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Abstract

While several methodologies have been proposed for the daunting task of domain
generalization, understanding what makes this task challenging has received little
attention. Here we present SemanticDG (Semantic Domain Generalization): a
benchmark with 15 photo-realistic domains with the same geometry, scene layout
and camera parameters as the popular 3D ScanNet dataset, but with controlled
domain shifts in lighting, materials, and viewpoints. Using this benchmark, we
investigate the impact of each of these semantic shifts on generalization indepen-
dently. Visual recognition models easily generalize to novel lighting, but struggle
with distribution shifts in materials and viewpoints. Inspired by human vision, we
hypothesize that scene context can serve as a bridge to help models generalize
across material and viewpoint domain shifts and propose a context-aware vision
transformer along with a contrastive loss over material and viewpoint changes
to address these domain shifts. Our approach (dubbed as CDCNet) outperforms
existing domain generalization methods by over an 18% margin. As a critical
benchmark, we also conduct psychophysics experiments and find that humans
generalize equally well across lighting, materials and viewpoints. The bench-
mark and computational model introduced here help understand the challenges
associated with generalization across domains and provide initial steps towards
extrapolation to semantic distribution shifts. We include all data and source code
in the supplement, and will make it publicly available upon publication.

1 Introduction

Domain generalization refers to the challenging setting where a model is trained on a set of related
source domains and then evaluated on an out-of-distribution (OOD) target domain [1]. While several
methodologies have been proposed for this task [2, 3, 4, 5, 6, 7, 8, 9], it remains unclear what
aspects of domain shift make generalization challenging in the first place. This gap in understanding
is in part because the distribution shift in existing benchmarks (for instance, Photo → Cartoon)
can neither be quantified, nor disentangled into scene parameters which can be interpreted or
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controlled [10, 11, 12, 13]. To address this challenge, we present the SemanticDG benchmark. Our
benchmark contains 15 different photo-realistic domains created by reconstructing 1,288 scenes from
the popular ScanNet dataset [14] with the exact same geometry, layout and camera parameters, and
controlled variations in scene lighting, object materials, and viewpoints. This benchmark is enabled
by recent successes in inverse rendering [15] and the OpenRooms framework [16]. In Fig. 1, we show
a real-world image from ScanNet, a paired photo-realistic image from the 3D scene reconstructed
using inverse rendering and OpenRooms [16], and one image each with disentangled distribution
shifts in materials, lighting and viewpoint respectively. Objects (e.g., table) are placed in context in
these images to enable context-aware object recognition.

(a) ScanNet

Table

(b) Reconstructed

(d) Light Shift

(c) Material Shift

(e) Viewpoint Shift

Figure 1: SemanticDG benchmark: (a) Real-world image from the ScanNet dataset. (b) Paired
photo-realistic image created by reconstructing the real-world ScanNet image with matched object
geometry, scene layout and camera parameters. (c) Image created by modifying the materials of the
reconstructed image while holding viewpoint and light constant. (d) Image created by modifying
the lighting of the reconstructed image while holding viewpoint and materials constant.(e) Image
created by modifying the camera viewpoint of the reconstructed image while holding materials and
light constant. Blue bounding boxes mark the target object (table) in all images.

In line with recent work using photo-realistic data to evaluate generalization behaviour [17, 18, 19, 20],
we use our SemanticDG benchmark to isolate and quantify the impact of distribution shifts in
lighting, viewpoint and material on generalization independently. Our findings reveal significant
differences in the capability of networks to generalize across these transformations—while networks
easily generalize to novel lighting, OOD materials and viewpoints present a major challenge.

To address this challenge, we propose a general-purpose solution to improve generalization across
semantic domain shifts. Building on existing approaches for domain generalization that increase
data diversity and enforce consistency across diverse views [3, 2, 4], we increase diversity by using
multiple domains with disjoint sets of light settings, materials, and viewpoints. Furthermore, inspired
by the role of scene context in human vision [21, 20, 22, 23, 24], we hypothesize that scene context
can serve as a bridge to help generalize across semantic domain shifts, as contextual cues stay
consistent between different semantic domains. Combining these ideas, we propose a Contextual
Domain Contrastive Net (CDCNet). Our model consists of two separate streams to process the object
and context independently before fusing them via cross-attention mechanism in a transformer decoder.
To encourage CDCNet to learn robust and generic context information across domains, we apply
supervised contrastive loss on the context-modulated object representations, which attracts the latent
representations of the context where the target objects from the same object category are located, and
repels the irrelevant context. Our proposed model outperforms state-of-the-art domain generalization
methods by a large margin of over 18%, and domain adaptation methods by over 16%.

As a critical benchmark, we also conduct psychophsyics experiments on SemanticDG to quantify the
generalization capabilities of human vision. We find that humans can generalize equally well across
materials, lights and viewpoints. Furthermore, humans still outperform computational models by a
large margin in the real-world images, highlighting the challenges of domain generalization.

The key contributions in this study are:

2



• Releasing SemanticDG, the first domain generalization benchmark with controlled and
disentangled semantic domain shifts.

