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Introduction

« CNN models exhibit a major flaw: they are biased towards learning

low-frequency signals. This bias becomes more problematic for the
image SR task which targets reconstructing all fine details and

Image textures. Below is a visual comparison (x4) on “image 024"
from Urban100. Existing methods suffer from blurring artifacts.
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« Below is a comparison of distributions for a sample of sequential
pixels sampled from the patches shown above. Existing methods
produce an overly smooth distribution. We aim to address this
problem via two proposed modules: dynamic high pass filtering and
matrix multi-spectral channel attention.
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 The two proposed modules added to the standard residual block in
RCAN (a) and ours (b).
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Dynamic High Pass Filtering (HPF)
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Qualitative Results

* Weight generation (G(X)) and application in the dynamic filtering layer * Visual comparison forx4 SR on Urban100 dataset. Most compared
methods suffer from blurring artifacts. Our method is able to
reconstruct high-frequency details better than existing methods.

as described in previous work ([51]) (a) compared to our modification
in (b). We predict a different k x k high pass kernel for each spatial

location. The kernels are then applied to their respective locations to
produce the final output.
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Summary

We introduce the matrix multi-spectral channel attention (MMCA)
and dynamic high-pass filtering (HPF) modules to improve the

Our experiments suggest that following the convolution layer with
the dynamic high-pass filtering operation enables preserving

learning of high-frequency features in the image SR task.

essential details and textures.
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