ex-
ist [5, 30, 22], this strategy requires to access every pixel
at the finest resolution, which does not suit our objec-
tives. Farbman et al. [17] exploit that seamless cloning
boils down to smoothly interpolating the color differences
at the foreground-background boundary and propose an
optimization-free method based on a triangulation of the
pasted region. Although it might be possible to adapt Farb-
man’s triangulation to our needs, we propose a pyramid-
based method that naturally fits our display-aware context
thanks to its multi-scale formulation, and that does not in-
cur the triangulation cost.

We perform a push-pull operation [13] on the color differ-
ences at the boundary. We consider a background image
B and a foreground image F with a binary mask M . We
compute the color offset O = B − F for each pixel on the
boundary ofM . During the pull phase, we build a Gaussian
pyramid from the O values. Since O is only defined at the
mask boundary, we ignore all the undefined values during
this computation and obtain a sparse pyramid where only
some pixels have defined values (and most are empty). Then
we collapse the pyramid starting from the coarsest level. In
particular, we push pixels with a defined value down to pix-
els at finer levels that are empty. To avoid blockiness, we
employ a bicubic filter during the push phase. This process
smoothly fills in the hole [13] and generates an offset map
that we add to the foreground pixels before copying them
on top of the background.

We apply this process in a display-aware fashion by consid-
ering only the visible portion of the boundary. When the
user moves the view, appearing and disappearing bound-
ary constraints can induce flickering. Since the offset mem-
brane O is smooth, flickering is only visible near the mask
boundary. Thus, we run our process on a slightly extended
viewport so that flickering occurs outside the visible region.
In practice, we found that extending it by 20 pixels in each
direction is enough. Zooming in and out can also cause
flickering because the alignment between the boundary and
the pyramid pixel grid varies. We address this issue by scal-
ing the data to the next power-of-two, which ensures that
the alignment remains consistent.

4. Global Operator Interpolation
For global operators, we have implemented the traditional
brightness, contrast, and saturation adjustments. These op-
erators raise specific issues in the context of large images.
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(a) Output of Farbman et al. (b) Our result

Figure 2. Although our result and the output of Farbman et al. [17]
are not the same, both are satisfying. The input images and Farb-
man’s result come from [17].

Figure 3 shows the difference between an image that is fully
zoomed out and fully zoomed in on a shadow region. The
same viewing settings cannot be applied to both images.
Our solution is adapt the parameters to the location and
zoom level. Our approach is inspired by the automatic tone-
mapping described by Kopf et al. [24]. Similarly to this
technique, our approach can be fully automatic but we also
extend it let the user control the settings and offer the pos-
sibility to specify different parameters at different locations
in the image. We conducted a user study to gain intuition
on how to adapt parameters to the current view.

4.1. User Study

We ran a study on Amazon Mechanical Turk where we
asked users to adjust the brightness, contrast and saturation
of a set of 25 images. The set consisted of 5 crops at var-
ious locations and zoom levels from each of 10 different
panoramas, for a total of 50 images. We asked the users
to adjust the images to obtain a pleasing rendition that was
“like a postcard: balanced and vibrant, but not unnatural.”
Users adjusted brightness, contrast, and saturation, and the
initial positions of the sliders were randomized. In total, 27
unique users participated in our study. However, some users
made random adjustments to collect the fee. We pruned
these results through an independent study, where different
users chose between the original and edited images to se-
lect which image in the pair was more like a postcard. We
kept the results of a given user if his images received at least
65% positive votes. After this, 20 unique users remained.

To analyze a user’s edits, we converted the input and output
images into the CIE LCH colorspace. As an initial analy-
sis, and inspired by the work on photographic style of Bae
et al. [8], we compare the space of lightness histograms be-
fore and after editing. We estimate the size of each space by
summing the Earth Mover’s Distance (EMD) [27] between
all pairs of lightness histograms. If the histogram actually
characterizes a user’s preference, we expect the size of this
space to be smaller after the edits. On average, a user’s edits
reduced the size of the histogram space by 46% compared to
the randomized inputs that the user saw, and by 14% com-
pared to the original non-randomized images (not seen by

zoomed out image
(437 Mpixels)

edited view edited view

new unedited view
without any adjustment

new unedited view
with our adjustment

inv.
CDF

inv.
CDF

linear blend

interpolated
inv. CDF

L1 fit

inv.
CDF

Figure 3. We infer viewing parameters from nearby edits per-
formed by the user. Our scheme linearly interpolates the inverse
CDFs of the nearby views and fits brightness and contrast param-
eters to approximate the interpolated inverse CDF in the L1 sense.

the users), which confirms that the histogram characterizes
users’ preference. We also analyzed the variance in the dis-
tance measurements. We found that all users decreased the
variance in histogram distances as compared to the original
images. These findings suggest that an interpolation scheme
that decreases histogram distances is a good model of user
preferences when editing images.