• Quantifying what makes domain generalization hard—while lighting is easy, material and
viewpoint shifts present a challenge for networks.

• Showing that, unlike models, humans generalize equally well across all three domain shifts.
• Introducing a context-aware transformer model with contrastive loss that outperforms both

domain generalization and domain adaptation methods by a large margin, and learns to
generalize from synthetic images to the real-world.

2 Related Work

2.1 Domain Generalization

Existing solutions for domain generalization often rely on increasing data diversity. This includes data
augmentation techniques like MixUp [2], AugMix [3], RANDConv [4], style transfer based methods
using AdaIN [25], and adversarial approaches to increase data diversity during training [5, 6, 7, 8, 9].
Note that unlike domain adaptation, domain generalization methods do not have access to unlabelled
images from the test domain. Recent work by Zhou et al. provides a comprehensive review [26].

Beyond domain generalization, there is also significant work in generalization across transformations
like 2D rotations and shifts [27, 28], and commonly occurring perturbations like blur or noise
patterns [29, 30, 5, 31]. Recently, the community has also explored generalization to more global,
real-world transformations using photo-realistic synthetic data, which include—3D rotations [32, 33],
OOD category-viewpoint combinations [19] and incongruent scene context [20, 24]. In parallel,
detecting OOD images has also received attention [34, 35, 36, 37, 38]. These works can broadly be
divided into three categories—learning invariant representations [39, 40, 41, 42], causal representation
learning to embed priors in the learning strategy [43, 44, 45], and custom optimization methods to
enable generalization [46, 47, 48, 49].

Approaches relying on increasing data diversity are most closely related to our methodology.
However, these do not use scene context or increase diversity using lighting, material and viewpoint
variations like our proposed CDCNet.

In recent years, several benchmarks have been proposed to study domain generalization, including—
PACS [10], VLCS [11], Office-Home [12], and DomainNet [13], among others. These datasets
contain a wide variety of domains including photos, cartoons, sketches, paintings, and other artistic
renditions. However, a major challenge in these benchmarks is that the distribution shift cannot be
quantified, controlled or disentangled into scene parameters. For instance in PACS [10], it is unclear
how the Photo→ Cartoon domain shift differs from a Photo→ Art shift. Our proposed SemanticDG
was designed specifically to address this challenge.

2.2 Scene context in human and computer vision

While object representations independent of scene context have become popular in the past few years,
there is a long history of work studying the role scene context in human vision [21, 50, 51, 23, 52,
53, 24] and modelling contextual cues computationally [23, 54, 24, 20]. Recently, there have been
some efforts to understand the impact of congruent and incongruent scene context on humans and
computer vision [24, 20], and the recently proposed CRTNet [20] is designed to reason over scene
context to better generalize to incongruent scene contexts. To the best of our knowledge, the role of
context on domain generalization has not been explored before. Here we hypothesize that contextual
reasoning can help with domain generalization.

3 Semantic Domain Generalization Benchmark (SemanticDG)

Quantifiable and interpretable domain shifts are at the heart of the SemanticDG benchmark. We
recreated 1,288 real-world scenes from the 1,500 scenes available in ScanNet with the exact same
3D objects, scene layouts, class distributions and camera parameters (Fig. 1a-b). To achieve this,
we relied on recent advances in inverse rendering [15] and the OpenRooms framework [16]. With
these scenes, we created 15 different photo-realistic domains with 3 different types of domains
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Figure 2: Architecture overview for Contextual Domain Contrastive Net (CDCNet). (a) Modu-
lar steps carried out by CDCNet in context-aware object recognition. CDCNet consists of 3 modules:
feature extraction, integration of context and target information, and confidence-modulated classi-
fication. CDCNet takes the cropped target object It and the entire context image Ic as inputs and
extracts their respective features. These feature maps are tokenized and information from the two
streams is integrated over multiple cross-attention layers. CDCNet also estimates a confidence score
p for recognition using the target object features alone, which is used to modulate the contributions
of Ft and Ft,c in the final weighted prediction yp. (b) To help CDCNet learn generic representations
across domains, we introduce contrastive learning on the context-modulated object representations
Ft,c in the embedding space. Target and context representations for objects of the same category are
enforced to attract each other, while those from different categories are enforced to repel. Pairs for
contrastive learning are generated using various material, lighting or viewpoint shifts (see Sec. 4).

shifts including—lighting shift, material shift, viewpoint shift (Fig. 1c-e). Each domain contains
only one domain shift at a time. We rendered 19,800 images for each domain, which results in a total
of 70k object instances from 13 indoor object categories overlapping with ScanNet (more details
in Supplement). Across all domains, this amounts to roughly 300k images, and over 1 million object
instances. Below, we explain how different domain shifts were created.

Material shift domains: We used 300 high quality, procedural materials from Adobe Stock
including wood materials, fabrics, floor and wall tiles, and metals, among others. These were split
into 6 sets of 50 materials each to create 6 different material domains, as shown in Fig. 4(a). For each
domain, its 50 materials were randomly assigned to scene objects to ensure high material diversity.
One domain was held out for testing (OOD Materials), and the rest were used for training.

