Fabricating Articulated Characters from Skinned Meshes

Bernd Bickel
TU Berlin

Moritz Bécher
Harvard University

() (b)

Cornell University

Doug L. James Hanspeter Pfister

Harvard University

(d) (e)

Figure 1: Given a skinned mesh (a), we estimate (b) a fabricatable articulated character with (c) internal joints of hinge and ball-and-socket
type. (d,e) Final 3D printed characters (transparent material) have durable joints with a frictional design for character posing.

Abstract

Articulated deformable characters are widespread in computer an-
imation. Unfortunately, we lack methods for their automatic fab-
rication using modern additive manufacturing (AM) technologies.
We propose a method that takes a skinned mesh as input, then esti-
mates a fabricatable single-material model that approximates the
3D kinematics of the corresponding virtual articulated character
in a piecewise linear manner. We first extract a set of potential
joint locations. From this set, together with optional, user-specified
range constraints, we then estimate mechanical friction joints that
satisfy inter-joint non-penetration and other fabrication constraints.
To avoid brittle joint designs, we place joint centers on an approx-
imate medial axis representation of the input geometry, and maxi-
mize each joint’s minimal cross-sectional area. We provide several
demonstrations, manufactured as single, assembled pieces using 3D
printers.

Keywords: fabrication, additive manufacturing, animation, artic-
ulated solid models.

Links: ©DL fPDF

1 Introduction

Skinned characters are among the most widespread models in
computer graphics and have received tremendous attention in re-
cent decades. Skilled artists have years of experience in creating
weighted associations between a hierarchical set of bones (rig) and
groups of vertices on the character’s mesh (skin). Content creation
systems, such as the one built into SPORE [Hecker et al. 2008],
allow even naive users to create sophisticated skinned characters.

Recently, online services such as Shapeways have become avail-
able, making personalized manufacturing on cutting edge AM tech-
nologies accessible to a broad audience. Affordable desktop print-
ers will soon take over, enabling people to fabricate custom-made
3D models at home. However, animation software packages such
as Maya or Blender lack a “3D print button” to facilitate converting
a virtual articulated model into a fabricatable format. While tools
and services that map static properties such as geometry and ap-
pearance exist, the articulated behavior—a key property of posable
skinned models—remains unmapped.

In this paper, we present a technique that estimates an articulated
character model suitable for manufacturing with AM technologies
from a given skinned mesh (see Fig. 1 (a)). Our method is capa-
ble of generating posable models consisting of a set of piecewise
rigid pieces with non-overlapping, physically meaningful ball-and-
socket or hinge joint parts (Fig. 1 (b,c)).

Note that a direct mapping from virtual articulated to manufac-
turable, jointed models does not exist. For starters, rig joints are
close to physically meaningless as they can move out of the de-
formed geometry as illustrated in Fig. 2 left with a rigged cylinder.
Furthermore, because they are also not guaranteed to be embedded
in the character’s geometry in its rest pose, they are not a reliable
estimate for joint center placement. Also, while rig joints are zero-
dimensional points, mechanical joints are volumetric entities that
need to be large enough for structural strength, and as such can po-
tentially “collide” with each other if care is not taken in the joint
design process (see Fig. 2 right). Our approach addresses these

concerns.
\U\ Y W
t

Figure 2: Virtual Rig vs. Mechanical Joints: When animating a
rigged cylinder (left), we observe that the rig joints do not fall to-
gether with actual rotation centers and move out of the deformed
geometry. (right) If we maximize the individual sizes of mechanical
Jjoints (and thus their strength), they could collide (red).

http://doi.acm.org/10.1145/10.1145/2185520.2185543
http://portal.acm.org/ft_gateway.cfm?id=1145/2185520.2185543&type=pdf

While our method is capable of automatically generating articu-
lated models with ball-and-socket joints set to default ranges, these
3-DOF (degrees of freedom) defaults may restrict the posing space
of fabricated characters either too little or too much. We therefore
allow users to switch individual joints to hinge type (1-DOF) and
to specify range parameters differing from defaults for both of our
joint designs. For all our demonstrations, user-intervention is lim-
ited to a subset of the joints.

After first analyzing the mesh and skinning weights, we estimate
proxy joint locations, and assign custom parametric models for vol-
umetric joint geometry that are consistent with any user-specified
joint limits. We then proceed to optimize joint parameters (loca-
tion, size, etc.) to increase joint strength while avoiding overlapping
joint geometry. By augmenting our joint models with tiny bumps
to increase joint friction, our output models can be posed and will
retain their configuration (see Fig. 1 (d,e)). Finally, the estimated
joints are carved out of the character mesh using CSG operations.
Additional overviews of our approach are given in Fig. 3 and § 3.

For completeness and to assure high quality of our output models,
we approximate the characters’ surface appearance also. Because
the resolution of the geometry of many skinned characters is kept
low for fast rendering, we estimate microgeometric detail from nor-
mal maps if available. Carving out joints from character meshes
also works on textured content. We demonstrate the applicability
of our approach on a number of examples (see Fig. 1, 11, 12, 13).

We show that an analysis of skinning weights leads to a plausi-
ble segmentation of the character’s geometry into rigid body parts.
Furthermore, we present novel, geometric approximate models of
joint strength, that, together with our method to avoid joint-joint
collisions, ensure strong and functional joints in our output mod-
els. Also, our collision resolution allows us to keep as much of the
“fabricatable” input articulation in our posable output models as
possible. To the best of our knowledge, we are the first to present
a technique to automatically convert skinned meshes into durable,
articulated models.

