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Efficient Learning of Image Super-resolution and Compression
Artifact Removal with Semi-local Gaussian Processes

Younghee Kwon, Kwang In Kim, James Tompkin, Jin Hyung Kim, and Christian Theobalt

Abstract—Improving the quality of degraded images is a key problem in image processing, but the breadth of the problem leads to
domain-specific approaches for tasks such as super-resolution and compression artifact removal. Recent approaches have shown that
a general approach is possible by learning application-specific models from examples; however, learning models sophisticated enough
to generate high-quality images is computationally expensive, and so specific per-application or per-dataset models are impractical. To
solve this problem, we present an efficient semi-local approximation scheme to large-scale Gaussian processes. This allows efficient
learning of task-specific image enhancements from example images without reducing quality. As such, our algorithm can be easily
customized to specific applications and datasets, and we show the efficiency and effectiveness of our approach across five domains:
single-image super-resolution for scene, human face, and text images, and artifact removal in JPEG- and JPEG 2000-encoded images.
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1 INTRODUCTION

Image degradation has many different causes, from lim-
itations of the optical system, such as limited sensor
resolution or lens defocus, to lossy image compression,
creating block or ring artifacts. The removal of these
degradations through image processing has been ap-
proached in both application-specific and data-specific
ways, with different approaches for tasks such as super-
resolution and compression artifact removal, and varia-
tions for different data such as general scenes, faces, and
text images [1], [2], [3], [4], [5].

The inflexibility of application-specific models of im-
age degradation has motivated methods which try to
generalize different image enhancement processes. Pre-
vious successful approaches have integrated a priori
knowledge in a Bayesian framework in the form of
a generic prior on natural images, and have coupled
this with hand-designed application-specific parametric
degradation, or noise, models. However, typically these
noise models are difficult to design, especially for non-
Gaussian noise, which makes it difficult to adapt these
methods to new applications and data.

Recent work has generalized further by learning a
function directly from example pairs of degraded and
clean images. For instance, instead of parametric noise
models, Kim and Kwong [6] apply non-parametric ker-
nel ridge regression to map input degraded images
to desired clean images, and so relieve the user from
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designing a noise model. However, applying models
sophisticated enough to generate high-quality images
to application- and data-generic image enhancement is
hindered by the high computational cost of learning, e.g.,
[6] requires ≈36 hours of training.

Our major contribution1 is a method to remove the
high computational complexity of training a conditional
noise model, without affecting final enhancement qual-
ity. Gaussian process (GP) regression is often used as
it has powerful generalization capability that leads to
better performance over simple nearest neighbor or lin-
ear regressors; however, learning times are prohibitive,
and sparse GP approximations require solving a difficult
non-linear optimization problem. We introduce a new ef-
ficient semi-local approximation scheme to large-scale GP
regression: Instead of time-consuming training and test-
ing of a single GP model on a large dataset, a set of sparse
models are constructed on-line such that the prediction
at each test data point is made by the corresponding
sparse GP approximating the underlying global model.
We will demonstrate that during inference, i.e., enhance-
ment, this method has a similar run-time complexity and
performance to general sparse models [6], [8], [9], [10].
However, unlike existing models, by avoiding the time-
consuming training stage, our approach facilitates easy
adaptation to specific image degradation problems.

As a prior, we adopt the product of edge-perts frame-
work [1]. This model adopts a sparsity prior (i.e., Lapla-
cian) over the pair-wise joint distribution of wavelet
coefficients which, overall, prefers simultaneous acti-
vation of few coefficients in nearby scales and spatial
locations [1]. As a result, the dependencies between
wavelet coefficients localized in frequency, space, and
scale are effectively represented through product of experts
type factorization. With this framework and our semi-
local GP regression, our algorithm allows building of an
image enhancement system in 5 minutes from a set of ex-

1. A short version appeared in Proc. BMVC 2012 [7].
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ample pairs of clean and degraded images, by deferring
the learning of a case specific conditional model to an
online approximation which, crucially, does not increase
testing time and retains enhancement quality.

We demonstrate the performance of our algorithm
with two specific applications across six datasets, one be-
ing 500 images large: with single-image super-resolution
on general, face, and text images, and with artifact
removal in JPEG- and JPEG 2000-encoded images, which
have block and ring artifacts respectively. Our exper-
iments show that our algorithm outperforms state-of-
the-art systems that are specific to each task ( [11], [12],
[13], [14] for super-resolution, and [15], [16], [17], [18],
[19], [20] for JPEG and JPEG 2000 artifact removal). In
terms of inference or enhancement quality, our algorithm
is on par with the state-of-the-art learning-based super-
resolution algorithm of Kim and Kwon [6]; however, our
experiments demonstrate that the significantly shorter
training time of our algorithm makes per-application
and per-dataset image degradation learning practical.

2 RELATED WORK

Many image enhancement approaches estimate a func-
tion that maps from the noise-affected image space to the
clean image space. In general, a priori knowledge about
natural images can help, and, in principle, an image
model incorporating a generic prior of natural images
can be applied to many enhancement applications with
modification of the noise model (or sometimes even with
a Gaussian noise model).

The theory of projection onto convex sets (POCS) models
prior knowledge as a set of convex constraints (e.g.,
spatial smoothness, quantization constraints) [21] which
cast image enhancement into a POCS iteration frame-
work [22], [23]. One direct way to use a priori knowledge
is to encode it into a distribution or an energy functional.
Roth and Black describe a field of experts [3], where the
prior is modeled as a Markov random field (MRF) with
clique potentials learned from a set of natural images.

Laparra et al. [18] proposed a generic wavelet domain
framework where the clean and noise image distribu-
tions were estimated non-parametrically with support
vector regression (SVR). As a non-parametric model, this
approach can be used in various image enhancement ap-
plications. For Gaussian noise removal, this method out-
performed one of the best image denoising methods —
Gaussian scale mixtures (GSM) — with the perceptually-
oriented structural similarity metric [24].

2.1 Learning-based single-image super-resolution
Single-image super-resolution algorithms enlarge a sin-
gle low-resolution image to high resolution. Existing
approaches are discussed in the literature [25], [26], [27];
the most closely related approaches to our algorithm
are example-based methods which identify a function
mapping a low-resolution image (or patch) to a high-
resolution counterpart based on example pairs.

Freeman et al. proposed a nearest neighbor (NN)-
based algorithm [14]. For each patch in the input low-
resolution image, the corresponding high-resolution ex-
ample patch is retrieved through NN-search that en-
forces spatial consistency. Chang et al. [11] extended
this idea by additionally introducing a reconstruction
constraint based on a manifold assumption.