Light shift domains: As ScanNet scenes contain both indoor and outdoor lighting, we controlled
outdoor lighting by using 300 different High Dynamic Range (HDR) environment maps from the
Laval Outdoor HDR Dataset [55] and OpenRooms. These were split into 6 sets of 50 environment
maps each (one set per domain). To create disjoint sets of indoor lighting, we split the HSV color space
into 6 different chunks of disjoint hue values and sampled indoor light color and intensity from one
chunk per domain. One domain was held out for testing (OOD Light), and the rest used for training.

Viewpoint shift domains: Controlling object viewpoints presents a challenge as objects like chairs
and trash-cans are seen across a wide variety of azimuth angles (i.e., side vs front) across 3D scenes.
Thus, to create disjoint viewpoint domains we chose to control the zenith angle by changing the
height at which the camera is focusing. Due to difficulty in obtaining viable camera views with
minimal occlusion, we created only four viewpoint train domains and one OOD Viewpoint domain.

Geometry domain shift: We created one additional test domain with deformed object meshes using
a combination of three basic operations in blender—(1) randomly pushing or pulling object vertices,
(2) applying a shear, and (3) mesh spherization by moving vertices towards the center. Sample images
are available in the supplement. Only one test domain (OOD Geometry) was created with this shift.
No models were trained with geometric deformations.
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4 CDCNet: Contextual Domain Contrastive Net

A schematic of the proposed Contextual Domain Contrastive Net (CDCNet) is shown in Fig 2.
We start with the Context-aware Transformer Network as the backbone [20] and introduce critical
modification of contrastive learning described below to enable generalization across semantic shifts.

4.1 Feature Extraction in Context-aware Recognition using a Cross-attention Transformer

The context-aware recognition model in [20] achieved superior performance in in-context object
recognition when the training and test data are from the same domain. Here, we used the same
backbone and briefly introduce the network architecture below (see [20] for implementation details).

Given the training dataset D = {xi, yi}ni=1, CDCNet is presented with an image xi with multiple
objects and the bounding box for a single target object location. Ii,t is obtained by cropping the input
image xi to the bounding box whereas Ii,c covers the entire contextual area of the image xi. yi is the
ground truth class label for Ii,t. In this subsection, we focus on extracting context and target features
in the embedding space and omit the index i for simplicity. Inspired by the eccentricity dependence
of human vision, CDCNet has one stream that processes only the target object (It, 224× 224), and a
second stream devoted to the periphery (Ic, 224× 224) which processes the contextual area.

The context stream is a transformer decoder, taking Ic as the query input and It as the key and value
inputs. The network integrates object and context information via hierarchical reasoning through a
stack of cross-attention layers in the transformer, extracts context-integrated feature maps Ft,c and
predicts class label probabilities yt,c within C classes.

A model that always relies on context can make mistakes under distribution shifts. Thus, to increase
robustness, CDCNet makes a second prediction yt, using only the target object information alone. A
2D CNN is used to extract feature maps Ft from It, and estimates the confidence p of this prediction yt.
Finally, CDCNet computes a confidence-weighted average of yt and yt,c to get the final prediction yp.
If the model makes a confident prediction with the object only, it overrules the context reasoning stage.

4.2 Supervised Contrastive Learning for Domain Generalization

Contrastive learning has benefited many applications in computer vision tasks (e.g., [56, 57, 58, 59,
60]). However, all these approaches require sampling positive and negative pairs from real-world data.
To curate positive and negative pairs, image and video augmentations operate in 2D image planes or
spatial-temporal domains in videos. Here we introduce a simple and yet effective contrastive learning
method on 3D synthetic data, resulting in promising generalization performance in real-world data.

Our contastive learning framework builds on top of the supervised contrastive learning loss [61].
Given the training dataset D = {xi, yi}ni=1, we randomly sample N data and label pairs {xk, yk}Nk=1.
The corresponding batch pairs used for constrative learning consist of 2N pairs {x̃l, ỹl}2Nl=1, where
x̃2k and x̃2k−1 are two views created with random semantic domain shifts of xk(k = 1, ..., N) and
ỹ2k = ỹ2k−1 = ỹk. As elaborated in Sec 3, a domain shift is randomly selected from a set of
SemanticDG domains specified during training. For example, if xk is from a material domain, x̃2k
and x̃2k−1 could be images from the same 3D scene but with different materials. For brevity, we refer
to a set of N samples as a batch and the set of 2N domain-shifted samples as their multiviewed batch.