2 Related Work

We estimate a piecewise-rigid, jointed volume model suitable for
3D fabrication from an input character whose articulation is en-
coded in its skin. Articulated characters are widespread in com-
puter animation, with linear blend skinning (LBS) and example-
based approaches common [Lewis et al. 2000; Mohr and Gleicher
2003; Kavan et al. 2008]. Most character rigging methods either es-
timate a skeleton or LBS from a mesh [Baran and Popovi¢ 2007] or
estimate a skinned character model from example poses [Kry et al.
2002; Mohr and Gleicher 2003; Wang et al. 2007] or input anima-
tions [James and Twigg 2005]. We focus on articulation specified
as a linear blend skin as it is the most widely used format. However,
current AM techniques do not support printing of skinned meshes.

Recent advances in AM and fabrication of CG content have ad-
dressed the conversion of virtual furniture models to fabricatable
parts [Lau et al. 2011], and the approximation of an object’s micro-
geometry [Weyrich et al. 2009], spatially-varying reflectance [Ma-
tusik et al. 2009], subsurface scattering [Dong et al. 2010; HaSan
et al. 2010], and user-specified deformation behavior [Bickel et al.
2010]. For skinned characters, however, existing tools only convert
their appearance and shape properties and ignore their articulation.

Because our targeted output models share strong similarities with
articulated toys such as dolls or puppets, and action figures, we
draw inspiration from the large body of patents filed on this topic.
They describe many mechanical joints ranging from basic swivel to
elaborate, multi-part designs [Abbat 1993; Ferre 2000] that over-

come common structural and range shortcomings. However, none
of them is based on a geometric model of joint strength that com-
plies with range constraints like our hinge and ball-and-socket de-
signs. To make our joints posable, we fabricate small protrusions
similar to [Grey 1999; Wai 2006] that cause friction under joint mo-
tion but extent their ideas to prevent fusion during manufacturing.

When recasting our joint optimizations as pure geometric problems,
we draw inspiration from structural engineering [Beer et al. 2011]:
to increase the strength of a simple structure, civil engineers iden-
tify and maximize its critical cross-sectional area. In graphics, sim-
ilar ideas have been used to automate the generation of truss struc-
tures [Smith et al. 2002] and procedural models of buildings [Whit-
ing et al. 2009].

3 Overview

For articulated characters, we have to successfully map three com-
ponents from the virtual model to reality: two static properties,
namely geometry and appearance, and the model’s articulation that
allows it to be posed. See Fig. 3 for an overview of our fabrication
pipeline. Next, we identify the properties we use.

3.1 Input: Skinned Characters

The input to our estimation process is a skinned character (see Fig. 3
left). The input geometry is specified as semi-organized set of ori-
ented face tuples f € F whose components index into a set of
vertices v € V. Optionally, appearance is specified with color
information provided as diffuse texture, and micro-geometric detail
encoded in a normal map. As indicated in Fig. 3 (d), our input mesh
could potentially consist of a set of individual, overlapping mesh
components. By repairing (removing duplicate vertices, resolving
violations of manifoldness, etc.) and unifying this set of compo-
nents, we compute a manifold, closed surface mesh (Vr, Fir). Be-
cause this mesh fulfills the requirements of manufacturing, we call
it a fabrication mesh F. Without loss of generality, we hereafter as-
sume faces and vertices to refer to entities of repaired meshes, and
the faces to be triangles.

The articulation behavior is specified by a LBS model wherein each
vertex ¢ in V' is weighted to link [€ L by a (nonnegative) skinning
weight w;;, such that the deformed vertex position is given by

V;- = Zwil Tl Vi, (1)
l

where T are some unknown time-varying link transforms. More-
over, we require the set of link correspondences L to have tree-
structured connectivity defined by a function P that maps every
link [€ L to its unique parent P(l). We also add an index w ¢ L
and denote the link r whose parent is P(r) = w the root node. Note
that such a LBS description is the lowest common denominator of
practically all articulated characters found in games.

3.2 Pipeline Process

Given the skinned input mesh, our method proceeds to estimate an
articulated model as follows (refer to Fig. 3). In the joint estima-
tion branch (lower part in Fig. 3) of our pipeline (see § 5.1), we
first analyze the skinning weights and their link correspondences
to segment the original geometry into an approximate set of body
parts (f). From this segmentation, we then derive a filtered set of
oriented joint locations (g) that consist of orientation vectors, and
the joint’s rotation centers that we place on an approximate medial
axis representation of the fabrication mesh (h).

o

&

(d) Mesh (e) Fabrication
Components Mesh

(a) Geometry

l
!

(b) Articulation | () Piecewise Rigid

Segmentation

(9) Joint Estimation

- = f — 3 — . -
@, @ .
\° A ‘é& -k'*

© ©

(h) Medial Axis

¢ Output

(i) Joint Optimization (j) Joint Carving |(k) Fabricatable
o) Model

(I) Printout 1

Figure 3: Pipeline Overview: Given a skinned input mesh with (a) geometry, (b) skinning weights whose link correspondences are organized
in a single rooted tree structure, and optional (c) diffuse texture and normal map, our approach estimates a (k) fabricatable 3D model as
follows: (d) mesh components are identified, and (e) fused into a single, closed surface we call the fabrication mesh F. Joints are computed
by (f) estimating a rigid link segmentation from skinning weights, and (g) estimating proxy joint locations and filtering problematic joints.
To optimize joint center placement, we use (h) an approximate medial axis representation of F. (i) The parameters of volumetric joints with
optional user-specified range constraints are optimized for strength and to avoid inter-joint collisions. (j) The joints are carved out of F
using CSG operations. The final 3D printout (1) is a posable reproduction of the virtual articulated character.