In the context of regression estimation, Tappen et
al. [28] performed multiple linear regressions on clus-
tered example database and resolved the resulting mul-
tiple candidate outputs by imposing a prior on natural
images. Kim and Kwon generalized this idea by combin-
ing sparse kernel ridge regression and adopting a prior
on major edges [6]. Meanwhile, Yang et al. [12] adopted
the idea of sparse coding in super-resolution. Here, a low-
resolution input is represented as a sparse combination
of stored example inputs. The combination coefficients
are used to synthesize the corresponding outputs based
on the retrieved example outputs.

Gaussian processes (GP) have been used in various
image enhancement problems. Tipping and Bishop [29]
proposed applying a GP prior for multi-frame image
super-resolution while Liu [30], and He and Siu [13] used
GP regression for non-example-based image denoising
and super-resolution, respectively. Kim and Kwon [6]
applied kernel ridge regression (KRR) that corresponds
to non-Bayesian estimate of GP regression to example-
based super-resolution. In the context of image super-
resolution, KRR turned out to be easier to sparsify than
support vector regression (SVR) and accordingly can
potentially lead to more practical algorithms [6].2

Our algorithm achieves better results than these pre-
vious methods [11], [14], [28], and produces results
which are comparable to [6]; our approach also dra-
matically enhanced applicability by two orders of mag-
nitude faster training time. We also demonstrate that
our GP regression-based algorithm outperforms Yang et
al.’s sparse coding-based algorithm which is another
commonly used regression algorithm [12].

2.2 JPEG/JPEG 2000 compression artifact removal
Block-based discrete cosine transform (BDCT) coding
is widely used to compress still images and video se-
quences (e.g., JPEG/MPEG). However, at low bit rates,
BDCT-encoded images can exhibit discontinuities at
block boundaries, known as block artifacts. JPEG 2000 re-
places the BDCT stage with a discrete wavelet transform.
This prevents block artifacts, but ringing artifacts may
still appear. Also, POCS has been successfully applied
to JPEG [22] and JPEG 2000 [23] image enhancement.

One of the best established methods for block artifact
removal is adaptive filtering with locally adjusted filter
kernels to remove block edges while preserving image
edges [31]. A similar technique has also been applied

2. As shown in [6], optimizing SVR hyper-parameters for image
super-resolution leads to close to zero ε for ε-insensitive loss function
of SVR. Accordingly, the corresponding optimal solution is dense.
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to the removal of ringing artifacts in the context of
trilateral filters [20]. Zhai et al. [19] proposed a block-shift
filtering-based algorithm. For each pixel, the algorithm
reconstructs a block encompassing that pixel based on
a weighted combination of neighboring similar blocks.
The overall result is a detail-preserving smoothing.

For learning approaches, Qiu [32] used a multi-layer
Perceptron for JPEG deblocking while Lee et al. [33]
proposed performing a piecewise linear regression in
the space of DCT coefficients and showed comparable
results to those of re-application of JPEG. Sun and
Cham [2] proposed a maximum a posteriori (MAP) frame-
work, building upon fields of experts [3], which led to
improved performance over several existing methods
including those methods based on POCS and overcom-
plete wavelet representations.

Finally, Nosratinia [15] proposed a surprising
and promising non-learning-based method called re-
application of JPEG. This algorithm generates a set of
pixel-wise shifted versions of the input JPEG image, re-
applies JPEG encoding to the shifted versions, and shifts
them back to the original positions and averages. While
simple, re-application of JPEG demonstrates superior
performance to algorithms based on nonlinear filtering,
POCS, and overcomplete wavelets. An application to
JPEG 2000 enhancement is also feasible [16].

In our experiments, we demonstrate that by exploiting
rich information from a database of images, our algo-
rithm generates much better images in terms of quantita-
tive criteria and visual quality than existing algorithms.

3 THE IMAGE ENHANCEMENT ALGORITHM

We wish to generate an enhanced image from a degraded
image, with the aid of many example pairs of clean
and degraded images. First, we describe how we build
upon product of edge-perts (Edge-perts) and its prior [1]
to learn the application- or dataset-specific conditional
noise model. This learning relies upon Gaussian process
regression to model the image enhancement process,
and so second we motivate and explain the use of GP
regression, specifically sparse GPs, and then explain our
new efficient semi-local GP approximation.

3.1 Our approach
We start with the Edge-perts approach, which provides
a MAP framework in the decorrelated wavelet domain:

z∗ = arg max
z

(log p(z̃|z) + log p(z)) (1)

= arg min
z

1

2
‖z̃− z‖2 + σP (

∑
j

wj [z]2j )
αP

 , (2)

where x is the latent clean image, x̃ is the noisy input
image, W[·] is the wavelet transform, z̃ = W[x̃], and
σP is the user-specified regularization hyper-parameter.
The experts model parameters {wj} and αP ∈ [0, 1] are
estimated by an expectation maximization algorithm [1].

A straightforward approach to apply the Edge-perts
framework to general image enhancement problems is
to modify the noise model accordingly:

p(z̃|z) ∝
∥∥z̃−W [I[W#(z)]

]∥∥2 , (3)

where I[·] is the degradation process of interest and
W#(z) is the pre-image of z. However, Edge-perts as-
sumes only Gaussian noise; for general noise, such as in
super-resolution applications, modeling the proper noise
distribution might be difficult or cumbersome. Further-
more, general noise can be non-differentiable and even
non-continuous which leads to optimization difficulties.

Instead of a parametric noise model, we learn a condi-
tional noise model from examples. However, naively im-
plementing this step requires optimizing Eq. (3) through
learning the degradation process, which may be com-
putationally infeasible. To keep computations tractable,
we bypass this complex optimization by decoupling
the conditional model learning and the optimization of
Eq. (3): We introduce auxiliary reference variables s that
summarize the outputs of the conditional model, and
only indirectly model the degradation process by encod-
ing the information contained in the training examples.
This model is computationally favorable and does not
require the user to model the noise explicitly.

We penalize the cost functional:

E(z) =
1

2
‖z−W[s]‖2 + σP (

∑
j

wj [z]2j )
αP . (4)

The reference variable matrix s is constructed through re-
gression. For each pixel location i in the input degraded
image x̃, a Gaussian process (GP) regressor receives a
degraded patch (M × M ) centered at i, and produces
estimates of an enhanced patch (N ×N ). GP regression
predicts a Gaussian distribution: in our context, a mean
patch and a predictive variance patch. When N > 1,
the output patch overlaps its spatial neighbors, and so
for each i in x̃, the contributions from N × N patch
regressions constitute a set of candidates means fi, and
corresponding predictive variances vi. Then, si is a
convex combination of all overlapping patch candidate
means fi ∈ RN and their confidences ci, where si = f>i ci,
with [ci]j ≥ 0 and ‖ci‖L1

= 1. The confidence vector
ci ∈ RN is calculated from the inverse of the predictive
variances vi ∈ RN of the candidates fi:

[ci]j = exp

(
− [vi]j
σC

)/ ∑
k=1,...,N

exp

(
− [vi]k
σC

)
, (5)

where the scale parameter σC is fixed at 0.2. Minimizing
Eq. 4 and transforming from the wavelet basis then
generates the enhanced image (as per [1]). Algorithm 1
practically explains our framework in pseudocode.