Within a multiviewed batch, let m ∈ M := {1, ..., 2N} be the index of an arbitrary domain
shifted sample. Let j(m) be the index of the other domain shifted samples originating from the
same source samples belonging to the same object category, also known as the positive. Then
A(m) :=M\{m} refers to the rest of indices in M except for m itself. Hence, we can also define
P (m) := {p ∈ A(m) : ỹp = ỹm} as the collection of indices of all positives in the multiviewed batch
distinct from m. |P (m)| is the cardinality. The supervised contrastive learning loss takes the form:

Lcontrast =
∑
m∈M

Lm =
∑
m∈M

−1
|P (m)|

∑
p∈P (m)

log
exp(zm · zp/τ)∑

a∈A(m) exp(zm · za/τ)
(1)

Here, zm refers to the context-dependent object features Fm,t,c on x̃m after L2 normalization. The
design motivation is to encourage CDCNet to attract the objects and their associated context from the
same category and repel the objects and irrelevant context from different categories.
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As previous works have demonstrated the essential role of context in object recognition [20, 24],
contrastive learning on the context-modulated object representations enforces CDCNet to learn
generic category-specific semantic representations across various domains. τ is a scalar temperature
value which we empirically set to 0.1.

Overall, CDCNet is jointly trained end-to-end with two types of loss functions: first, given any input
xm consisting of image pairs Im,c and Im,t, CDCNet learns to classify the target object using the
cross-entropy loss with the ground truth label ym; and second, contrastive learning is performed with
features Fm,t,c extracted from the context streams of CDCNet:

L = αLcontrast,c,t + Lclassi,t + Lclassi,p + Lclassi,c,t (2)

Hyperparameter α is set to 0.5 to balance the modulation effect of supervision from constrastive
learning and classification loss.

5 Experimental Details

5.1 Baseline Architectures and Hardware details

We compared CDCNet against several baselines presented below. All models were trained on NVIDIA
Tesla V100 16G GPUs. Our models converged in 30 hours, but domain generalization benchmarks
(see below) were trained for 3 days till convergence. Optimal hyper-parameters for benchmarks were
identified using random search, and all hyper-parameters are available in the supplement.

Context-aware recognition models: We include CRTNet [20] and Faster R-CNN [62]. CRTNet
fuses object and contextual information with a cross-attention transformer to reason about the class
label of the target object. We also use a modified Faster R-CNN [62] model to perform recognition
by replacing the region proposal network with the ground truth location of the target object.

2D feed-forward object recognition networks: Previous works have tested popular object recogni-
tion models in generalization tests [63, 64]. We include the same popular architectures ranging from
2D-ConvNets to transformers: DenseNet [65], ResNet [66], MobileNetV2 [67], and ViT [68]. These
models do not use context, and take the target object patch It as input.

Domain generalization and domain adaptation methods: To evaluate the impact of context on
generalization, we compare CDCNet to an array of state-of-the-art domain generalization methods
(Table 2), as these methods do not use contextual information. They take It alone as inputs. We also
present comparisons with domain adaptation variants of these models. Note that these methods use
unlabelled images from the test set during training, while our method does not.

5.2 Performance Evaluation

Evaluation of Computational models. SemanticDG comprises multiple training domains and one
OOD test domain for each type of domain shift (light, viewpoint and material) (Sec 3). Top-1
classification accuracy is reported for computational models. We also include ScanNet images for
testing generalization to the real world. See summary Table 1 for experimental protocols.

Human Behavioral Experiments. Similar to the experiments with computer vision models, we
evaluated generalization capabilities of humans on the SemanticDG benchmark using Amazon
Mechanical Turk (MTurk). In each trial, subjects were presented with a fixation cross (500 ms),
followed by a bounding box indicating the target object location (1000 ms). The image was shown
for 200 ms. After image offset, subjects typed one word to identify the target object. See Supplement
for the experiment schematics. We recruited 20 subjects per experiment, yielding 4,160 trials. Since
humans have been regularly exposed to the object categories from SemanticDG in the real world,
we removed the training phase for human experiments and directly tested humans with the same
test set as computational models. To avoid choice biases and potential memory effects, we followed
guidelines discussed in existing literature [20]. Additional details are provided in the Supplement.

6 Results

Below we present our findings on generalization capabilities of visual recognition models and humans
across semantic domain shifts. We focus on five questions—(1) What makes domain generalization
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Section Train Domains Test Domains
Light 1D OOD Light

Sec. 6.1 Material 1D OOD Material
Viewpoint 1D OOD Viewpoint

Light 1D, 2D, 3D, 4D OOD Light
Sec. 6.2 Material 1D, 2D, 3D, 4D OOD Material

Viewpoint 1D, 2D, 3D, 4D OOD Viewpoint
Sec. 6.3 Material 1D, 5D OOD Material

Light 5D OOD Light, OOD Mat, OOD Viewpoint, OOD Geometry, ScanNet
Sec. 6.4 Material 5D OOD Light, OOD Mat, OOD Viewpoint, OOD Geometry, ScanNet

Viewpoint 4D OOD Light, OOD Mat, OOD Viewpoint, OOD Geometry, ScanNet
All Domains OOD Light, OOD Mat, OOD Viewpoint, OOD Geometry, ScanNet

Table 1: Summary of experimental protocols. Sec. 6.1: For each type of domain shift (light,
material, viewpoint), a model is trained with one training domain (1D) and tested on the corresponding
OOD domain of the same type. Sec. 6.2: For each shift type, 4 models are trained with 1, 2, 3,
and 4 training domains respectively, and all models are tested on the corresponding OOD domain.
Sec. 6.3: To compare CDCNet with domain generalization and domain adaptation baselines, for each
architecture we train a model with one material domain, and another with five material domains from
SemanticDG. All models are then evaluated on the OOD Material domain. Sec. 6.4: Models trained
on all available domains for one type are evaluated on OOD domains of different shift types.