4.2. Propagation of Edits

The goal of edit propagation is to determine a set of param-
eters for the current view based on other edits in the image.
In the user study, we observed that users tend to make the
histograms of images more similar. Accordingly, our ap-
proach seeks parameters that make the current histogram
close to the histograms of nearby edited regions. The fully
zoomed out view always counts as an edited region even
if the user keeps the default settings. If the user does not
specify any edit, our method is fully automatic akin to the
Kopf’s viewer [24] and uses the zoomed out view as ref-
erence. However, the user can specify edits at any time
and out method starts interpolating the user’s edits. Let
(xv, yv, sv) be the spatial and scale coordinates of the cur-
rent view. We combine the histograms of the k closest ed-
its into a target histogram. We use the Earth Mover’s Dis-
tance on the image histograms to find these nearest neigh-
bors. This metric can be interpreted as a simple scene sim-
ilarity that can be computed efficiently unlike more com-
plex methods [31]. Drawing from work on texture synthe-
sis [29], we interpolate the inverse cumulative distribution
functions (CDF): C−1t =

∑k
i=1 wi C

−1
i /

∑k
i=1 wi, where

Ct is the target CDF created by linearly combining nearby
CDFs Ci with weights wi. We use inverse distances in his-
togram space as weights: wi = 1/d(Hv, Hi)

2 where Hv is
the histogram of the current view, Hi is the unedited his-
togram of the i-th neighboring edit, and d(·) is the EMD
function. Once we have the target inverse CDF, we fit a lin-
ear model of brightness and contrast change to best match

5
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the inverse CDF of the current view C−1v to the target. That
is, we seek α and β so that αC−1v + β is close to C−1t . We
found that a least-squares solution overly emphasizes large
differences in the inverse CDFs and does not account for
clipping (values above 1 or below 0). We use an iteratively
reweighted least-squares algorithm with weights γj that are
low outisde [0; 1] and that decrease the influence of large
differences,

γj =

{
ε if αC−1v (j) + β 6∈ [0; 1]

1
|αC−1

v (j)+β−C−1
t (j)| otherwise

(1)
where ε = 0.001. If we ignore the weights outside [0; 1],
this scheme approximates a L1 minimization [19]. Figure 3
and the companion video illustrate our approach.

5. Results
The companion video shows a sample editing session with
our display-aware editing prototype. The main advantage
of our approach is that editing is interactive. In comparison,
seamless cloning using Adobe Photoshop can take several
minutes for large copied region. Because of its slowness,
retouching with a tool such as Photoshop is limited to the
most critical points and overall, the image is left untouched,
as it has been captured. Our approach addresses this issue
and makes it easier to explore creative edits and variations
since feedback is instantaneous.

5.1. Complexity Analysis

We analyze the computational complexity of our editing ap-
proach by first looking at the cost of fetching the visible data
from our data structure and then at the editing algorithms.

Preparing the Visible Data For a wdis × hdis display and
wtile × htile tiles, the number of tiles that we load is less
than (wdis/wtile + 1)× (hdis/htile + 1). When we apply ge-
ometric transformations to the tiles, these introduce limited
deformations and can be taken into account with a small
increase of wtile and htile. Since we have pre-computed the
tiles at all 1

2n scales, we load at most four times as many pix-
els as needed. Last, we may have several input images but
we do not load any data for the images outside the current
view. Put together, this ensures that we handle an amount of
data on the order of O(kdis ℵdis) where kdis is the number of
visible input images and ℵdis = wdis × hdis is the resolution
of the display. With our scheme, loading the visible image
data has a cost linear with respect to the display size. This
is important in applications where images are transmitted,
e.g., from a photo sharing website to a mobile device.

Editing Operators The per-pixel processes such as the
viewing adjustments and the classifier-based selection are
in O(ℵdis) since they do a fixed amount of computation for

each pixel. The pyramid-based operators such as texture
enhancement runs the same process for each pyramid coef-
ficient. Since a pyramid has 4/3 times as many pixels as the
image, these operators are also linear with respect to the dis-
play resolution ℵdis. The stitching operator processes all the
kdis visible images, which introduces a factor kdis. This en-
sures aO(kdis ℵdis) complexity, and since loading the data is
also linear, our entire pipeline has a linear complexity with
respect to the display size.

5.2. Accurate Results from Low Resolution Only

We verify that our operators commute with the screen op-
erator discussed in Section 3.1 by comparing their results
computed at full resolution rescaled to the screen resolution
with the result computed directly from the data at screen
resolution. Figure 4 shows that our push-pull compositing
produces indistinguishable results in both cases, that is, we
can compute the exact result directly at screen resolution
without resorting to the full-resolution data. In comparison,
the scheme used in Photoshop [20] produces significantly
different outputs.

We performed the same test for image stitching using Pho-
toshop and our scheme (§ 3.2). Both produce visually in-
distinguishable results, however Photoshop is significantly
slower because even its optimized solver [5] becomes slow
on large images, e.g. a minute or more for several high-
resolution images. In comparison, our scheme runs interac-
tively and is grounded on a theoretical study (§ 3.1).