Discussion. Generating several candidate means fi and
predictive variances vi across neighboring patches ag-
gregates information from a wider image area than
from a single patch. Increasing patch size to aggregate
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Algorithm 1: Image Enhancement (Super-resolution)
Input : Low resolution input image L,

Training low/high res. image pairs X , Y .
Output : Enhanced image S.
Training: Build NN-search structure, e.g., KD-tree.

Testing :

Construct a bicubic upsampling B of L;

for each pixel pj in B do
Extract a patch xj (centered at pj);
Use semi-local GP regression to predict
distribution p(fj |Y) on output patch yj :
1) Retrieve n-NNs (Cn) of xj from X ;
2) Predict E[f(xj)] and V[f(xj)] from the labels
of Cn using Eq. (19);

end
Re-arrange {E[f(xj)]} and {V[f(xj)]} for
overlapping patches so that for each pixel pi obtains
sets of candidate means {fi} and corresponding
variances {vi};
Build reference variable matrix s from {fi} and {vi};
Minimize Eq. 4 and to find the enhanced image S.

more information is possible, but in preliminary ex-
periments we found that the difficulty in learning in
higher-dimensional spaces resulted in worse prediction
than our patches (e.g., 7× 7 for 2× magnification super-
resolution). Compared to single-pixel-output regression,
patch-valued regression produced 0.6dB PSNR increase
in super-resolution experiments (as per [6]).

Unlike elegant fully Bayesian image models (e.g., [4]),
an intuitive probabilistic interpretation of the image en-
hancement process is no longer possible: the predictive
distribution of a GP is a posterior distribution that is con-
ditioned on the degraded input patches. Since this con-
ditional model is not generative, sampling a degraded
image is not directly possible. This functionality is not
required for image enhancement applications. Using the
local posterior distribution as a surrogate noise model
has been well established in speech recognition [34]
and similar strategies have been recently used in image
enhancement as well [5], [28]. In general, Eq. 4 could
be regarded as a regularization framework which trades
between regularity enforcement in the wavelet domain
and deviation from the reference variables {si}.

3.2 Regression
The underlying idea for using GP regression is its pow-
erful generalization capability. For instance, in classical
example-based super-resolution applications, a typical
choice for the conditional model is NN-based estimation
[14], [26], [35]. However, from the general regression
perspective, NN regression can be improved since it
overfits to the data, i.e., we obtain a function which
fits the training data perfectly but cannot generalize to

new data. GP regression has powerful regularization
capability which avoids overfitting and leads to a better
generalization than NN regression (See Fig. 1, Sec. 4.1,
and supplementary material for comparison with NN
approaches [11], [14]). GP regression is much more flex-
ible than simple linear regression, which fails when the
problem is highly non-linear (Fig. 1). Furthermore, in
our super-resolution experiments, we demonstrate that
our algorithm outperforms Yang et al.’s sparse coding
regression choice [12].

We review basic GP regression in Section 3.2.1, be-
fore reviewing more efficient sparse GP approxima-
tions which requires optimizing inducing variables (Sec-
tion 3.2.2). Section 3.2.3 introduces our new GP approx-
imation which bypasses completely the inducing vari-
ables optimization and therefore facilitates fast training.

3.2.1 Basic Gaussian process regression
Suppose a set of data points (in our case, vectorized
patches) X = {x1, . . . ,xl} ⊂ RM2

and their correspond-
ing labels Y = {y1, . . . ,yl} ⊂ RN2

. We adopt a Gaussian
noise model with mean 0 and the covariance matrix σ2I:

yi = f(xi) + ε, where ε ∼ N (0, σ2I), (6)

where N (µ,Σ) is the probability density of the Gaus-
sian random variable with mean µ and covariance Σ,
and f : RM2 7→ RN2

is the underlying latent func-
tion. Then, a zero-mean Gaussian process (GP) prior
is placed over f , which for a given set of test points
X∗ = {x∗(1), . . . ,x∗(l′)} is realized as [36]:3

p(f∗, f) = N

(
0,

[
Kf ,f Kf ,∗

K∗,f K∗,∗

])
, (7)

where the subscripts f and ∗ represent indexing across
training and testing data points, respectively (e.g., f =
[f(x1), . . . , f(xl)]

>, f∗ = [f(x∗(1)), . . . , f(x∗(l′))]
>, and

[(K∗,f )(i,j)]l′,l = k(x∗(i),xj)). While any positive definite
function can be used as the covariance function k, we
adopt the standard Gaussian kernel:

k(x,y) = exp
(
−b‖x− y‖2

)
.

Combining (6) and (7), the joint distribution of p(f∗,Y):

p(f∗,Y) = N

(
0,

[
Kf ,f + σ2I Kf ,∗

K∗,f K∗,∗

])
, (8)

from which, the predictive distribution (for the j-th
output dimension; index j in f∗ is omitted) is constructed
by conditioning f∗ on the labels Y :

p(f∗|Y) =N
(
K∗,f (Kf ,f + σ2I)−1Y[:,j],

K∗,∗ −K∗,f (Kf ,f + σ2I)−1Kf ,∗
)
, (9)

where Y = [y>1 , . . . ,y
>
l ]> and A[:,j] is the j-th column of

the matrix A. For the simplicity of exposition, we adopt a

3. For computational convenience, we treat each output indepen-
dently and identically. For notational convenience, we omit condition-
ing on input variables.
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slight misuse of notations and summarize the predictive
distribution (9) across every output dimensions as:

p(f∗|Y) =N
(
K∗,f (Kf ,f + σ2I)−1Y,

K∗,∗ −K∗,f (Kf ,f + σ2I)−1Kf ,∗
)
, (10)

where each output dimension shares the covariance.
The diagonal terms of the covariance matrix (predic-

tive variances) in the predictive distribution (9) represent
the uncertainty of regression output, while off-diagonal
terms represent the dependency between variables.

While GP regression has been shown to be compet-
itive on a wide range of small-scale applications, its
application to large-scale problems is limited due to
its unfavorable scaling behavior: The training (i.e., the
calculation of Kf ,f and the corresponding regularized
inversion) takes O(Ml2 + l3) time, while for a given
test point, testing time complexity is O(Ml + lN) and
O(Ml + l2) for the mean and the predictive variance,
respectively (see [36] for details).