Figure 3: Generalization under light, material and viewpoint distribution shifts. Chance level = 7.6%.
All architectures consistently generalize to new lighting easily, while material and viewpoint domain
shifts present a challenge.

hard?, (2) How much does data diversity help?, (3) Do contextual cues help?, (4) Do models trained
for one type of domain shift generalize to other types of shifts?, and (5) How well do humans
generalize across these shifts?

6.1 Models generalize better across light as compared to material and viewpoint shifts

Fig. 3 reports the impact of different semantic domain shifts on a wide variety of architectures
including popular ConvNets, vision transformer, CRTNet, and FasterRCNN modified for recognition
as described in Sec. 5.1. For each domain shift type (light, material, and viewpoint), one model was
trained per architecture using one single training domain. These models were then evaluated on the
corresponding OOD domain with the same type of domain shift. There is a consistent trend across all
architectures—generalizing to new lighting is easy, while networks struggle more with both material
and viewpoint domain shifts. Despite training with only 20% of light settings (HSV space for indoor
light, and environment maps for outdoor light), models generalize well to OOD lighting. However,
there is significant room for improvement in material and viewpoint shifts.

6.2 Data diversity improves genealization

In Fig. 4(b) we present the impact of increasing data diversity on generalization across different
domain shift types. For each shift type, we trained 4 different models with the CDCNet architec-
ture using 1,2,3 and 4 training domains respectively. These models were then evaluated on the
corresponding OOD domain with the same type of shift.

Increasing data diversity helps increase performance across all three semantic domain shifts. Perfor-
mance on OOD lighting quickly plateaus, with just two domains being sufficient. A key take-away
here is that increasing material diversity can significantly help generalization to unseen materials, as
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Figure 4: Role of data diversity. (a) Sample images from four material shift domains. 3D Object
geometry, scene layout, lighting, camera viewpoint are the same for all images. Only the materials
assigned to objects are changed. (b) Performance of CDCNet as data diversity is increased. CDCNet
easily generalizes to OOD lighting, and can also generalize to OOD materials with high data diversity.
However, there is significant room for improvement in generalizing to OOD viewpoints.

the accuracy jumps from 0.76 to 0.94. Thus, with appropriate material diversity, CDCNet is able to
solve generalization to OOD materials. Note that procedural materials are highly diverse, representing
complex surfaces like metals, rocks, fabrics, and even account for photo-metric attributes like wet
vs dry rock, or rusted vs shiny metal. Thus, the increase from 50 to 200 materials during training
represents a small fraction of all possible materials. This suggests that material changes, like lighting,
are not the greatest challenge for domain generalization. The greatest challenge to generalization
comes from OOD viewpoints. While increasing diversity can improve performance, there is still
significant room for improvement.

6.3 Contextual cues improve generalization

In Table. 2, we report the results for generalization to OOD Materials for CDCNet along with a suite
of domain generalization (DG) and domain adaptation (DA) methods. We also present results for
the modified FasterRCNN model. For each architecture, we train two models—one trained with a
single training domain, and another with five training domains. Note that domain adaptation methods
had access to unlabelled images from the OOD Materials domain, while CDCNet, FasterRCNN and
domain generalization methods did not. As data diversity increases to 5 domains, our method relying
on the contrastive loss over contextual cues outperforms both domain generalization and domain
adaptation models by a large margin of 18% and 16%, respectively. Thus, even with no information
about the OOD test set, CDCNet outperforms specialized methods using unlabelled images from the
test domain. This strongly suggests that scene context has a great impact on generalization across
semantic domain shifts. The benefits of scene context significantly outweigh the benefits of using
unlabelled test domain images.

6.4 Models generalize to real-world data

We assessed how well models trained for one semantic shift perform on other semantic shifts. For
each semantic domain shift, we test CDCNet trained on all training domains of one type on OOD
domains of different types. For instance, the model trained on 5 material domains was tested on OOD
Light, OOD Viewpoint and OOD Geometry from SemanticDG. Models do not generalize across
other semantic domains as well as they generalize within the domain shift they were trained for.
Furthermore, OOD geometry causes a large drop in performance, suggesting this to be another major
challenge for domain generalization.