The fabrication mesh F (e) together with the articulation data (g)
is then fed into our joint optimization procedure (i) where pos-
able joints with maximal cross-sectional areas are being generated
from corresponding oriented joint locations together with any user-
specified range constraints. Pairwise collisions between generated
joints are resolved while keeping the joints’ rotation centers fixed
(see § 5.4). Overall, our mapping tries to keep as much of the input
articulation, while also keeping the model structurally strong. The
final set of non-colliding, mechanical joints are then carved out of
F using CSG (j) and we get a ready-to-print, structurally strong, ar-
ticulated model (k) consisting of a set of piecewise-rigid parts that
are jointed together with hinges, or balls and sockets. The models
are statically posable using a joint friction design discussed in § 5.3.

Optionally, the joint carving can be performed on a colored, high
resolution fabrication mesh whose geometric detail is computed by
inverting normal mapping using the weighted least squares version
of Nehab et al. [2005].

4 Manufacturing Considerations

Our posable output models are tailored to be fabricated on AM de-
vices as single, assembled pieces. In contrast to subtractive man-
ufacturing where material is “cut off,” e.g., with a mill, additive
manufacturing [Gibson et al. 2010] builds an input geometry layer-
by-layer by, e.g., fusing plastic droplets or sintering metal powders
via lasers. Unlike in 2D printing, heads of such “3D printers” move
in a plane parallel to and above a horizontal plate called a build tray.
Tiny particles of the build material are added, and, when a layer is
finished, the tray is moved down a step, and the next layer is added.

To manufacture overhanging or as-
sembled geometry like our mechani-
cal joints, layered approaches use some
kind of supporting structure as illus-
trated on the left in blue. After print-
ing, this support material can either be
blown (for powders), broken, or washed
off. To ensure that the individual, as-
sembled parts (in grey) are movable, and
not fused during printing, we ensure a device-dependent minimal
distance d (in yellow) between these pieces. Hence, we treat d as
hard constraint when estimating our geometric joint models in § 5.2.

Build Tray

An important factor for manufacturability on AM devices is the
models’ structural strength because it puts a limit on the feasibility
of desired output dimensions and largely affects the models’ dura-
bility. If substructures are too fine, they either break off during
fabrication, or when interacting with the final printouts.

When designing simple structures (e.g., trusses), civil engineers re-
peatedly identify their weakest link, and adjust its dimensions. In-
spired by this basic analysis, we seek to increase the articulated
models’ overall strength by identifying and maximizing each of
their mechanical joints’ critical cross-sectional areas. We reject
joints if their minimal cross-section falls below a technology im-
posed global, critical area threshold Amin. While this heuristic does
not ensure structural optimality, it allows us to formulate our hinges
and ball-and-sockets using parametric, geometric models of joint
strength (see § 5.2). Note that, because our virtual input characters
might be nonphysical, e.g., cartoon characters, their corresponding
fabrication meshes could themselves have critical sections below
Anmin as, e.g., in long and slim necks. However, we do not improve
the structural strength of our input geometry.

5 Articulated Model Estimation

We now describe the estimation of oriented joint locations from
the character’s skin, and cast our hinges and ball-and-sockets as
geometric models of joint strength that are then optimized while
avoiding joint-joint collisions.

5.1 Estimating Rigid Parts and Joint Locations

To estimate oriented locations where mechanical joints are best
placed (see Fig. 4), we exploit the link correspondence P encoded
in the skinning weights w;; and ignore the character’s rig. We ob-
serve that a segmentation of the character’s input geometry (V, F')
into piecewise rigid parts is naturally given by assigning each ver-
tex ¢ to the link [with maximal weight max;cv wy;, as visualized
in Fig. 4 (a) with a unique hue per link.

Most LBS descriptors lack information about skeletal joint motion
(as implicitly encoded in the link transform parts T; in Equation
1), and often include rig joint locations for the characters’ rest pose
only. Unlike skinning weights, rig joint locations are not a reli-

(a) (b) © (d (e

Figure 4: Estimating Articulation Behavior: (a) Piecewise rigid segmentation using skinning weights. Faces whose vertices belong to
different segments, are shown in black. (b) Transitions oriented from the root towards the leafs in the link connectivity P, (c) degenerate, and

(d) filtered transitions. (e) Final set of joint locations on the scale axis transform of F.

able source for mechanical joint placement because they are non-
physical, zero-dimensional points. Firstly, they are not guaranteed
to be embedded in the character’s geometry
as demonstrated on the right for a spider’s
mandible. Secondly, rig joints typically do
not fall together with actual rotation centers
during animations as the cylinder example
in Fig. 2 left illustrates. Hence, it is better to
place joints at transitions of maximal link in-
fluence as shown in black in Fig. 4 (a). Such
transitions are by default found in regions where the model bends
most during animations and where joints are natural.

After segmentation, we approximate each transition with a plane
(see Fig. 5) as illustrated in Fig. 4 (b) with gray disks. We first
identify all unique edges in (V, F) whose end vertices j and k
have maximal link influences I; = argmax;c; wj; and I, =
argmax;c; wi with [; # I,. Note that links /; and I do not
have to be direct neighbors in the tree-structured connectivity P
even though they usually are. We then partition this set of transi-
tion edges with respect to matching ordered link-pairs (m, o)