3.2.2 Sparse Gaussian processes
A standard approximate approach to overcome the un-
favorable scaling behavior of GPs is to introduce a
small set of inducing variables fU = {f(u1), . . . , f(um)}
(corresponding to inducing inputs U = {u1, . . . ,um})
through which the conditional independence of f∗ and f
is assumed in the approximation of the joint prior (see
the unified framework of [10]):

p(f∗, f) ≈ q(f∗, f) =

∫
q(f∗|fU )q(f |fU )p(fU )dfU . (11)

The training conditional q(f |fU ) is approximated subse-
quently. This leads to a set of approximations which are
referred to as sparse GPs where the inference is carried
out through U summarizing the entire training set X [8],
[9], [37]. For instance, Seeger et al. [37] proposed an
approximate prior:

q(f∗, f) = N

(
0,

[
QUf ,f QUf ,∗
QU∗,f K∗,∗

])
, (12)

where QUr,s = Kr,uK−1u,uKu,s and u represents indexing
across U . The corresponding predictive distribution is:

q(f∗|Y) =N
(
QU∗,f (Q

U
f ,f + σ2I)−1Y,

K∗,∗ −QU∗,f (Q
U
f ,f + σ2I)−1QUf ,∗

)
. (13)

With this prior, the predictive mean is obtained as a
linear combination of evaluations of m basis functions
{k(u1, ·), . . . , k(um, ·)} (explaining the name sparse GPs).
The time complexity of calculating the predictive distri-
bution becomes O(Mlm + lm2) off-line plus O(Mm +
mN +m2) per test point.

Once we identify the inducing inputs U , they are fixed
throughout the entire test set. The problem is then cast
into an optimization where one constructs U based on a
certain measure of approximation quality (e.g., marginal
likelihood and information gain; see [8], [9], [36], [37]

for more examples and details). The performance of a
sparse approximation depends heavily on the inducing
inputs U . However, usually the corresponding optimiza-
tion problem is non-convex and so requires a non-linear
optimization which is not easy to solve.

3.2.3 Semi-local approximation of Gaussian processes
Our approach is fundamentally different from exist-
ing algorithms, and bypasses non-linear optimization
through inducing inputs U using a simple heuristic:
Instead of sharing U for all test data points, we sim-
ply approximate the inducing variables as the nearest
neighbors (NNs) of each test input.

We build a specially-tailored sparse GP for each test
input x∗, i.e., U ≡ U∗ is chosen depending on x∗ — the
corresponding GP model is constructed only when it is
presented with a test point x∗. An important advantage
of this on-line approach is that, in general, it enables more
flexible approximations than existing off-line approaches.

Furthermore, it leads to an extremely simple but
powerful strategy for identifying U∗: If we introduce a
Markov assumption on {f∗, f}, (f∗ ≡ f(x∗)):

p(f∗|f ,B(f∗)) ≈ q(f∗|B(f∗)), (14)

where B(f∗) is the values of f for inputs in the domain
neighborhoods B(x∗) ⊂ X of x∗, then the corresponding
conditional independence of f∗ and f given B(f∗) makes
B(x∗) a valid candidate for U∗, i.e., the approximation
(11) becomes exact once we use B(x∗) for U∗. Now,
applying Eq. 14 to Eq. 13 we obtain QUr,s specified as
QBr,s = Kr,bK−1b,bKu,s with b indexing across B(x∗):

q(f∗|Y) =N
(
QB∗,f (Q

B
f ,f + σ2I)−1Y,

K∗,∗ −QB∗,f (Q
B
f ,f + σ2I)−1QBf ,∗

)
=N

(
σ−2K∗,bΣBKb,fY,

K∗,∗ −QB∗,∗ + K∗,bΣBKb,∗
)
, (15)

where ΣB =
(
σ−2Kb,fKf ,b + Kb,b

)−1 and the sec-
ond equality is obtained by applying Sherman-Morrison-
Woodbury formula.

This new approximation dramatically reduces the
computation time during training as we only need to
build a data structure for NN-search to identify B(f∗).
During prediction, it takes O(Mlm+ lm2) time for each
test point with m = |B(f∗)|, which includes the time
spent building a model. However, for large l (≈ 2 ∗ 105

in current applications), this might still be impractical.
Hence, the second step of our approximation is ob-

tained by introducing an additional Markov-like as-
sumption on the observations Y :

p(f∗|Y,B1(y∗)) ≈ q(f∗|B1(y∗)), (16)

where B1(y∗) denotes the observed training target values
in the domain neighborhood B1(x∗) of x∗. In general,
neither (14) nor (16) is stronger than the other since
neither is implied by the other — only when the noise
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level is zero do the two assumptions become equiv-
alent. However, practically, (16) can be regarded as a
stronger assumption than (14), since (16) implies that
given B1(y∗), all the remaining training data points are
irrelevant in making predictions of f∗, which is not the
case for (14). Accordingly, we set B1(x∗) much wider
than B(x∗) (i.e., B1(x∗) ⊃ B(x∗)). This guarantees that
the resulting GPs are non-locally regularized. In Sec. 5,
for the interested reader, we discuss the motivation
behind this second approximation step, which is based
on analysis of the large-scale behavior of full GPs.

In practice, we choose m and n-nearest neighbors
Cn(x∗)(Cm(x∗) ⊂ Cn(x∗) ⊂ X ) of x∗, instead of B(f∗)
and B1(y∗), such that prediction is performed based on
n data points summarized by m inducing inputs. Now,
applying Eq. 16 to Eq. 15 in this context, we obtain:

q(f∗|YC) = N
(
σ−2K∗,bΣBCKb,cYC),

K∗,∗ −QB∗,∗ + K∗,bΣBCKb,∗
)
, (17)

where in a compact notation YC and YC represent
the subset of Y and the rows of Y, respectively cor-
responding to the elements of Cn(x∗) ⊂ X , ΣBC =(
σ−2Kb,cKc,b + Kb,b

)−1, and c represents indexing
across Cn(x∗). The sizes of the neighborhoods m and n
are decided based on prescribed computational complex-
ity requirement (Sec. 4).

We refer to this new approximation as semi-local GP.
With the same number of inducing inputs, this input-
dependent selection should, in general, provide more
flexibility than standard sparse methods because the
inducing variables are specifically tailored to each test
data point. As shown in Fig. 1, for smaller numbers of
inducing inputs our semi-local GPs perform especially
better than sparse methods, which use relatively large
numbers of carefully chosen inducing inputs.

Furthermore, given hyper-parameters, the only train-
ing component for semi-local GPs is to build a data
structure for NN-search, and so off-line processing is
very fast. Therefore, the algorithm is very flexible as the
system can be easily adapted to the distribution of a
specific (non-generic) class of images (see Sec. 4.1).