As a real-world test for our benchmark, we also test how well our models trained on SemanticDG
generalize to real images from the ScanNet dataset. For this, we collected roughly 8,000 object
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Task Num
Doms

AND
Mask
[69]

CAD
[70]

COR
AL
[71]

ERM
[72]

IRM
[39]

MTL
[73]

Self
Reg
[60]

VREx
[74]

Faster
RCNN
[62]

CDCNet
(ours)

DG 1 0.748 0.756 0.756 0.748 0.749 0.748 0.760 0.736 0.7 0.762
5 0.745 0.749 0.749 0.749 0.742 0.744 0.744 0.747 0.72 0.937

DA 1 0.755 0.766 0.783 0.783 0.776 0.783 0.767 0.780 N/A N/A
5 0.755 0.766 0.783 0.783 0.776 0.783 0.767 0.780 N/A N/A

Table 2: Role of contextual cues in generalization to OOD Materials. We compare CDCNet to
several domain generalization (DG) and domain adaptation (DA) methods that do not use contextual
cues. We also report numbers for the modified FasterRCNN architecture which has access to scene
context. CDCNet trained on five domains beats DG methods by over 18% and DA methods by over
16%, suggesting that contextual cues are substantially helpful in generalization across domain shifts.

Train Domain OOD Light OOD Material OOD Viewpoint OOD Geometry ScanNet
Light 5D - 0.79 0.76 0.61 0.46

Material 5D 0.96 - 0.84 0.62 0.46
Viewpoint 4D 0.73 0.73 - 0.47 0.48
All domains - - - 0.58 0.48

Humans 0.67 0.65 0.67 - 0.66
Table 3: Generalization performance of our CDCNet and humans beyond trained domain type.

instances from ScanNet spanning our 13 object categories. Our models come close to the human
upper bound of 0.66 without ever seeing real world images and despite the fact that ScanNet presents
a domain shift in all three semantic domains—lighting, materials and viewpoints.

6.5 Humans can generalize across domains in the SemanticDG benchmark

Humans generalize equally well across the OOD light, material, and viewpoint domains (Table 3).
This is in contrast with computational models (Sec. 6.1). Furthermore, humans achieve the same
accuracy of 0.66 on real-world ScanNet images, and thus, perform equally well on real-world and
domain-shifted images. This observation is again in contrast with computational models, as they
all reveal a drop in accuracy beyond the training domain. Human accuracy also outperforms the
best computational model on generalizing to ScanNet images. These findings suggest that humans
are still superior at domain generalization. Despite these findings, we emphasize that our model
CDCNet achieves significant success in closing the domain generalization gap compared to other
baselines, and also generalizes well to real-world images without being trained with real images.

A fair comparison between humans and models is challenging. While models are trained and tested
on images constructed with strict controls over the distribution shifts, the real world distribution
humans learned from is far richer and more complex to pin down. We discuss the key differences
between human and computational models in depth in the supplement.

7 Discussion

In the path towards general intelligence, we aspire to build algorithms that can readily extrapolate to
novel settings. Such an algorithm should be capable of recognizing objects across any color or shape,
scene layout, during day or night, in photographs, videos and even cartoon drawings. While we are
far from such extreme domain generalization today, understanding and characterizing the capabilities
of existing algorithms is essential to guide the AI community to prioritize the right set of problems.
Here we introduce SemanticDG, which enables rigorous and quantitative analysis of the limits of
domain generalization methods for recognition of objects embedded in complex scenes.

Through controlled analyses, we show that existing algorithms tend to generalize across light changes
better than material changes, and that both of these semantic shifts are considerably easier than
viewpoint changes. Pairing synthetic images with well-controlled real photographs with the same
objects and layout, we compare human and computer vision in their capability to generalize across
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these distribution shifts, and to recognize objects in real-world images. These results support the
general conclusion that exposure to a large array of relevant domains leads to better generalization.

Interestingly, we find several key differences between human and computer vision, which merit
further analysis—humans generalize equally well across all domain-shifted and real-world images,
and serve as an aspirational upper bound for computational methods.

The datasets introduced here, including the paired synthetic and real images, and the human bench-
mark metrics provide a strong testbed for further algorithmic development to achieve better domain
generalization. This is demonstrated in our proposed CDCNet, which brings together ideas from
neuroscience, computer graphics and computer vision in a two-stream model that incorporates object
and contextual information, and outperforms existing models by a large margin.
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Section S1 Sample images from all semantic shift domains

Below we present additional images from the SemanticDG benchmark. Each figure shows change in one scene
parameter, while holding all others constant. Fig. S1 shows five different scenes from two training domains
with a material shift. Similarly, in Fig. S2 we show images from two different light domains. Note that the first
three rows in Fig S2 show different indoor lighting conditions controlled using indoor light color and intensity
sampled from disjoint chunks of the HSV space. The last two rows show different outdoor lighting settings
created by changing the environment maps. Similarly, Fig. S3 shows viewpoint shifted domains, and Fig. S4
shows the out-of-distribution (OOD) geometry domain created by deforming 3D meshes. As mentioned in the
main paper, this domain was only used for testing—no models were trained on deformed geometry.
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Figure S1: Example images from material domain shift. All other parameters held constant.
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Figure S2: Example images from lighting domain shift. All other parameters held constant.
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Figure S3: Example images from viewpoint domain shift. All other parameters held constant.
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Figure S4: Example images from geometric deformation domain shift. All other parameters held
constant.
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Task Num
Doms

AND
Mask
[69]

CAD
[70]

COR
AL
[71]

ERM
[72]

IRM
[39]

MTL
[73]

Self
Reg
[60]

VREx
[74]

CDCNet
(ours)

DG 4 0.773 0.793 0.799 0.801 0.800 0.766 0.803 0.790 0.83
DA 4 0.751 0.786 0.772 0.774 0.768 0.800 0.792 0.779 N/A

Table S4: Role of contextual cues in generalization to OOD Viewpoints. We compare CDCNet to
several domain generalization (DG) and domain adaptation (DA) methods that do not use contextual
cues. CDCNet trained on four domains beats both DA and DG methods, suggesting that contextual
cues are substantially helpful in generalization across domain shifts. The best results are bolded.