U kAW EDY @

(m,0)

with A := ((l; =m) A (lx =0)) V (lx =m) A (Il; =0)) and
where link m is closer (or equal) to the root than o. Note that in
rare cases where transitions (m, o) span over branches in P and
where both links m and o have the same distance to the root, the
link order is ambiguous. Transition (I1, lo) in Fig. 5 left provides an
instance of such a case as both links /1 and [y have r as a parent. To
resolve this ambiguity, we randomly choose the link order (m, o).
Alternatively, the user could specify it. For each edge {j, k} in each
transition (m, o) (see Fig. 5 right), we then compute a transition

point Pjix
Wj,L; ‘ W, 1y,

Wj,1; + Wiy, W,1;, + Wi,

Vi, 3

with normalized maximal weights w; ; ; and wg;, , and, finally, lin-
early approximate each transition by running Principal Component
Analysis (PCA) on the set of corresponding transition points, re-
sulting in a mean point p(™® and principle components ey, , €x,,
and e, sorted by their variances A1 < A2 < A3. We call the mean
point transition center and the vector n(™ = se A, » the transi-
tion’s orientation. Next, we consistently orient planes (choosing
the sign s = £1) w.r.t. the hierarchical structure in P (from the

Transition (I1,2)

Figure 5: Estimating Transitions: (left) Skinned cylinder with root
r and three links (lo in red, 11 in green, l2 in blue) with their cor-
responding skinning weights (bottom). The link connectivity P is
defined by P(lp) = r, P(l1) = r, P(l2) = l1, and P(r) = w.
The two transitions (11,1o) and (11,12) together with the final ori-
ented transition planes pointing from the root towards the leaves
in P (top). (right) A transition edge (in gray) with corresponding
transition point (top) for transition (I1,12). (right) From the tran-
sition points, and their edges’ end vertices (in blue and green), we
compute the transition’s center and orientation (in yellow, bottom).

root towards the leaves). While orientations do not affect the DOFs
of individual mechanical joints in the posable output models, it al-
lows us to pack the volumetric joints more closely, hence to keep
more of the overall input articulation. We set s to 1 if more of the
edge end vertices v; (corresponding to the link m closer to the root,
assuming [; = m) are on the positive side of the transition plane

((vj — p™?) - n™°) > 0) than end vertices v on the plane’s
negative side ((vi — p™?) - n(™°) < 0).

Taking a closer look at the estimated transitions (see Fig. 6), we ob-
serve that their corresponding transition points do not always span
a closed loop on the input geometry, as illustrated in Fig. 6 and 4
(c) with red disks. Because it is unclear how a mechanical joint
should be placed on a transition that, e.g., only covers half of the
geometry, we filter out such degenerate transitions. We find that
a good measure for degeneracy is given by the ratio of the largest-
and mid-eigenvalue of the 3x3 PCA covariance matrix at (m, o) be-
cause it clearly discriminates between cases where transition points
are close to circularly distributed (green disks in Fig. 6) and the de-
generate cases. If the largest variance A3 is at least a factor f larger
than the mid-variance A2, we reject the transition. This leaves us
with the set of transitions shown in Fig. 4 (d).

Figure 6: Filtering Transitions: While for valid joints, transi-
tion points (gray) span a closed loop on the input geometry (green
disks). However, for a subset of transitions (red disks), they only
cover a partial loop on the geometry, indicating that the two cor-
responding body parts are semi-rigidly connected. Because it is
unclear how a mechanical joint should be placed for such degener-
ate transitions, we filter them out.

Because it is unclear from the articulation data where to best place
joint centers on the transitions, we set the centers to the closest in-
tersection ¢(™°) of (p(™°) n(™)) with an approximate medial
axis representation of the fabrication mesh F. Because the medial
axis transform [Blum 1967] is unstable and leads to many unintu-
itive branches, we use the recent scale axis transform [Miklos et al.
2010] instead. Placing joint centers on the scale axis is reasonable
because it allows to maximize the mechanical joints’ sizes, hence,
to leverage their structural strength. Furthermore, this choice guar-
antees that the joints’ center is always in the interior of F. The final
set of oriented joint locations (¢, n) is shown in Fig. 4 (e).

5.2 Optimizing Parametric Joints for Strength

Given an oriented joint location (c,n), as illus-
trated on the left with a cylinder with a single mid-
transition, we now estimate mechanical joints. To
this end, we cast our hinge and ball-and-socket
? designs as parametric, geometric models of joint
strength (see Fig. 7 left). To minimize interference
of the joints with the character’s overall appearance,
we limit their parameters so that the sockets for both
designs are guaranteed to be embedded in the maximum inscribed
sphere of radius rmax in the fabrication mesh F, at the joint’s rota-
tion center c (see dotted, black circles in Fig. 7). Furthermore, we
keep a minimal distance d between the joint parts to prevent their
fusion during manufacturing.

When designing structures, civil engineers repeatedly analyze the
stress distribution within the structures’ bodies under a set of typical
loading scenarios (e.g., [Beer etal. 2011]). A simple view is that the
average stress across a given cross-section A is given by the force
per area 0 = F/A, where F is the residual load. If a local stress
level is too high, a structure could break, hence, they adjust the
design’s dimensions in that particular region, thereby increasing the
corresponding critical area. In the same spirit, we identify a total
of three critical cross-sectional areas for each of our designs (see
Fig. 7 right) and maximize each joint’s minimal area. While these
critical areas are parameterized with only two parameters for our
ball-and-sockets (the socket’s radius r and a height parameter h, see
Fig. 7 top row, left), we need three parameters for our hinges: The
outer and inner radii R and r, and the width b, limiting the hinge’s
toroid (see Fig. 7 bottom row, left). This leads to the following two
constrained max-min optimization problems.