Discussion. The Markov model used in the first step
of approximation (Eq. 14) has proven to be effective in
many different applications. However, we exploit the
Markov assumptions only in the approximation of the
prior through its factorization and the marginalization
over fU in Eq. 11. Accordingly, although the resulting
sparse model can represent only local variations around
x∗, the corresponding prediction takes into account the
entire data set through the dependency between f and
fU∗ (see Eq. 11). This implies that for each test variable
f∗, the corresponding joint distribution q(f∗, f) fits into
the approximation (Eq. 12) and it is a valid probabilistic
approximation of the full GP. In particular, no overfitting
occurs since the model is globally regularized. This is in
contrast to the moving least-squares algorithm which is

50100 300 500 750 1000
−12

−11

−10

−9

−8

K
L 

di
ve

rg
en

ce

 

 

50100 300 500 750 1000
0.8

1

1.2

1.4

1.6

1.8

# inducing inputs in sparse GP

In
cr

. P
S

N
R

s

 

 

sparse GP
semi−local GP
NN
linear

Fig. 1: Approximation accuracies of sparse GPs and
semi-local GPs wrt. full GP for the super-resolution
experiment data points. Top: The Kullback-Leibler diver-
gences from full GPs of the predictive distributions of
approximate GPs, plotted against m′ sparse GP inducing
inputs. To compare, we use only 20, 000 data points to
train all models, sampled from a large training set of
200,000. For each m′, a semi-local GP was trained, with
number of inducing inputs m and local training data
points n such that the time complexity of test point
prediction roughly matches ((m′)2 ≈ m2n). Experiments
were repeated ten times with randomly selected training
data sets. Error bar lengths are 2× std. dev. Bottom:
Average PSNR increase from bicubic resampling, mea-
sured from final super-resolution results. For compari-
son, we replace our regression by linear regression and
NN regression. The inducing inputs were optimized by
maximizing the marginal likelihood p(f∗|u) [8].

not directly related to any global regularization.
Theoretically, one drawback of our on-line model is

that it does not correspond to any consistent global GP
framework: In our model, the prior is defined through
the inducing variables (Eq. 11) that depend on each
test input. Since, in general, the Gaussian property of
marginal distributions q(f∗, f) does not imply the Gaus-
sian property of the corresponding joint distribution, it
may not be possible to construct a Gaussian joint prior
q(f∗, f) over the entire set of potential testing points f∗.

A direct consequence of this inconsistency is that,
since there is no globally defined covariance function,
no prediction can be made for off-diagonal elements of
the predictive covariance, which represents the depen-
dency between predictions.4 However, this is not a major
concern as we only use the means and variances of indi-
vidual predictions {p(f∗|Y)}, which are valid probability
distributions (i.e., p(f∗|Y) is a fully Bayesian prediction).

4. Snelson and Ghahramani proposed an inconsistent GP approxi-
mation [38] where the training data are pre-partitioned during training
into a set of clusters which constitute input-dependent inducing inputs.
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3.3 Noise model
There are two sources of uncertainty in making predic-
tions with GPs [39]. One is the fact that, in general, the
test input may deviate from the training inputs (U1).
The other is the noise in the data (U2): Due to the
ill-posed nature of the problem, even if the test input
x∗ exactly matches one of the training inputs (say xi),
the corresponding training output yi might not be the
underlying ground truth output f(x∗). In the current
context of GP regression, U1 and U2 uncertainties are
independently modeled with the noise parameter (σ2)
and the kernel parameter (b), respectively. This clear
separation is due to the use of an i.i.d. Gaussian noise
model (Eq. 6) which is important because it leads to an
analytical model for predictive distribution (Eq. 9).

In general, the noise (U2) is correlated and depends on
the input (and so on U1). However, sophisticated noise
models which reflect this dependency may lead to non-
analytic predictive distributions and so are not computa-
tionally favorable for image enhancement applications.

We present a simple noise model which exploits the
dependency between these two sources of uncertainty.
Our scheme considers the empirically-observed correla-
tion between two quantities which are related to U1 and
U2. The first quantity P1 is the average distance from a
test input to its nearest training inputs, which represents
U1. The second quantity P2 is the average distance
among the corresponding retrieved training outputs.
This is not directly related to U2; however, when P1
is zero, P2 should correspond to the standard deviation
of the output conditioned on an input and, accordingly,
be an empirical estimate of the noise level U2.

By construction, P1 and P2 are mildly correlated: If
P1 is small, the corresponding training inputs should be
close to each other and so P2 tends to be small. However,
Fig. 2 shows there are cases where the correlation is
much stronger: when P1 is very small, P1 and P2 are
especially strongly correlated (e.g., P1 < 0.005, when
the test input is very close to some training inputs). As
P1 increases, the correlation becomes weaker and even-
tually disappears. This observation led us to conjecture
that U2 is correlated to U1 especially when U1 is small.

We validate this conjecture by implementing it into our
noise model. Our semi-local GP model is adaptive in the
sense that the model itself depends on each test input.
Naturally, the noise parameter σ2 can also be adapted
to each test input x∗ (and its distances to the stored
training inputs). For computational efficiency, we still
use a Gaussian noise model but adapt it to the local
density at the point of evaluation. Eq. 17 then becomes:

q(f∗|YC) =N
(
K∗,b(ΣBC )′Kb,cΓYC ,

K∗,∗ −QB∗,∗ + K∗,b(ΣBC )′Kb,∗
)
, (18)

where

(ΣBC )′ = (Kb,cΓKc,b + Kb,b)
−1
, (19)

Γ =diag [Nc exp (−Ndbd)] + σ−2I, (20)
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Fig. 2: Variation of P2 as a function P1 in super-
resolution experiments (see text for P1 and P2 descrip-
tions): For each test input, we select 10 nearest neighbors
and calculate the corresponding P1 and P2 values.

d is a vector containing the squared distances between
x∗ and the elements of Cn(x∗), Nc and Nd are the hyper-
parameters, and diag[·] is an operator which converts a
vector into a diagonal matrix.

From the regularization perspective, the noise vari-
ance σ2 is the parameter controlling the contribution
of training error and the global regularization term. An
intuitive explanation of our noise model is that when the
given input is sufficiently close to the training data, we
rely more on data than on regularization. Furthermore,
within the set of training data points, we emphasize
more the data points which are closer to the test input.
The computational complexity of this model is the same
as that of the uniform noise model (17). However, this
model resulted in on average 0.08 improvement of PSNR
values in our super-resolution experiments.

Discussion. We observe that most easy test points with
small P1 values lie at major edges (see supplementary
material for examples). Typically, the major edges show
clean and strong change of pixel values and do not
contain complex textures. Intuitively, for those patterns,
the noise level must be low, i.e., the desired output
should be less uncertain given the input. This explains
a strong correlation between P1 and P2 for small P1
values. The role of our adaptive noise model (18) is then
to regularize less for those patterns lying at major edges.