Shift
type

Num
Doms

No
context

Only
context

Empty
baseline

Two-stream
Contrastive

No
contrastive

loss

Full
model

Material Shift 5 0.5 0.33 0.08 0.92 0.89 0.94
Table S5: Impact of ablating and modifying components of CDCNet.

Section S2 Creating ScanNet test set for real-world experiments

To create the real-world test dataset, we sampled images from the ScanNet dataset [14]. ScanNet contains 1,500
3D scanned scenes, for which the frames of the captured video can be extracted. As the video is continuous,
nearby frames are highly similar. To create a test set, we sampled one frame for every 100 frames in the video.
Further, we only retained images which contained multiple overlapping object categories with OpenRooms.
Using this method, we sampled 2-3 images per scene from 1,288 scenes, which resulted in roughly 2,900 test
images with multiple object instances. In total, this set included 7,800 object instances.

Section S3 Baseline models for generalization across viewpoint shifts

In table S4 we present results comparing our model CDCNet to existing benchmarks for domain adaptation and
domain generalization. All architectures were trained on all available (4) viewpoint domains, and then tested on
the held out OOD Viewpoint domain. As can be seen, CDCNet beats all domain generalization benchmarks.

Furthermore, the domain adaptation baselines reported here use unlabelled images from the testing domain,
unlike CDCNet and other domain generalization methods. Despite not using this additional information, CDCNet
outperforms domain adaptation baselines. This suggests that contextual cues are highly useful in generalizing
across domain shifts, and can even be more impactful than using unlabelled images from the test distribution.

Section S4 Ablations and Modifications for CDCNet

To quantify the contributions of different aspects of our model on generalization, we conducted several ablation
studies with the material shift domain. We also try a modification where the contrastive loss is applied to both
streams of CDCNet. All models were trained with five material shift domains, and then tested on the held out
OOD Materials domain. These model variations are:

No context: To pass only target object information and no context, we set the context region (i.e., image region
outside the target object) to all zeros during training.

Only context: To pass only context information, we set the target object region to all zeros, passing only the
contextual information around it for training.

Empty Baseline: To get a good estimate of random chance, we pass all zeros into the network during training,
while using the correct labels. That is, both context and target objects were set to zero.

No contrastive loss: We trained the model with no contrastive loss over different material, lighting and viewpoint
domain shifts of the original image.

Two-stream contrastive: Compared with our full CDCNet, an additional supervised contrastive loss is applied
here. Contrastive loss is calculated both for features Fm,t,c and Fm, t streams of CDCNet. Thus, CDCNet is
jointly trained with the following losses:

L = α(Lcontrast,c,t + Lcontrast,t) + Lclassi,t + Lclassi,p + Lclassi,c,t (3)

Hyperparameter α is set to 0.5 to balance the modulation effect of supervision from constrastive learning and
classification loss.
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Figure S5: Material shift vs style transfer shift(a) Sample images from style transfer domains
created by applying style transfer from AdaIn [25] to one material domain from SemanticDG. (b)
Increasing diversity using additional materials helps the model generalize better to OOD Materials.
However, there is no increase in performance as additional style transfer domains are used during
training.

Full model: This is the full CDCNet model reported in the main paper.

As reported in Fig. S5, random chance for performance on OOD materials is 0.08 which has been tested by
training images using the empty baseline protocol described above. In comparison, CDCNet trained with
only context information achieves an accuracy of 0.33, which is a positive control suggesting the utility of
contextual information in generalizing to the OOD Materials domain. Similarly, training a model with no context
information results in an accuracy of 0.5. This dip in performance from the full model shows that removing
context information hurts performance.

Another key component of our model is the contrastive loss. As shown in Fig. S5, removing the contrastive loss
brings the accuracy of the model down from 0.94 to 0.89. Thus, the contrastive loss helps improve generalization
significantly. Furthermore, we also find that applying contrastive loss to the features Fm,t,c is sufficient, and that
adding another loss term to both streams does not help.