Ball-and-Socket

Hinge

Figure 7: Critical Cross-Sectional Areas: (top) Our ball-and-
socket design with its critical areas A1 (red, circle of radius Tyax
with centric hole of radius r), Aa (green, open cylinder of radius
r — d and height h — \/r? — (r — d)?), and As (blue, circle of ra-
dius \/(r — d)? — h?). (bottom) For our hinge design, we get Ai
(red, twice the area of circle with radius r — d, assuming this section
to break in double-shear [Beer et al. 2011]), Az (green, twice the
rectangular area with sides b — 2d and R — d — r), and A3 (blue,
circle with radius rma reduced by twice the rectangular area with
sides b and R — (r — d)). Area A4 (brown) is non-critical because
for all feasible hinges, there is a h so that Ay > As. In practice,
we choose h so that areas Az and A4 are equal.

Ball-And-Socket Joint: For our
ball-and-socket design, we get

max min Ai(r,h), @)

with I = {1, 2, 3} and constraints
Tmax > T > dand 7 —d >
h > y/r? — (r — d)? limiting the
joint’s feasibility as shown on the d - T
right in red and green, respectively. Note how the curves corre-
sponding to equal areas (in blue) meet at a single point A. For al-
most all pairs (d, 7max), our max-min problem leads to three equal
critical areas. If the joint is infeasible or its minimal critical area is
below the global threshold Apin, we reject it.

Hinge Joint: Similarly, we get

i Az s 1Y)y
By iy A) ®

with T = {1,2,3} and constrained by r > d, R > d + 7, 72 >
(%)2 + R?, and b > 2d for our hinge design.

Note, however, that the ranges for our current designs are lim-
ited in directions perpendicular to the joint’s orientation (compare
with Fig. 7 left). While rotational joint motion is too restric-
tive for our current hinges, joint motion around axis n is unre-
stricted for our ball-and-sockets. These spherical joints are there-

fore well-suited for common joints found in hips and spines. For
elbow, knee, or shoulder joints, however, they are unfit. Because it
is unclear how to estimate joint types, ranges, and
the hinges’ rotation axes from the character’s skin,
we give the user the option to specify them. Because
general ranges are not rotation-invariant w.r.t. angle-
axis (6, n), we disambiguate by introducing a right-
handed, orthogonal joint frame [a, n, f] whose for-
ward axis f (red arrow on the left) is aligned with
the direction where 6 is zero. Note how axis a (in
blue) falls together with our hinge’s rotation axis.

User-Intervention: This frame is uniquely defined by our esti-
mated joint locations, up to the axis’ a rotation angle w.r.t. the
joint’s orientation that we let the user choose. Ranges can then be
specified by direction-dependent opening angles ¢(6) for our ball-
and-sockets, and forward () and backward () swing angles for
our hinges (see Fig. 8 left).

Ball-and-Socket

Hinge

Figure 8: Joint Ranges: (top) Range constraints for our ball-and-
sockets may reduce open cylinder area Az (green) of radius ' and
height s. The “unrolled” cylinder area (see graph in the lower
right) is reduced by the area under f(0) that overlaps with range
[0,s]. Value f at a 6 (brown point) is given by the intersection of
line through joint center c and slope tan(a 4 ¢(0)) ™", with the
infinite cylinder of radius v’ (see upper right, note that cos o =
T—h,). (bottom) Forward and backward constraints for our hinges
may reduce critical area Ay by A’ each, as illustrated with a swing
angle ¢ that leads to a combined angle o + ¢ larger than 90°

(with cosa = ﬁ).

Range Constraints: These range constraints may reduce critical
areas of our joint designs as illustrated in Fig. 8 right. For our
hinges (bottom row), a swing angle that is — when combined with o
—larger than 90°, reduces section A3 by an amount A’. This reduc-
tion can be expressed in closed form, parametrized by the hinge’s
set of parameters. To incorporate the range constraint ¢(6) into our
ball-and-socket design (top row in Fig. 8), we reduce the cylindric
area Ao with circumference 277’ (' = r — d) by

27
min (s, max (0, £(6))) 6r'd6, 6)
0
with cylinder height s = v/r2 — r'2 and f(0) = h — m.

A similar derivation leads to a reduction of area A; in cases where
the sum of the maximal opening angle and « is larger than 90°.

Note that we recompute these critical areas with their reductions
in each iteration of our joint optimizations, and that our max-min

formulations balance these areas up to equality as long as the con-
straints allow it. Infeasible designs, such as a socket that cannot
hold its ball, are caught by our feasibility constraints. Without user-
intervention, we can automatically generate articulated models with
spherical default joints with constant, global constraint ¢(6) = S.
Our geometric formulations, however, are only approximate models
for joint strength and optimality w.r.t. structural strength is not guar-
anteed. Nevertheless, we avoid weak joints by maximizing their
minimal critical cross-section and rejecting them if this section has
a value below the global threshold Amin. Also, while our two basic
joint types lead to output models with sufficient DOFs, our recipe of
identifying critical sections and maximizing their minima is general
and applies to other joint designs also.

5.3 Fabricating Posable Joints with Friction

From the joints’ blue prints (see Fig. 7 and 8 left) together with
device-dependent manufacturing, user-provided range, and esti-
mated joint parameters, we then generate an implicit CSG repre-
sentation of the volume (in green in Fig. 9) that we have to remove
from fabrication mesh F to introduce a joint at its estimated loca-
tion. We call this volume joint hull. After polygonizing these hulls,
we carve them out of F with mesh-boolean difference operations
(see Fig. 9 right), resulting in fabricatable output models with de-
sired kinematics. These models, however, are unlikely to retain a
pose once placed into it, and are more like a printed “rag doll.” To
overcome this limitation, we fabricate small bump spheres of radius
3 onto the positive joint parts similar to [Grey 1999; Wai 2006]. To
prevent fusion of movable parts during manufacturing, we extent
their ideas by subtracting spheres with same centers but extended
radius 7, 4 d from the negative joint parts also, as illustrated in the
top, right corner in Fig. 9. This additional friction mechanism re-
sults in posable joints with continuous position control. While these
friction bumps could potentially stick out of F after joint carving,
we did not observe such cases when estimating our demonstration
models. To guarantee embeddedness, we could reduce radii rmax by
T or, alternatively, invert the bumps and add them to the negative
joint parts instead.