5.3. Running Times

We tested our prototype editing system on a Windows PC
equipped with an Intel Xeon 3.0 GHz CPU with 16 GB
of system memory and an NVIDIA Quadro FX 5800 GPU
with 4 GB of graphics memory. Figure 5 provides the per-
formance result of our system. We measured the average
frame rate of the system while applying the global operators

composite then
downsample

downsample then
composite

(a) Photoshop (24dB)

composite then
downsample

downsample then
composite

(b) our method (45dB)

Figure 4. For Photoshop and our approach, we compute a com-
posite and then downsample it (shown on the left halves of the
images) and compare the output to the composite computed di-
rectly on downsampled data (the right halves). Whereas Photo-
shop produces different results (a), our method generates visually
indistinguishable images (b).
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Figure 5. Timings of the global operators running on various
screen and input sizes. The performance of our display-aware al-
gorithms depends on the screen size and not on the size of the data.

to the image at arbitrary locations. We gradually change the
viewpoint and zoom level during the test to reduce cache
memory effect in a realistic setup. Our timings include data
transfers so that we measure the time that a user actually
perceives when working with our prototype. Note that I/O
operations are often excluded from the measures of other
methods, e.g. [17].

We tested the operators on five different screen sizes, from
512 × 384 (0.2 megapixels) to 2048 × 1536 (3 megapix-
els), and three different size of input images, from 0.3 to
16 gigapixels. The result shows the benefit of display-
aware editing: the frame rate is not affected by the input
image size (three plots are almost identical in Figure 5)
but is highly correlated with the screen size (frame rates
drop as the screen size increases in Figure 5). Note that
the 16-gigapixel brain image is much larger than the size of
graphics memory we used, but the frame rate is similar to
a 0.3-gigapixel image. In addition, the construction of the
Gaussian and Laplacian pyramids for a 1024 × 768 screen
resolution took only 11 ms, which enables the execution
pyramid-based image operators on-the-fly without using a
pre-built global image pyramid. Our on-the-fly image reg-
istration runs on a fixed-size grid and is highly paralleliz-
able, and takes 50 to 100 ms in our prototype implemen-
tation. The numbers in Figure 5 show that our algorithms
are fast and that our data management strategy successfully
prevents data starvation.

5.4. Validation of our Interpolation Scheme

We validate our algorithm for propagating viewing param-
eters on the user study data described in Section 4.1. The
data consists of edits from 20 users on 5 views from each
of 10 different panoramas (a total of 50 images). Using a
leave-one-out strategy for each panorama, we predict one
view using the user edits from the 4 other views. We use
the Earth Mover’s Distance between the histograms of our
predicted edit and the user’s actual edit to quantify the ac-
curacy of our prediction. On average, the difference is 3.0
with a standard deviation of 1.9. We compared our interpo-
lation scheme to simply interpolating the users’ brightness
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User Consistency
Prediction Error

Figure 6. Distribution of the differences between users’ edits and
our predictions, and between users’ edits on repeated images (see
text for details). The similarity between these distributions indi-
cates that our edit propagation reproduces users’ adjustments.

and contrast adjustments between views (i.e., interpolating
the slider positions instead of the histograms). Compared to
the users’ actual edits, this interpolation scheme produced
an average error of 3.7 with a standard deviation of 2.1.
A two-sample t-test confirms that our histogram interpola-
tion sheme has a lower error than interpolating the adjust-
ments with a p-value below 10−8. To put these errors into
perspective, we conducted an second study in which users
edited 20 images comprising 5 images appearing twice and
10 distractors. The image order was randomized such that
repeated images were not back to back. We collected 250
repeated measurements and on average, the difference was
2.8 with a standard deviation of 2.3. This result shows that
our scheme reproduces users’ adjustments within a margin
comparable to their own repeatability. Figure 6 illustrates
this point.

6. Conclusions and Future Work
Our display-aware image editing framework can effectively
handle images that otherwise would be difficult and slow to
process. A large part of the benefits of our approach comes
from the fact that we process only the visible data. When
one needs the whole image at full resolution, for instance
to print a poster, we will have to touch every single pixel
and the running times are slower. Even in those cases our
method remains fast since our editing algorithms are data
parallel. In addition, all our algorithms use the same scale-
space data structure and apply very similar operations to it,
which makes data management and out-of-core processing
easier. We envision a workflow in which the user would
first edit the image on screen, thereby enjoying the speed of
our display-aware approach, and run a final rendering at the
end, just before sending the result to an output device such
as a printer.

Although we have shown that we can support a variety of
tasks with our display-aware approach, there are a few cases
that are difficult. Optimization-based techniques require to
access every pixel which makes them overly slow on large
images. This prevents the use of some algorithms such as
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error-tolerant and highly discriminative selections [6, 26].
Related to this issue, algorithms akin to histogram equal-
ization manipulate every pixel and become unpractical on
large images. A solution is to apply them at lower resolu-
tion and to upsample their results [23]. Nonetheless, de-
veloping a display-aware version of these algorithms is an
interesting avenue for future work. We also imagine that
other novel display-aware algorithms will be developed in
the future. Ultimately, processing and data storage are get-
ting cheaper, making the need for on-the-fly computation
of large images more pressing. In addition, we envision
that our framework could be efficiently implemented to edit
high-resolution photographs, e.g., from a digital SLR, on
commodity mobile devices.
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