Section S5 Style transfer as an alternative to material diversity

Several existing works rely on increasing domain diversity using AdaIn [25]-based methods. These style transfer
methods change the colors in the image while retaining object boundaries, but do not modify materials explicitly.
Here we evaluated how well models perform if diversity is increased using style transfer as opposed to material
diversity. We started with one material domain, and created four additional domains using style transfer. Thus,
the total number of domains (and images) is the same as the material domains in SematicDG. The only difference
is that instead of four additional material domains, we have four additional style transfer domains. These models
are then tested on the held out OOD Materials domain. As can be seen from Fig. S5, style transfer domains do
not enable models to generalize to new materials as well as material shift domains presented in SemanticDG.
This suggests that, in order to build models that can generalize to unseen materials, we need to increase diversity
using additional materials, and that style transfer is not a viable solution for this problem.

Section S6 Hyperparameters used for all models

CDCNet: As our model builds on top of CRTNet [20] as backbone, we use the same hyperparameters for the
backbone as reported in the original paper. All models were trained for 20 epochs with a learning rate of 0.0001,
with a batch size of 15 on a Tesla V100 16Gb GPU.

Domain generalization and Adaptation: We used the code from Gulrajani et al. [75] to train and test do-
main generalization and domain adaptation methods on our dataset. The code is available here: https:
//github.com/facebookresearch/DomainBed. To begin, we ran all available models and tried 10 random
hyperparameter initializations. Of these, we picked the best performing hyperparameter seed—24596. We also
picked the 10 top performing algorithms as the baselines reported in the paper.
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Figure S6: Subjects were presented with a fixation cross (500 ms), followed by a bounding box
indicating the target object location (1000 ms). The image was shown for 200 ms. After image offset,
subjects typed one word to identify the target object.

FasterRCNN: We used the code from Bomatter et al. [20] to train and test the modified FasterRCNN model for
recognition. The code is available here: https://github.com/kreimanlab/WhenPigsFlyContext, and we
used the exact hyperparameters mentioned in the repo.

Section S7 Human Experiment Details

We show a schematic diagram of the human psychophysics experiments in Figure S6.

Rather than N-way categorization (e.g., [76]), we used a more unbiased probing mechanism whereby subjects
could use any single word to describe the target object. We independently collected ground truth answers for
each object in a separate MTurk experiment with infinite viewing time and real-world images from the ScanNet
dataset. These Mturk subjects did not participate in the main experiments. Answers in the main experiments
were then deemed correct if they matched any of the ground truth responses [24].

In ScanNet dataset [14], we realized that some class labels are synonyms. Thus, we also incorporated the images
with synonym class labels into the stimulus set for human experiments. For example, we merged a set of images
labelled as “couch" with images labelled as “sofa" and re-label both sets of images as “sofa", which is one of the
ground truth class labels in the SemanticDG benchmark.

Section S8 Human Experiment on the geometry domain shift

In the main paper, we covered human experiments on material, light, viewpoint domain shifts and real-world
images (Table 3). Here, we added one more human experiment on geometry domain shift. The experiment
schematic and procedures are the same as introduced in Section 5.2 and Section S7. The human accuracy in
geometry experiment was 66.7%. Compared with CDCNet, human performance still serves as the upper bound.
Surprisingly, despite not being exposed to any images from geometry domains, we found that CDCNet can
generalize reasonably well in geometry domain shifts after being trained on five light domains (61%), which is
very close to human performance (only 6% lower than humans).

Section S9 Comparing generalization in humans and computer vision
models

Despite all these qualitative comparison between humans and computational models, we acknowledge that a
fair and direct quantitative comparison between humans and computational models in SemanticDG is difficult
because of the following reasons: (i) The source domain for humans is the real world and semantic shifted
domains are target domains in human experiments. The reverse holds for computational models here, where they
are trained on shifted semantic domains and tested on real-world images. (ii) Past experiences differ between
humans and computational models, which might influence generalization ability. Going beyond SemanticDG
and ScanNet dataset, humans have accumulated decades of other experiences from the real world, while this is
not the case for computational models. Indeed, we show that context could be one of these missing aspects in
existing models that is critically important for generalization ability in computational models. (iii) Compared
with other real-world image datasets, e.g., [29] where humans almost achieve perfect recognition performance
in its generalization tests, the absolute human performance is around 66% in SemanticDG, which is far from
perfect. It is possible that humans are not biased by the set of selected object classes from SemanticDG, while the
computational models learn these inductive biases from the training set. (iv) The absolute human performance
on the three semantic domains (lights, materials and viewpoints) is not as impressive as the performance of
computational models from Figure 3. This could be due to the way that we structured the training and test set for
the computational models. In the experiments in Sec 6.1, train and test images are constructed with one-to-one
correspondence in a controllable manner. That is, except for the semantic domain we are varying (e.g., material),
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the other aspects of the semantic scene (e.g., room layouts) remain exactly the same between train and test sets.
However, in human behavioral experiments, we do not include these training sets.

Despite all these caveats, it is instructive to show results for humans and models on the same images in the
SemanticDG benchmark on Table 3. We tried to mitigate the differences in training by focusing on the qualitative
impact of generalization across various domains compared to the real-world condition.

Section S10 Source Code and Dataset Link (anonymous)

Anonymous link for source code and SemanticDG benchmark: https://drive.google.com/drive/
folders/1NBiiUPtgCUA-FoolOZ9id_Xor7eyzrUL?usp=sharing
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