5.4 Avoiding Joint-Joint Collisions

As of now, we can successfully turn simple skins into posable out-
put models, consisting of a set of jointed, rigid pieces that we can
print assembled. For sophisticated input skins, however, estimated
joint locations are often in close proximity to one another, and, as

Ball-and-Socket

Hinge

Figure 9: Frictional Joint Designs based on adding small cali-
brated bumps. (top) Ball-and-socket joint hull with friction bumps
on the ball part and (bottom) hinge joint hull with bumps on the
toroidal part. Printed articulated models can then retain their pose.

aforementioned and illustrated in Fig. 2 right, corresponding joint
hulls are likely to collide when we maximize the individual joints’
sizes. Such overlaps may lead to broken joints, as a closer look at
an example of two colliding hulls unveils: if, e.g., a hull volume of
one joint contains the part of another spherical joint’s socket that
prevents its corresponding ball from popping out, we get two dis-
assembled pieces in our output. Hence, we resolve such joint-joint
collisions before carving their hulls out of the fabrication mesh F.

In a first naive approach, we could simply remove individual joints,
until there are no further hull collisions left. However, while this
strategy guarantees functioning joints in our output models, it is
not optimal, because we would reject far more of the “fabricatable”
input articulation than necessary. A second approach would act di-
rectly on what causes the collisions in the first place: the proximity
between estimated joint locations. By moving these locations, we
could “fit” more joints in . However, because we set the joints’
rotation centers to these locations, this second strategy would sig-
nificantly change the semantics encoded in our input articulation (if
locations were moved away from their corresponding transitions).
In the following, we describe our collision resolution procedure that
tries to keep as much of the input articulation as possible while
avoiding weak joints and keeping their rotation centers fixed. See
Fig. 10 and the accompanying video for illustrations.

L 4
@
Y
* ‘
®
0 : oo
p £, © ° °
Cy C;III o o
eoo oo ©0o06000 ©0o0o0o0o0o0 ©0o0o000o0
0 t t °
{cs tey {ct .
° ° ° °
ecoo 000 eooo 0coo 000 000 ©o0000000
0 ty ta °
e, c! c °
ecoo coo ecoo 0coo 000 ecoo 000 ecoo
t to °
ICU ICO ICU °
t
03.2
0 t1
CJ C31
0 ty to
CZ CZ C‘Z
0 ty ta
Cr % G
0 ty to
Cy Cy Cy t

(a) (0) (©) (d)

© 1) 10} "

Figure 10: Resolving Collisions: Colliding joints are shown in red,
non-colliding joints in green. For top (a-d) and bottom row (e-h),
we have joint hulls on top, corresponding collision graph, and stack
in the middle and at the bottom. (a) Initial collision groups for a
full character, (b) group split after a resolution, (c) completion of
a collision group, and (d) final set of non-colliding joint hulls that
we then carve out of F. (e) Initial collision group for a character’s
tail, (f) a joint gets infeasible (Amin too small), (g) exclusion of a
Jjoint, (h) updated joint hulls and collisions after a group reset.

To initialize our resolution process, we proceed as described in
§ 5.1, 5.2, and 5.3. We compute the radius rmax of the maximum

inscribed sphere, then optimize a parametric joint model consistent
with any user-specified ranges at each estimated location, resulting
in a set of joint hulls. Next, we compute all pairwise collisions be-
tween these hulls that we inflate by half the distance d, to guarantee
a minimal offset between individual joints also. (Note that when
we speak of collisions in the following we refer to collisions be-
tween such inflated joint hulls). To coordinate further processing,
we then abstract joint hulls with nodes and pairwise collisions with
undirected edges of what we call a collision graph. Thereafter, we
extract all connected components of this graph with orders larger
than one, and push this collision groups onto a collision stack. Re-
fer to Fig. 10 (a), where we use the notation C} to uniquely identify
each group ¢ at time step ¢ of our resolution.

As long as there are groups on this stack, we pop the topmost and
repeatedly reduce the radius rmax for the joint with largest mini-
mal cross section, as it is currently the strongest within this group.
We then reestimate its optimal parameters, and check for collisions

with its updated joint hull. We stop when either a collision (or sev-
eral) got resolved a joint gets infeasible (e.g., a joint’s minimal
= critical area gets smaller than Apn), or a joint

hull is colliding with a hull outside of its col-

lision group. While such outside collisions
‘ are rare in practice, it is crucial to check for

them, as the example of three spherical joint
hulls in the inset figure on the left illustrates. When we reduce the
size of the “strongest” of the upper pair of colliding joints, we in-
troduce a second collision with a “node” outside of that group.