A visually noticeable consequence is that ringing ar-
tifacts are significantly reduced. Typically the results of
regularized regression show a certain fluctuation when
there is an abrupt and significant change of the signal to
compensate the resulting loss of smoothness. By placing
more emphasis on observed data than the regularizer,
we can effectively suppress these regularization artifacts
which appear as ringing artifacts (Figure 3). Kim and
Kwon [6] adopted a post-processing step to explicitly
remove the ringing artifact, which is not necessary when
we use an adaptive noise model.
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Fig. 3: An example of a major edge: (a) an image showing
a strong edge (bicubic-resampled image is shown) and
(b) cross-sections of the super-resolution results at the lo-
cations marked with a white horizontal bar in (a). In the
result of our algorithm that uses the homogeneous noise
model (denoted as ‘uniform’) a fluctuation occurred at
the vicinity of the edge (pixel indices 4 and 9). This
ringing is suppressed with the adaptive noise model.

4 RESULTS

This section demonstrates two applications: super-
resolution (Sec. 4.1) and JPEG artifact removal (Sec. 4.2).
In the supplementary material, we demonstrate JPEG
2000 artifact removal. To evaluate performance, we used
two databases (supplemental material Fig. 1): DB1, con-
taining sixteen images familiar to the community (512×
512 or 256× 256), and DB2, containing 500 images from
a personal photo collection (512 × 512). For training,
200, 000 data points are sampled for GP regressions. For
quantitative evaluation, each clean image was degraded,
e.g., JPEG encoding for JPEG artifact removal, and blur-
ring plus sub-sampling for super-resolution. The en-
hanced images were compared with the original images
via the increase in both peak signal-to-noise ratio (PSNR)
and perceptually-based structural similarity (SSIM) [24].
On a 3.6GHz machine in MATLAB, training takes 5
minutes (degrading images, sampling training data, and
building an NN-search tree), with JPEG enhancement
taking three minutes and super-resolution taking two
minutes (see supplemental material for run-times of
competing algorithms). We use the YIQ space for color
images, with enhancement performed only on Y.

Parameters are the input and output patch sizes
(M,N ), the regularization parameter (σP ), and the
hyper-parameters for regression: the noise parameters
σ2, Nc, and Nd, the kernel parameter b, and the numbers
of training and inducing inputs n and m (Table 1). m and
n were fixed at 50 and 200, determined by trading perfor-
mance against computational complexity: performance
increased steadily as m and n increase, while run-time
grew roughly quadratically and linearly with respect to
m and n, respectively. Our experiments suggested that
optimal values of other parameters varied depending
on the application, except for Nc, Nd (Eq. 19), and N .
As such, these values were fixed by a set of validation
images which were disjoint from training and testing
images. The remaining parameters were optimized for
each application based on a set of validation images.

TABLE 1: Parameters used in the experiments

Expr. idx. M σ2 b σP Nc Nd N m n

JPEG 7 5 ∗ 10−3 10 2.0 10 20 5 50 200
Super-res. 7 5 ∗ 10−8 20 0.5 10 20 5 50 200

4.1 Single-image super-resolution

The input low-resolution image is enlarged to the target
scale by bicubic resampling, which is subsequently band-
frequency filtered based on the Laplacian of Gaussian
(LOG) filter ( [6], [14]). Given a LOG filtered image patch,
the regressor estimates a patch containing the difference
between the input and the hypothesized ground truth
such that the output candidates {fi} are obtained by
adding the regression result to the input image. Before
the regression step, each pair of input and output patches
is contrast normalized by the L1 norm of the input patch,
and the regression output is inverse normalized. For
edge cases, input images were extended by symmetri-
cally replicating pixel values across the image boundary.
We magnify by 2 along each image dimension (for other
factors, see the supplementary material).

Figures 4-5 show the results of super-resolution. For
comparison, we display the results of Chang et al.’s al-
gorithm [11], Kim and Kwon’s algorithm [6], Freeman et
al.’s algorithm [14], and He and Siu’s non-example-based
algorithm [13]. A comparison with Yang et al.’s algo-
rithm [12] is provided in the supplementary material.

All tested super-resolution algorithms outperformed
the bicubic resampling baseline method. However, Free-
man et al.’s results are noisy (lighthouse and astronauts,
Fig. 4c). Chang et al.’s results are less noisy but more
blurry than the results of [14] and [12]. He and Siu’s
algorithm [13] coherently restored sharp edges; however,
it tends to smooth texture details and sometimes over-
sharpen edges (astronauts and woman, Fig. 4d). For
general images, the results of our approach and [6] are
equally good except for the lighthouse image where,
thanks to our adaptive noise model, we suppress slight
ringing artifacts (Fig. 4). Overall, both algorithms are as
sharp as but less noisy than both [14] and [12], and are
more detailed than [13]. This is confirmed through PSNR
and SSIM measures: Our algorithm gives better PSNR
and worse SSIM values than [6].

While Kim and Kwon’s algorithm already outper-
forms several state-of-the-art algorithms [6], there is an
important limitation which we explicitly overcome: to
achieve the high-level of accuracy and reasonable execu-
tion time, Kim and Kwon’s algorithm requires 36 hours
training time while our algorithm only takes 5 minutes
for training. This difference is important especially when
a priori knowledge is available in terms of a class-specific
set of example images, e.g., a face has distinct statistical
properties from a document. We can quickly generate
class-specific examples on which to train, which leads
to much better results as shown in Fig. 5. This is infea-
sible in [6] due to its high complexity in training. The
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(a)
(25.24/0.97) (26.45/0.97) (26.38/0.88) (31.18/0.92)

(b)
−0.52/−4.73 · 10−2 −1.35/−6.55 · 10−2 −2.28/−7.93 · 10−2 −2.63/−5.90 · 10−2

(c)
0.52/1.34 · 10−2 −0.91/1.09 · 10−2 0.52/1.08 · 10−2 0.65/0.10 · 10−2

(d)
−0.36/−2.08 · 10−2 0.26/−0.06 · 10−2 −0.12/−0.02 · 10−2 0.44/−0.23 · 10−2

(e)
2.45/2.18 · 10−2 1.53/1.79 · 10−2 2.25/4.46 · 10−2 2.82/2.47 · 10−2

(f)
2.52/2.16 · 10−2 1.57/1.80 · 10−2 2.35/4.65 · 10−2 3.02/2.58 · 10−2

Fig. 4: Examples of image super-resolution — please zoom into the electronic version! (a) Bicubic resampling, (b)
Chang et al. [11], (c) Freeman et al. [14], (d) He and Siu [13], (e) Kim and Kwon [6], and (f) our method. Increases
of PSNRs (in dB) and SSIMs with respect to the input bicubic resampled images (displayed below each column)
were calculated based on the complete images. For the input images (a), the original PSNR and SSIM values are
shown. The best results are marked with bold letters. See supplemental material Figure 17 for uncropped originals.
Note noise in (c), blur in (b), smoothed texture details (woman; fourth column) and over-sharpen edges (astronauts;
third column) in (d). (e) and (f) are similar, but (f) shows fewer ringing artifacts (lighthouse; second column).
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Fig. 5: Top: Bicubic resampling. Middle: Kim and Kwon [6]. Bottom: Our method with dataset-specific DBs. Left:
Face-specific super-resolution: [6] ∆PSNR: 1.18dB, ∆SSIM: 0.032; our method ∆PSNR: 2.10dB, ∆SSIM: 0.054; see
supplemental material for experimental setup. Right: Document-specific super-resolution; 2× and 3× magnification.
Note our results (bottom) are more detailed (faces), and sharper (documents) than competing results (middle, [6]).

hyper-parameters for our each task-specific system were
taken from the generic DBs so that the time-consuming
parameter optimization stage was avoided.

4.2 Enhancement of JPEG images

We wish to remove DCT-coding block artifacts that are
typical for JPEG images. In principle, one could build a
single large model for processing compressed images at
various different compression factors. However, a more
economical approach might be to train a model for
each compression factor. For practical applications, we
propose two different scenarios: In the off-line scenario,
many models specialized to each small interval of com-
pression factors are trained such that the whole range of
compression factors is covered. Then, the enhancement
of a given encoded image is performed by choosing the
closest model based on the compression ratio. In the on-
line scenario, for every given image a model is instantly
trained from the example image pairs generated with a
known compression ratio.5

While our algorithm affords both scenarios, the second
scenario is preferable since the system is specifically
tailored to each input image.6 Our semi-local approxima-
tion makes this feasible: Basic GP regression for 200,000
data points is infeasible and training the sparse Gaussian
process model [6] took around 36 hours in preliminary
experiments. As such, we focus on the on-line scenario
and on a specific compression ratio: The quantization
table (determining the compression ratios) Q2 in Table 2
of [15] (see supplemental for other compression factors).

5. Time-consuming parameter optimization can be avoided by opti-
mizing parameters off-line in a manner similar to the off-line scenario.

6. Applying a Q3-trained system to Q2-compressed images de-
creased PSNR by 0.33dB.

To preprocess, input images undergo re-application of
JPEG [15] which suppresses block-artifacts in an efficient
way, but tends to leave ringing artifacts. Then, we use
the same preprocessing steps as for super-resolution en-
hancement, and apply our algorithm. The compression
ratios and DB1 images (Fig. 1, supplementary material)
are used in many published JPEG and JPEG 2000 artifact
removal works (e.g., [2], [19], [20], [22], [33]), allowing
comparison. Standard images (e.g., ‘Goldhill’, ‘Lena’,
and ‘pepper’) indicate that our JPEG artifact removal
method is significantly better by PSNR. We compare
against state-of-the-art approaches: the re-application of
JPEG [15], and shape-adaptive DCT [17]. See supplemen-
tal material for comparison with another state-of-the-art
algorithm by Laparra et al. [18].

All three methods already outperform many existing
algorithms (cf. other algorithms reported in [15], [17],
[18]). We also compare to two generic image prior-
based algorithms with Gaussian noise models: Fields of
Experts (FOEs) and the Product of Edge-perts (Edge-
perts). The latter is used in our algorithm as a prior.
This demonstrates how much performance gain can be
achieved by adopting GP regression-based distortion
models (plus preprocessing) instead of an i.i.d. Gaus-
sian likelihood. As our algorithm preprocesses with re-
application of JPEG, we also report FOE and Edge-perts
on images preprocessed with re-application of JPEG. For
these models, hyper-parameters (filter size and noise
variance for FOE; noise variance for Edge-perts) were set
to values which provide the best average PSNR values.

Visual inspection reveals that our method produces
fewest artifacts and best preserves real image features
(Fig. 6). This is numerically confirmed through PSNR
and SSIM values, Table 2 (with Table 3 in supplementary
material). Specific observations: Re-application of JPEG
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(a)
(24.49/0.90) (30.72/0.91) (30.16/0.85) (25.93/0.71)

(b)
0.64/0.66 · 10−2 1.21/2.49 · 10−2 0.70/2.34 · 10−2 0.54/2.10 · 10−2

(c)
0.93/0.98 · 10−2 1.49/2.55 · 10−2 0.77/1.80 · 10−2 0.74/0.91 · 10−2

(d)
0.78/1.01 · 10−2 1.35/2.70 · 10−2 0.81/2.43 · 10−2 0.68/1.60 · 10−2

(e)
0.61/0.96 · 10−2 1.15/2.33 · 10−2 0.78/2.16 · 10−2 0.51/0.79 · 10−2

(f)
0.65/0.60 · 10−2 1.26/2.55 · 10−2 0.72/2.33 · 10−2 0.54/2.00 · 10−2

(g)
1.23/1.28 · 10−2 1.60/2.71 · 10−2 0.90/2.48 · 10−2 0.88/2.70 · 10−2

Fig. 6: Examples of JPEG artifact suppression — please zoom into the electronic version! (a) Input JPEG images, (b)
re-application of JPEG [15], (c) SADCT [17], (d) Edge-perts [1], (e) and (f) FOE [3] applied to (a) and (b), respectively,
and (g) our method. See supplemental material Figure 18 for uncropped originals. Note blur in (b), (d), and (f)
and remaining block artifacts (biker; first column) in (e). Our approach (g) is slightly more detailed (woman; third
column) and has fewer ringing artifacts (tiger; fourth column) than (c).
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JPEG artifact removal

[15] [3] [15]+ [3] [1] [17] Ours

DB1 PSNR increase 0.76(0.21) 0.77(0.22) 0.77(0.22) 0.81(0.21) 0.97(0.29) 1.09(0.30)
SSIM increase 2.06(0.83) 1.84(1.00) 2.08(0.88) 2.01(0.84) 1.91(1.22) 2.41(1.01)

DB2 PSNR increase 0.71(0.27) 0.79(0.31) 0.72(0.28) 0.77(0.29) 0.91(0.34) 1.00(0.36)
SSIM increase 1.32(0.73) 1.37(0.81) 1.31(0.77) 1.53(0.71) 1.05(0.98) 1.48(0.75)

Super-resolution

[11] [14] [13] [6] Ours

DB1 PSNR increase −1.64(0.63) 0.03(0.52) −0.08(0.26) 1.74(0.50) 1.80(0.54)
SSIM increase −5.59(2.43) 0.72(0.45) −0.55(0.69) 2.01(1.49) 2.03(1.54)

DB2 PSNR increase −0.05(0.43) −2.41(0.62) −0.13(0.31) 1.70(0.61) 1.75(0.65)
SSIM increase −5.10(2.16) 0.67(0.40) −0.73(0.07) 1.24(0.68) 1.22(0.67)

TABLE 2: Performance of different image enhancement algorithms for two example applications: increases of PSNRs
(dB) and SSIMs (×10−2); mean and standard deviation. Re-application of JPEG [15], FOE [3], FOE applied to the
results of Re-application of JPEG ( [15]+ [3]), Edge-perts [1], SADCT [17], Chang et al. [11], Freeman et al. [14], He
and Siu [13], and Kim and Kwon [6]. Best results are marked bold.

significantly reduces block artifacts which improves both
visual quality and PSNR values. However, averaging
differently encoded images results in slightly blurred
edges and texture details. Still, the results are not com-
pletely free of block artifacts (see Lena). FOEs and Edge-
perts successfully remove block artifacts which overall
results in improvements of both PSNR and SSIM index
over re-application of JPEG. However, as regularization
methods, they do not show any noticeable enhancement
of edge and texture details. Furthermore, similar to re-
application of JPEG, they contain ringing artifacts, espe-
cially in JPEG 2000 images (see supplementary material).