If collisions got resolved, we are either done (no more collisions
within this group) and continue (see Fig. 10 (c)), or split the col-
lision group into subgroups, if necessary, and push those onto the
stack. See Fig. 10 (b) for an illustration, where we use sz’ ; to de-
note the subgroup j with previous group correspondence history
. If no split is required (single group), we simply push back C?,
without the resolved “edges” and “nodes”. However, if a joint be-
comes infeasible or a member collides with a joint outside of its col-
lision group, this group is unresolvable without excluding a joint.
(Note that while we could add outside collisions to groups or merge
groups of the involved members, such “additions” or “merges” may
lead to cyclic behavior in our resolution process. Hence, we exclude
a joint instead thereby guaranteeing convergence.) We observe that
a good candidate for exclusion is given by the member of the cur-
rent group that was “weakest” after initialization (smallest Amin).
While this heuristic leads to pleasing output models in practice,
this to-be-excluded joint could also be chosen by the user. After
an exclusion, we pop all descendants of the original collision group
(all groups that have first index k in their correspondence history,
if k is the original group’s index after initialization), and push the
original collision group (k) with reset radii max and without the ex-
cluded joint back onto the stack. Such a reset is necessary because
an exclusion of a joint might make previous reductions of joint sizes
unnecessary.

Note that our collision resolution process performs evenly well on
any other parametric joint designs (other than our hinges and ball-
and-sockets from § 5.2) as our collision handling is evaluated on
arbitrary hulls, with the only requirement that the joints have to
have a single rotation center. Because joints can only get smaller
and we exclude a joint if a member gets infeasible or collides with
an outside joint, our collision process converges.

6 Results

We have created and printed a total of six models based on
five skinned characters generated by the SPORE Content Cre-
ator (“Grumpy” in Fig. 1, “Chicks” and “Dinofrog” in Fig. 11,

“Cristal Frog® and “Lippy” in Fig. 12), and a realistic human
hand model that we rigged and skinned in Maya (see Fig. 13).
Our five SPORE examples include diffuse and normal maps,
and joints were carved out of their colored fabrication meshes,
whose geometric detail we computed by inverting normal map-
ping [Nehab et al. 2005] This inversion leads to significant
quality improvements in F,
hence, also in our printouts,
as illustrated on the right with
a comparison of input and re-
constructed geometry for our
“Grumpy” character. All of
our articulated output models
were printed with an Objet
Connex 500 printer that has a
resolutlon of 600 DPI on the horizontal x and y axis, and 1600 DPI
on the vertical z axis. We used three of Objet’s hard, plastic-like
materials called “VeroBlack™ (“Lippy” and “Cristalfrog”), “Vero-
Clear” (“Grumpy,” “Chicks,” and “Dinofrog”), and “ABS-like dig-
ital material” (hand model). While “VeroClear” is transparent and
the embedded joints, therefore, visible, the ABS-like material is the
structurally strongest (e.g., LEGO is made out of ABS). Objet’s
support material is gel-like and can be removed with a water-jet.

To identify the minimal offset d to ensure jointed parts to be mov-
able, and the critical area threshold Amin to avoid weak mechani-
cal joints, we estimated hinges and ball-and-sockets for a single-
transition cylinder (see Fig. 9 right) with varying radius and for
different offsets d, and then printed them with the three printer ma-
terials: beyond offsets of 0.3 mm, parts started fusing and the sup-
port material could not be water-jetted or “broken out” any longer,
and joints with minimal critical areas smaller than 10 mm? for “Ve-
roClear” and “VeroBlack”, and 3 mm? for the ABS-like material,
started to get brittle. With a similar empirical experiment, we iden-
tified a friction bump radius r, of 0.7 mm. Note that this bump
radius is larger than the minimal distance d.

Prior to our articulation estimation, we scaled our input to target
sizes (in direction normal to the ground plane shown in gray in
Fig. 1, 11, 12, 13) of our output models: 150 mm for “Grumpy”
and our hand model, 85 mm for “Chicks,” and 100 mm for “Lippy,”
“Dinofrog,” and “Cristalfrog”. To filter degenerate transitions, we
used factors f € [3.5,4.0]. Generally, very little user-intervention
is needed. E.g., for “Grumpy,” the user-intervention was restricted
to switching 10 joints to hinge type and specitying three angles each
(forward and backward swing angles, and rotation angle around
the joint’s estimated orientation axis). In addition, we specified
spherical range constraints for three neck joints (with again, three
user-specified angles each, because we use elliptical opening an-
gles ¢(0) = ¢q sin b + ¢y, cos H). All other joints are defaults with
global, rotation-invariant range /3 of a few degrees. With our unopti-
mized implementation that uses an implicit, extended, regular-grid-
based marching cubes approach, it takes approximately 5.5 hours
to process “Grumpy,” which is still a fraction of the needed manu-
facturing time of 18 hours. The time required for processing highly
depends on the number of collisions that have to be resolved prior
to joint carving. While our SPORE examples had many collisions
to resolve, our hand model only had a single collision between two
neighboring knuckle joints (overall processing time under 10 min).

7 Conclusions and Discussion

We have devised a method to generate fabricatable characters from
skinned input meshes, e.g., suitable for personalized posable toys.
While we are able to generate characters with spherical default
joints fully automatically, we allow users to specify joint types and
ranges for joints where defaults are not as natural. Note that input

Figure 11: “Chicks” and “Dinofrog”

Figure 13: “Hand”

skins have transitions where joints are expected, because transitions
between joint influences are naturally at places where the model’s
geometry bends the most during animations. However, while we
could always have the user remove unwanted transitions and corre-
sponding joints if there are too many, our system is not able to es-
timate joints where there is no input data. In the future, we expect
that our method and its successors will enable a fully “automatic
3D print button” for characters.

There are several remaining challenges. Current 3D printers intro-
duce many limitations on what we can print. Although our system
fully supports colored characters, we were not able to print posable
articulated output models in full color. Furthermore, while we avoid
weak joints by optimizing parameters of our geometric approximate
models of joint strength, our hinge and ball-and-socket designs are
not modeling structural strength to a level of accuracy where our
system could be fed with a set of measured material parameters to
estimate structurally optimal joints. As aforementioned, our input
skins could also include fine geometric detail with cross sections
smaller than Apin, or even parts that are completely disconnected
from the model’s main body, or overlap in the character’s rest pose.
This would require to either significantly changing the input ge-
ometry (locally inflate geometry, adding artificial connectors, etc.)
or rejecting those parts completely. Also, our articulated outputs
can be understood as first order, piecewise linear approximate re-
productions of the virtual input articulation. Complete piecewise
continuous reproductions that include a deformable skin, are left as
future work.