Preprocessing with re-application of JPEG for Edge-
perts and FOE did not significantly improve perfor-
mance: noise variance hyper-parameter optimization for
Edge-perts with re-application of JPEG resulted in zero
noise variance: the results obtained with re-application
of JPEG were worse than their corresponding original
results. On the other hand, FOE resulted in, on average,
1.44 · 10−2dB improved PSNR values from the input re-
application of JPEG. However, in this case, the optimal
noise variance turned out to be very small (2 in the
scale of 256 images) and, therefore, no noticeable visual
improvement was observed (Fig. 6b and f).

Shape-adaptive DCT (SADCT) successfully removes
block artifacts and produces sharp edges. However, vi-
sual inspection (e.g., tiger stripe pattern, woman eye-
brow, Fig. 6) reveals that our results are more detailed
with fewer ringing artifacts. Even with a Gaussian noise
assumption, two generic image prior-based algorithms
(FOEs and Edge-perts) produce better results than re-
application of JPEG (one of the best approaches). This
result supports the use of a generic image prior for nat-
ural image enhancement; our additional improvement
demonstrates the combined power of a generic image
prior and an application-specific conditional model.

5 DISCUSSION: SEMI-LOCAL GP LOCALITY

Our semi-local GP approximation relies on two steps
of approximations. We motivate the second step (16)
based on analysis of large-scale behavior of full GPs: For

large l, the prediction p(f∗|Y) is not affected by the data
points which are sufficiently distinct from x∗. This can
be shown by first noting that the predictive distribution
p(f∗|Y) for an input x∗ (see Eq. 9) can be rewritten as:

[E[f(x∗)]]j =

l∑
i=1

κ(‖x∗ − xi‖)[Y]i,j , (21)

V[f(x∗)] =k(x∗,x∗)−
l∑
i=1

κ(‖x∗ − xi‖)[Kf ,∗]i, (22)

where κ is the equivalent kernel corresponding to k:

κ(‖x∗ − xi‖) , [K∗,f (Kf ,f + σ2I)−1]i, (23)

which shows that actually p(f∗|Y) is specified by two
kernel smoothers.

An interesting property of the equivalent kernel is that
it is spatially localized (i.e., κ(‖x∗−·‖) diminishes quickly
with distance from x∗) regardless of the shape of the
corresponding kernel k [40].

In the context of spline smoothing, Silverman [41]
showed that there is an asymptotically exact approxi-
mation m̃j(·) of [E[f(x∗)]]j ,

[E[f(x∗)]]j ≈ m̃j(x∗) =
l∑
i=1

κ̃(‖x∗ − xi‖)[Y]i,j , (24)

where the corresponding approximate equivalent kernel
κ̃ has the localization property. For the case of a Gaussian
kernel k, an analytical approximation has been suggested
by Sollich and Williams [42]:

κ̃(‖x− y‖) =

(
sc

‖x− y‖

)M2/2

JM2/2(2πsc‖x− y‖), (25)

where s2c = log

(
l(πb)M

2/2

σ2

)
/(π2b) and J is the Bessel

function of the first kind. This implies that as l increases,
κ approaches to κ̃. Furthermore, the support of κ̃(‖x∗ −
·‖) shrinks and eventually converges to a single point
x∗ as l→∞. This becomes explicit for one-dimensional
signals i.e., M2 = 1, since κ̃ becomes (a constant multiple
of) the Sinc function (see [42] for examples).
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Fig. 7: Plot of κ(r) as a function of distance r(·) =
‖x∗ − ·‖2 for the data points used in super-resolution
experiments: 20, 000 training data points are used in
calculating Kf ,f while a distinct set of 20, 000 data points
are used as the evaluation points {x∗}. The gray area
corresponds to twice the standard deviations.

Accordingly, the localization behavior of κ should be
especially prominent when l is large, which is the case
for the current application of image enhancement. When
the output variables Y correspond to the pixel-values of
images, the variances of its elements are bounded by
a constant. Together with the locality of κ, this shows
that the weight functions {κ(‖xi − ·‖)} corresponding to
data points xi that are distinct from x∗ do not con-
tribute significantly to the expansions (21). For large l,
the expansions become mainly influenced by B1(y∗). In
this case, Eq. 16 should be a good approximation and
eventually, in the limit case, it becomes exact.

It is not straightforward to quantify the corresponding
approximation error for finite l since (25) is only asymp-
totically exact. However, Fig. 7 shows that even for a
relatively small l(= 20, 000), the qualitative behavior of κ
is already in accordance with its analytic approximation
κ̃ (i.e., κ oscillates locally and decays globally) and
indeed, κ is strongly localized. This suggests that the
prediction of f∗ based on the observations made at the
vicinity of x∗ is a reasonable choice. This choice also
maximizes the differential entropy score [43]. Since we
do not know the proper values of B(f∗) and B1(y∗) in
advance, we simply choose m and n-NNs.

6 CONCLUSION AND OPEN QUESTIONS

Our learning-based approach can be quickly applied to
new problems, even by users with no specific knowledge
of the image enhancement operation to be performed. As
suggested by the results in example applications, our ap-
proach can outperform or is on par with domain-specific
algorithms. However, there is a trade-off between de-
signing either a general framework or an application-
specific approach, and we expect that the best enhance-
ment quality can be achieved when one carefully selects
the proper features and image representations. For in-
stance, in our preliminary experiments, naı̈vely applying

our algorithm to denoise images contaminated with
Gaussian noise resulted in slightly worse reconstructions
than GSM, which does not rely on any examples.7

Our algorithm provides interesting conceptual in-
sights, allows for high-quality image enhancement in
different scenarios, and allows us to customize the
degradation models efficiently since the training time is
very short. In the future, our algorithm could be applied
to other computer vision problems such as video super-
resolution, and image and video deblurring.
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