Acknowledgements

We would like to thank the anonymous reviewers for their help-
ful comments, Kalyan Sunkavalli, Christian Regg, Maurizio Nitti,
Nicolas Bonnet, Samuel Muff, and James Tompkin for their help
with the video, figures, Maya (hand model), and printing, respec-
tively. We also wish to thank Robert Wood, Radhika Nagpal, the
Harvard Wyss Institute for Biologically Inspired Engineering, Joe
Marks, and Disney Research Boston for letting us use their Objet
printers. We also wish to thank Milo§ Hasan, the VCG group at
Harvard and the CG group at TU Berlin for insightful discussions.
This work was partially supported by NSF grant IIS-1116619.
Doug James acknowledges support from Pixar and a fellowship
from the John Simon Guggenheim Memorial Foundation.

References

ABBAT, J.-P., 1993. Articulated doll joint. U.S. Patent 5257873.

BARAN, 1., AND PoPOVIC, J. 2007. Automatic rigging and ani-
mation of 3D characters. ACM Trans. Graph. 26, 3 (July), 72:1-
72:8.

BEER, F., JOHNSTON, E. R., DEWOLF, J. T., AND MAZUREK,
D. F. 2011. Mechanics of Materials, 6 ed. McGraw-Hill.

BICKEL, B., BACHER, M., OTADUY, M. A., LEE, H. R., Pris-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. ACM
Trans. Graph. 29 (July), 63:1-63:10.

BLUM, H. 1967. A Transformation for Extracting New Descriptors
of Shape. In Models for the Perception of Speech and Visual
Form, W. Wathen-Dunn, Ed. MIT Press, Cambridge, 362—-380.

DONG, Y., WANG, J., PELLACINI, F., TONG, X., AND GUO, B.
2010. Fabricating spatially-varying subsurface scattering. ACM
Trans. Graph. 29 (July), 62:1-62:10.

FERRE, R., 2000. Form of articulated structures for dolls or puppet
bodies. U.S. Patent 6033284.

GIBSON, I., ROSEN, D. W., AND STUCKER, B. 2010. Additive
Manufacturing Tehnologies. Springer.

GREY, M. J., 1999. Construction system. U.S. Patent 5897417.

HASAN, M., FUCHS, M., MATUSIK, W., PFISTER, H., AND
RUSINKIEWICZ, S. 2010. Physical reproduction of materi-
als with specified subsurface scattering. ACM Trans. Graph. 29
(July), 61:1-61:10.

HECKER, C., RAABE, B., ENSLOW, R. W., DEWEESE, J., MAY-
NARD, J., AND VAN PROONIJEN, K. 2008. Real-time motion
retargeting to highly varied user-created morphologies. ACM
Trans. Graph. 27, 3 (Aug.), 27:1-27:11.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Trans. Graph. 24, 3 (Aug.), 399-407.

KAVAN, L., COLLINS, S., ZARA, J., AND O’SULLIVAN, C. 2008.
Geometric skinning with approximate dual quaternion blending.
ACM Trans. Graph. 27, 4 (Oct.), 105:1-105:23.

KRy, P. G., JAMES, D. L., AND Pal, D. K. 2002. EigenSkin:
Real Time Large Deformation Character Skinning in Hardware.
In ACM SIGGRAPH SCA, 153-160.

LAU, M., OHGAWARA, A., MITANI, J., AND IGARASHI, T. 2011.
Converting 3D furniture models to fabricatable parts and connec-
tors. ACM Trans. Graph. 30, 4 (Aug.), 85:1-85:6.

LEwis, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformations: A unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, 165-172.

MATUSIK, W., AIDIN, B., GU, J., LAWRENCE, J., LENSCH, H.
P. A., PELLACINI, F., AND RUSINKIEWICZ, S. 2009. Printing
spatially-varying reflectance. ACM Trans. Graph. 28 (Decem-
ber), 128:1-128:9.

MIKLOS, B., GIESEN, J., AND PAULY, M. 2010. Discrete scale
axis representations for 3D geometry. ACM Trans. Graph. 29
(July), 101:1-101:10.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3 (July),
562-568.

NEHAB, D., RUSINKIEWICZ, S., DAVIS, J., AND RAMAMOOR-
THI, R. 2005. Efficiently combining positions and normals for
precise 3D geometry. ACM Trans. Graph. 24 (July), 536-543.

SMITH, J., HODGINS, J., OPPENHEIM, I., AND WITKIN, A.
2002. Creating models of truss structures with optimization.
ACM Trans. Graph. 21 (July), 295-301.

WAL F. C. A., 2006. Frictional joint for toys. U.S. Patent 7566256.

WANG, R. Y., PULLI, K., AND PoPovIC, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. Graph. 26, 3
(July), 73:1-73:9.

WEYRICH, T., PEERS, P., MATUSIK, W., AND RUSINKIEWICZ,
S. 2009. Fabricating microgeometry for custom surface re-
flectance. ACM Trans. Graph. 28 (July), 32:1-32:6.

WHITING, E., OCHSENDOREF, J., AND DURAND, F. 2009. Proce-
dural modeling of structurally-sound masonry buildings. ACM
Trans. Graph. 28 (December), 112:1-112:9.

